teak-llvm/mlir/test/lib/TestDialect/TestPatterns.cpp
River Riddle 28057ff3da Add support for providing a legality callback for dynamic legality in DialectConversion.
This allows for providing specific handling for dynamically legal operations/dialects without overriding the general 'isDynamicallyLegal' hook. This also means that a derived ConversionTarget class need not always be defined when some operations are dynamically legal.

Example usage:

ConversionTarget target(...);
target.addDynamicallyLegalOp<ReturnOp>([](ReturnOp op) {
  return ...
};
target.addDynamicallyLegalDialect<StandardOpsDialect>([](Operation *op) {
  return ...
};

PiperOrigin-RevId: 258884753
2019-07-19 11:40:19 -07:00

214 lines
7.9 KiB
C++

//===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "TestDialect.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
// Native function for testing NativeCodeCall
static Value *chooseOperand(Value *input1, Value *input2, BoolAttr choice) {
return choice.getValue() ? input1 : input2;
}
namespace {
#include "TestPatterns.inc"
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Canonicalizer Driver.
//===----------------------------------------------------------------------===//
namespace {
struct TestPatternDriver : public FunctionPass<TestPatternDriver> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
// Verify named pattern is generated with expected name.
RewriteListBuilder<TestNamedPatternRule>::build(patterns, &getContext());
applyPatternsGreedily(getFunction(), std::move(patterns));
}
};
} // end anonymous namespace
static mlir::PassRegistration<TestPatternDriver>
pass("test-patterns", "Run test dialect patterns");
//===----------------------------------------------------------------------===//
// Legalization Driver.
//===----------------------------------------------------------------------===//
namespace {
/// This pattern is a simple pattern that inlines the first region of a given
/// operation into the parent region.
struct TestRegionRewriteBlockMovement : public ConversionPattern {
TestRegionRewriteBlockMovement(MLIRContext *ctx)
: ConversionPattern("test.region", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
// Inline this region into the parent region.
auto &parentRegion = *op->getContainingRegion();
rewriter.inlineRegionBefore(op->getRegion(0), parentRegion,
parentRegion.end());
// Drop this operation.
rewriter.replaceOp(op, llvm::None);
return matchSuccess();
}
};
/// This pattern is a simple pattern that generates a region containing an
/// illegal operation.
struct TestRegionRewriteUndo : public RewritePattern {
TestRegionRewriteUndo(MLIRContext *ctx)
: RewritePattern("test.region_builder", 1, ctx) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
// Create the region operation with an entry block containing arguments.
OperationState newRegion(op->getLoc(), "test.region");
newRegion.addRegion();
auto *regionOp = rewriter.createOperation(newRegion);
auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
entryBlock->addArgument(rewriter.getIntegerType(64));
// Add an explicitly illegal operation to ensure the conversion fails.
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value *>());
// Drop this operation.
rewriter.replaceOp(op, llvm::None);
return matchSuccess();
}
};
/// This pattern simply erases the given operation.
struct TestDropOp : public ConversionPattern {
TestDropOp(MLIRContext *ctx) : ConversionPattern("test.drop_op", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
rewriter.replaceOp(op, llvm::None);
return matchSuccess();
}
};
/// This pattern simply updates the operands of the given operation.
struct TestPassthroughInvalidOp : public ConversionPattern {
TestPassthroughInvalidOp(MLIRContext *ctx)
: ConversionPattern("test.invalid", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
llvm::None);
return matchSuccess();
}
};
/// This pattern handles the case of a split return value.
struct TestSplitReturnType : public ConversionPattern {
TestSplitReturnType(MLIRContext *ctx)
: ConversionPattern("test.return", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
// Check for a return of F32.
if (op->getNumOperands() != 1 || !op->getOperand(0)->getType().isF32())
return matchFailure();
// Check if the first operation is a cast operation, if it is we use the
// results directly.
auto *defOp = operands[0]->getDefiningOp();
if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) {
SmallVector<Value *, 2> returnOperands(packerOp.getOperands());
rewriter.replaceOpWithNewOp<TestReturnOp>(op, returnOperands);
return matchSuccess();
}
// Otherwise, fail to match.
return matchFailure();
}
};
} // namespace
namespace {
struct TestTypeConverter : public TypeConverter {
using TypeConverter::TypeConverter;
LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) override {
// Drop I16 types.
if (t.isInteger(16))
return success();
// Convert I64 to F64.
if (t.isInteger(64)) {
results.push_back(FloatType::getF64(t.getContext()));
return success();
}
// Split F32 into F16,F16.
if (t.isF32()) {
results.assign(2, FloatType::getF16(t.getContext()));
return success();
}
// Otherwise, convert the type directly.
results.push_back(t);
return success();
}
/// Override the hook to materialize a conversion. This is necessary because
/// we generate 1->N type mappings.
Operation *materializeConversion(PatternRewriter &rewriter, Type resultType,
ArrayRef<Value *> inputs,
Location loc) override {
return rewriter.create<TestCastOp>(loc, resultType, inputs);
}
};
struct TestLegalizePatternDriver
: public ModulePass<TestLegalizePatternDriver> {
void runOnModule() override {
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
RewriteListBuilder<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
TestDropOp, TestPassthroughInvalidOp,
TestSplitReturnType>::build(patterns, &getContext());
// Define the conversion target used for the test.
ConversionTarget target(getContext());
target.addLegalOp<LegalOpA, TestValidOp>();
target.addIllegalOp<ILLegalOpF, TestRegionBuilderOp>();
target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
// Don't allow F32 operands.
return llvm::none_of(op.getOperandTypes(),
[](Type type) { return type.isF32(); });
});
TestTypeConverter converter;
(void)applyPartialConversion(getModule(), target, std::move(patterns),
&converter);
}
};
} // end anonymous namespace
static mlir::PassRegistration<TestLegalizePatternDriver>
legalizer_pass("test-legalize-patterns",
"Run test dialect legalization patterns");