teak-llvm/mlir/test/lib/TestDialect/TestPatterns.cpp
River Riddle d985c74883 NFC: Refactor block signature conversion to not erase the original arguments.
This refactors the implementation of block signature(type) conversion to not insert fake cast operations to perform the type conversion, but to instead create a new block containing the proper signature. This has the benefit of enabling the use of pre-computed analyses that rely on mapping values. It also leads to a much cleaner implementation overall. The major user facing change is that applySignatureConversion will now replace the entry block of the region, meaning that blocks generally shouldn't be cached over calls to applySignatureConversion.

PiperOrigin-RevId: 280226936
2019-11-13 10:27:53 -08:00

438 lines
17 KiB
C++

//===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "TestDialect.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
// Native function for testing NativeCodeCall
static Value *chooseOperand(Value *input1, Value *input2, BoolAttr choice) {
return choice.getValue() ? input1 : input2;
}
static void createOpI(PatternRewriter &rewriter, Value *input) {
rewriter.create<OpI>(rewriter.getUnknownLoc(), input);
}
void handleNoResultOp(PatternRewriter &rewriter, OpSymbolBindingNoResult op) {
// Turn the no result op to a one-result op.
rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand()->getType(),
op.operand());
}
namespace {
#include "TestPatterns.inc"
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Canonicalizer Driver.
//===----------------------------------------------------------------------===//
namespace {
struct TestPatternDriver : public FunctionPass<TestPatternDriver> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
// Verify named pattern is generated with expected name.
patterns.insert<TestNamedPatternRule>(&getContext());
applyPatternsGreedily(getFunction(), patterns);
}
};
} // end anonymous namespace
static mlir::PassRegistration<TestPatternDriver>
pass("test-patterns", "Run test dialect patterns");
//===----------------------------------------------------------------------===//
// ReturnType Driver.
//===----------------------------------------------------------------------===//
struct ReturnTypeOpMatch : public RewritePattern {
ReturnTypeOpMatch(MLIRContext *ctx)
: RewritePattern(OpWithInferTypeInterfaceOp::getOperationName(), 1, ctx) {
}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
if (auto retTypeFn = dyn_cast<InferTypeOpInterface>(op)) {
SmallVector<Value *, 4> values;
values.reserve(op->getNumOperands());
for (auto &operand : op->getOpOperands())
values.push_back(operand.get());
auto res = retTypeFn.inferReturnTypes(op->getLoc(), values,
op->getAttrs(), op->getRegions());
SmallVector<Type, 1> result_types(op->getResultTypes());
if (!retTypeFn.isCompatibleReturnTypes(res, result_types))
return op->emitOpError(
"inferred type incompatible with return type of operation"),
matchFailure();
}
return matchFailure();
}
};
namespace {
struct TestReturnTypeDriver : public FunctionPass<TestReturnTypeDriver> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
patterns.insert<ReturnTypeOpMatch>(&getContext());
applyPatternsGreedily(getFunction(), patterns);
}
};
} // end anonymous namespace
static mlir::PassRegistration<TestReturnTypeDriver>
rt_pass("test-return-type", "Run return type functions");
//===----------------------------------------------------------------------===//
// Legalization Driver.
//===----------------------------------------------------------------------===//
namespace {
//===----------------------------------------------------------------------===//
// Region-Block Rewrite Testing
/// This pattern is a simple pattern that inlines the first region of a given
/// operation into the parent region.
struct TestRegionRewriteBlockMovement : public ConversionPattern {
TestRegionRewriteBlockMovement(MLIRContext *ctx)
: ConversionPattern("test.region", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
// Inline this region into the parent region.
auto &parentRegion = *op->getParentRegion();
if (op->getAttr("legalizer.should_clone"))
rewriter.cloneRegionBefore(op->getRegion(0), parentRegion,
parentRegion.end());
else
rewriter.inlineRegionBefore(op->getRegion(0), parentRegion,
parentRegion.end());
// Drop this operation.
rewriter.eraseOp(op);
return matchSuccess();
}
};
/// This pattern is a simple pattern that generates a region containing an
/// illegal operation.
struct TestRegionRewriteUndo : public RewritePattern {
TestRegionRewriteUndo(MLIRContext *ctx)
: RewritePattern("test.region_builder", 1, ctx) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
// Create the region operation with an entry block containing arguments.
OperationState newRegion(op->getLoc(), "test.region");
newRegion.addRegion();
auto *regionOp = rewriter.createOperation(newRegion);
auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
entryBlock->addArgument(rewriter.getIntegerType(64));
// Add an explicitly illegal operation to ensure the conversion fails.
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value *>());
// Drop this operation.
rewriter.eraseOp(op);
return matchSuccess();
}
};
//===----------------------------------------------------------------------===//
// Type-Conversion Rewrite Testing
/// This patterns erases a region operation that has had a type conversion.
struct TestDropOpSignatureConversion : public ConversionPattern {
TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
: ConversionPattern("test.drop_region_op", 1, ctx), converter(converter) {
}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
Region &region = op->getRegion(0);
Block *entry = &region.front();
// Convert the original entry arguments.
TypeConverter::SignatureConversion result(entry->getNumArguments());
for (unsigned i = 0, e = entry->getNumArguments(); i != e; ++i)
if (failed(converter.convertSignatureArg(
i, entry->getArgument(i)->getType(), result)))
return matchFailure();
// Convert the region signature and just drop the operation.
rewriter.applySignatureConversion(&region, result);
rewriter.eraseOp(op);
return matchSuccess();
}
/// The type converter to use when rewriting the signature.
TypeConverter &converter;
};
/// This pattern simply updates the operands of the given operation.
struct TestPassthroughInvalidOp : public ConversionPattern {
TestPassthroughInvalidOp(MLIRContext *ctx)
: ConversionPattern("test.invalid", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
llvm::None);
return matchSuccess();
}
};
/// This pattern handles the case of a split return value.
struct TestSplitReturnType : public ConversionPattern {
TestSplitReturnType(MLIRContext *ctx)
: ConversionPattern("test.return", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
// Check for a return of F32.
if (op->getNumOperands() != 1 || !op->getOperand(0)->getType().isF32())
return matchFailure();
// Check if the first operation is a cast operation, if it is we use the
// results directly.
auto *defOp = operands[0]->getDefiningOp();
if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) {
SmallVector<Value *, 2> returnOperands(packerOp.getOperands());
rewriter.replaceOpWithNewOp<TestReturnOp>(op, returnOperands);
return matchSuccess();
}
// Otherwise, fail to match.
return matchFailure();
}
};
//===----------------------------------------------------------------------===//
// Multi-Level Type-Conversion Rewrite Testing
struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is I32, change the type to F32.
if (!(*op->result_type_begin()).isInteger(32))
return matchFailure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
return matchSuccess();
}
};
struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is F32, change the type to F64.
if (!(*op->result_type_begin()).isF32())
return matchFailure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
return matchSuccess();
}
};
struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 10, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
// Always convert to B16, even though it is not a legal type. This tests
// that values are unmapped correctly.
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
return matchSuccess();
}
};
struct TestUpdateConsumerType : public ConversionPattern {
TestUpdateConsumerType(MLIRContext *ctx)
: ConversionPattern("test.type_consumer", 1, ctx) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const final {
// Verify that the the incoming operand has been successfully remapped to
// F64.
if (!operands[0]->getType().isF64())
return matchFailure();
rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
return matchSuccess();
}
};
//===----------------------------------------------------------------------===//
// Non-Root Replacement Rewrite Testing
/// This pattern generates an invalid operation, but replaces it before the
/// pattern is finished. This checks that we don't need to legalize the
/// temporary op.
struct TestNonRootReplacement : public RewritePattern {
TestNonRootReplacement(MLIRContext *ctx)
: RewritePattern("test.replace_non_root", 1, ctx) {}
PatternMatchResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
auto resultType = *op->result_type_begin();
auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
rewriter.replaceOp(illegalOp, {legalOp});
rewriter.replaceOp(op, {illegalOp});
return matchSuccess();
}
};
} // namespace
namespace {
struct TestTypeConverter : public TypeConverter {
using TypeConverter::TypeConverter;
LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) override {
// Drop I16 types.
if (t.isInteger(16))
return success();
// Convert I64 to F64.
if (t.isInteger(64)) {
results.push_back(FloatType::getF64(t.getContext()));
return success();
}
// Split F32 into F16,F16.
if (t.isF32()) {
results.assign(2, FloatType::getF16(t.getContext()));
return success();
}
// Otherwise, convert the type directly.
results.push_back(t);
return success();
}
/// Override the hook to materialize a conversion. This is necessary because
/// we generate 1->N type mappings.
Operation *materializeConversion(PatternRewriter &rewriter, Type resultType,
ArrayRef<Value *> inputs,
Location loc) override {
return rewriter.create<TestCastOp>(loc, resultType, inputs);
}
};
struct TestLegalizePatternDriver
: public ModulePass<TestLegalizePatternDriver> {
/// The mode of conversion to use with the driver.
enum class ConversionMode { Analysis, Full, Partial };
TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
void runOnModule() override {
TestTypeConverter converter;
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
patterns
.insert<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
TestPassthroughInvalidOp, TestSplitReturnType,
TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
TestNonRootReplacement>(&getContext());
patterns.insert<TestDropOpSignatureConversion>(&getContext(), converter);
mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(),
converter);
// Define the conversion target used for the test.
ConversionTarget target(getContext());
target.addLegalOp<ModuleOp, ModuleTerminatorOp>();
target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp>();
target.addIllegalOp<ILLegalOpF, TestRegionBuilderOp>();
target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
// Don't allow F32 operands.
return llvm::none_of(op.getOperandTypes(),
[](Type type) { return type.isF32(); });
});
target.addDynamicallyLegalOp<FuncOp>(
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
// Expect the type_producer/type_consumer operations to only operate on f64.
target.addDynamicallyLegalOp<TestTypeProducerOp>(
[](TestTypeProducerOp op) { return op.getType().isF64(); });
target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
return op.getOperand()->getType().isF64();
});
// Check support for marking certain operations as recursively legal.
target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
return static_cast<bool>(
op->getAttrOfType<UnitAttr>("test.recursively_legal"));
});
// Handle a partial conversion.
if (mode == ConversionMode::Partial) {
(void)applyPartialConversion(getModule(), target, patterns, &converter);
return;
}
// Handle a full conversion.
if (mode == ConversionMode::Full) {
(void)applyFullConversion(getModule(), target, patterns, &converter);
return;
}
// Otherwise, handle an analysis conversion.
assert(mode == ConversionMode::Analysis);
// Analyze the convertible operations.
DenseSet<Operation *> legalizedOps;
if (failed(applyAnalysisConversion(getModule(), target, patterns,
legalizedOps, &converter)))
return signalPassFailure();
// Emit remarks for each legalizable operation.
for (auto *op : legalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is legalizable";
}
/// The mode of conversion to use.
ConversionMode mode;
};
} // end anonymous namespace
static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
legalizerConversionMode(
"test-legalize-mode",
llvm::cl::desc("The legalization mode to use with the test driver"),
llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
llvm::cl::values(
clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
"analysis", "Perform an analysis conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
"Perform a full conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
"partial", "Perform a partial conversion")));
static mlir::PassRegistration<TestLegalizePatternDriver>
legalizer_pass("test-legalize-patterns",
"Run test dialect legalization patterns", [] {
return std::make_unique<TestLegalizePatternDriver>(
legalizerConversionMode);
});