Summary:
Add method in ODS to specify verification for operations implementing a
OpInterface. Use this with infer type op interface to verify that the
inferred type matches the return type and remove special case in
TestPatterns.
This could also have been achieved by using OpInterfaceMethod but verify
seems pretty common and it is not an arbitrary method that just happened
to be named verifyTrait, so having it be defined in special way seems
appropriate/better documenting.
Differential Revision: https://reviews.llvm.org/D73122
Summary:
* Add shaped container type interface which allows infering the shape, element
type and attribute of shaped container type separately. Show usage by way of
tensor type inference trait which combines the shape & element type in
infering a tensor type;
- All components need not be specified;
- Attribute is added to allow for layout attribute that was previously
discussed;
* Expand the test driver to make it easier to test new creation instances
(adding new operands or ops with attributes or regions would trigger build
functions/type inference methods);
- The verification part will be moved out of the test and to verify method
instead of ops implementing the type inference interface in a follow up;
* Add MLIRContext as arg to possible to create type for ops without arguments,
region or location;
* Also move out the section in OpDefinitions doc to separate ShapeInference doc
where the shape function requirements can be captured;
- Part of this would move to the shape dialect and/or shape dialect ops be
included as subsection of this doc;
* Update ODS's variable usage to match camelBack format for builder,
state and arg variables;
- I could have split this out, but I had to make some changes around
these and the inconsistency bugged me :)
Differential Revision: https://reviews.llvm.org/D72432
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
This change allows for DialectConversion to attempt folding as a mechanism to legalize illegal operations. This also expands folding support in OpBuilder::createOrFold to generate new constants when folding, and also enables it to work in the context of a PatternRewriter.
PiperOrigin-RevId: 285448440
This allows for users to provide operand_range and result_range in builder.create<> calls, instead of requiring an explicit copy into a separate data structure like SmallVector/std::vector.
PiperOrigin-RevId: 284360710
Previously the error case was using a sentinel in the error case which was bad. Also make the one `build` invoke the other `build` to reuse verification there.
And follow up on suggestion to use formatv which I missed during previous review.
PiperOrigin-RevId: 284265762
For ops with infer type op interface defined, generate version that calls the inferal method on build. This is intermediate step to removing special casing of SameOperandsAndResultType & FirstAttrDereivedResultType. After that would be generating the inference code, with the initial focus on shaped container types. In between I plan to refactor these a bit to reuse generated paths. The intention would not be to add the type inference trait in multiple places, but rather to take advantage of the current modelling in ODS where possible to emit it instead.
Switch the `inferReturnTypes` method to be static.
Skipping ops with regions here as I don't like the Region vs unique_ptr<Region> difference at the moment, and I want the infer return type trait to be useful for verification too. So instead, just skip it for now to avoid churn.
PiperOrigin-RevId: 284217913
This method is needed for N->1 conversion patterns to retrieve remapped
Values used in the original N operations.
Closestensorflow/mlir#237
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/237 from dcaballe:dcaballe/getRemappedValue 1f64fadcf2b203f7b336ff0c5838b116ae3625db
PiperOrigin-RevId: 281321881
This refactors the implementation of block signature(type) conversion to not insert fake cast operations to perform the type conversion, but to instead create a new block containing the proper signature. This has the benefit of enabling the use of pre-computed analyses that rely on mapping values. It also leads to a much cleaner implementation overall. The major user facing change is that applySignatureConversion will now replace the entry block of the region, meaning that blocks generally shouldn't be cached over calls to applySignatureConversion.
PiperOrigin-RevId: 280226936
A return type that differs from the inferred return type need not indicate that an operation is invalid (e.g., tensor<*xf32> vs tensor<10xf32>) but they should be compatible for the operation to be considered valid. Add method to query if inferred type is compatible with return type.
Also add InferTypeOpIntefaceDefault trait that considers equality and compatibility as the same. Currently an op has to opt in to using it explicitly.
PiperOrigin-RevId: 279085639
In some cases, it may be desirable to mark entire regions of operations as legal. This provides an additional granularity of context to the concept of "legal". The `ConversionTarget` supports marking operations, that were previously added as `Legal` or `Dynamic`, as `recursively` legal. Recursive legality means that if an operation instance is legal, either statically or dynamically, all of the operations nested within are also considered legal. An operation can be marked via `markOpRecursivelyLegal<>`:
```c++
ConversionTarget &target = ...;
/// The operation must first be marked as `Legal` or `Dynamic`.
target.addLegalOp<MyOp>(...);
target.addDynamicallyLegalOp<MySecondOp>(...);
/// Mark the operation as always recursively legal.
target.markOpRecursivelyLegal<MyOp>();
/// Mark optionally with a callback to allow selective marking.
target.markOpRecursivelyLegal<MyOp, MySecondOp>([](Operation *op) { ... });
/// Mark optionally with a callback to allow selective marking.
target.markOpRecursivelyLegal<MyOp>([](MyOp op) { ... });
```
PiperOrigin-RevId: 277086382
Previously when we bind a symbol to an op in DRR, it means to capture
the op's result(s) and later references will be expanded to result(s).
This means for ops without result, we are replacing the symbol with
nothing. This CL treats non-result op capturing and referencing as a
special case to mean the op itself.
PiperOrigin-RevId: 275269702
NativeCodeCall is handled differently than normal op creation in RewriterGen
(because its flexibility). It will only be materialized to output stream if
it is used. But when using it for auxiliary patterns, we still want the side
effect even if it is not replacing matched root op's results.
PiperOrigin-RevId: 275265467
When dealing with regions, or other patterns that need to generate temporary operations, it is useful to be able to replace other operations than the root op being matched. Before this PR, these operations would still be considered for legalization meaning that the conversion would either fail, erroneously need to mark these ops as legal, or add unnecessary patterns.
PiperOrigin-RevId: 274598513
This is similar to the `inlineRegionBefore` hook, except the original blocks are unchanged. The region to be cloned *must* not have been modified during the conversion process at the point of cloning, i.e. it must belong an operation that has yet to be converted, or the operation that is currently being converted.
PiperOrigin-RevId: 273622533
Use OpInterfaces to add an interface for ops defining a return type function.
This change does not use this trait in any meaningful way, I'll use it in a
follow up to generalize and unify some of the op type traits/constraints. Also,
currently the infer type function can only be manually specified in C++, that should rather be the fallback in future.
PiperOrigin-RevId: 271883746
When performing A->B->C conversion, an operation may still refer to an operand of A. This makes it necessary to unmap through multiple levels of replacement for a specific value.
PiperOrigin-RevId: 269367859
Switch to C++14 standard method as llvm::make_unique has been removed (
https://reviews.llvm.org/D66259). Also mark some targets as c++14 to ease next
integrates.
PiperOrigin-RevId: 263953918
Since raw pointers are always passed around for IR construct without
implying any ownership transfer, it can be error prone to have implicit
ownership transferred the same way.
For example this code can seem harmless:
Pass *pass = ....
pm.addPass(pass);
pm.addPass(pass);
pm.run(module);
PiperOrigin-RevId: 263053082
There are currently several different terms used to refer to a parent IR unit in 'get' methods: getParent/getEnclosing/getContaining. This cl standardizes all of these methods to use 'getParent*'.
PiperOrigin-RevId: 262680287
This will allow for reusing the same pattern list, which may be costly to continually reconstruct, on multiple invocations.
PiperOrigin-RevId: 262664599
This allows for proper forward declaration, as opposed to leaking the internal implementation via a using directive. This also allows for all pattern building to go through 'insert' methods on the OwningRewritePatternList, replacing uses of 'push_back' and 'RewriteListBuilder'.
PiperOrigin-RevId: 261816316
This mode analyzes which operations are legalizable to the given target if a conversion were to be applied, i.e. no rewrites are ever performed even on success. This mode is useful for device partitioning or other utilities that may want to analyze the effect of conversion to different targets before performing it.
The analysis method currently just fills a provided set with the operations that were found to be legalizable. This can be extended in the future to capture more information as necessary.
PiperOrigin-RevId: 259987105
This cl enforces that the conversion of the type signatures for regions, and thus their entry blocks, is handled via ConversionPatterns. A new hook 'applySignatureConversion' is added to the ConversionPatternRewriter to perform the desired conversion on a region. This also means that the handling of rewriting the signature of a FuncOp is moved to a pattern. A default implementation is provided via 'mlir::populateFuncOpTypeConversionPattern'. This removes the hacky implicit 'dynamically legal' status of FuncOp that was present previously, and leaves it up to the user to decide when/how to convert the signature of a function.
PiperOrigin-RevId: 259161999
This allows for providing specific handling for dynamically legal operations/dialects without overriding the general 'isDynamicallyLegal' hook. This also means that a derived ConversionTarget class need not always be defined when some operations are dynamically legal.
Example usage:
ConversionTarget target(...);
target.addDynamicallyLegalOp<ReturnOp>([](ReturnOp op) {
return ...
};
target.addDynamicallyLegalDialect<StandardOpsDialect>([](Operation *op) {
return ...
};
PiperOrigin-RevId: 258884753
This specific PatternRewriter will allow for exposing hooks in the future that are only useful for the conversion framework, e.g. type conversions.
PiperOrigin-RevId: 258818122
This cl begins a large refactoring over how signature types are converted in the DialectConversion infrastructure. The signatures of blocks are now converted on-demand when an operation held by that block is being converted. This allows for handling the case where a region is created as part of a pattern, something that wasn't possible previously.
This cl also generalizes the region signature conversion used by FuncOp to work on any region of any operation. This generalization allows for removing the 'apply*Conversion' functions that were specific to FuncOp/ModuleOp. The implementation currently uses a new hook on TypeConverter, 'convertRegionSignature', but this should ideally be removed in favor of using Patterns. That depends on adding support to the PatternRewriter used by ConversionPattern to allow applying signature conversions to regions, which should be coming in a followup.
PiperOrigin-RevId: 258645733
This explicit tag is useful is several ways:
*) This simplifies how to mark sub sections of a dialect as explicitly unsupported, e.g. my target supports all operations in the foo dialect except for these select few. This is useful for partial lowerings between dialects.
*) Partial conversions will now verify that operations that were explicitly marked as illegal must be converted. This provides some guarantee that the operations that need to be lowered by a specific pass will be.
PiperOrigin-RevId: 258582879
Users generally want several different modes of conversion. This cl refactors DialectConversion to provide two:
* Partial (applyPartialConversion)
- This mode allows for illegal operations to exist in the IR, and does not fail if an operation fails to be legalized.
* Full (applyFullConversion)
- This mode fails if any operation is not properly legalized to the conversion target. This allows for ensuring that the IR after a conversion only contains operations legal for the target.
PiperOrigin-RevId: 258412243
During conversion, if a type conversion has dangling uses a type conversion must persist after conversion has finished to maintain valid IR. In these cases, we now query the TypeConverter to materialize a conversion for us. This allows for the default case of a full conversion to continue working as expected, but also handle the degenerate cases more robustly.
PiperOrigin-RevId: 255637171