Summary:
This is a follow up on https://reviews.llvm.org/D71473#inline-647262.
There's a caveat here that `Align(1)` relies on the compiler understanding of `Log2_64` implementation to produce good code. One could use `Align()` as a replacement but I believe it is less clear that the alignment is one in that case.
Reviewers: xbolva00, courbet, bollu
Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, Jim, kerbowa, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73099
Summary:
This is a resubmit of D71473.
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: aaron.ballman, courbet
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71547
Summary:
This patch introduces a set of functions to enable deprecation of IRBuilder functions without breaking out of tree clients.
Functions will be deprecated one by one and as in tree code is cleaned up.
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71473
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
object file size.
- Incremental step towards decoupling target intrinsics.
The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.
Part of PR34259
Reviewers: efriedma, echristo, MaskRay
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D71320
Summary: Rollback of parts of D71213. After digging more into the code I think we should leave 0 when creating the instructions (CreateMemcpy, CreateMaskedStore, CreateMaskedLoad). It's probably fine for MemorySanitizer because Alignement is resolved but I'm having a hard time convincing myself it has no impact at all (although tests are passing).
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71332
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
Summary:
MSan instrumentation adds stores and loads even to pure
readonly/writeonly functions. It is removing some of those attributes
from instrumented functions and call targets, but apparently not enough.
Remove writeonly, argmemonly and speculatable in addition to readonly /
readnone.
Reviewers: pcc, vitalybuka
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69541
Summary:
If we insert them from function pass some analysis may be missing or invalid.
Fixes PR42877.
Reviewers: eugenis, leonardchan
Reviewed By: leonardchan
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D68832
> llvm-svn: 374481
Signed-off-by: Vitaly Buka <vitalybuka@google.com>
llvm-svn: 374527
Summary:
If we insert them from function pass some analysis may be missing or invalid.
Fixes PR42877.
Reviewers: eugenis, leonardchan
Reviewed By: leonardchan
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D68832
llvm-svn: 374481
The static analyzer is warning about a potential null dereferences, but we should be able to use cast<> directly and if not assert will fire for us.
llvm-svn: 372960
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
We had versions of this code scattered around, so consolidate into one location.
Not strictly NFC since the order of intermediate results may change in some places, but since these operations are associatives, should not change results.
llvm-svn: 365259
Summary:
Handling callbr is very similar to handling an inline assembly call:
MSan must checks the instruction's inputs.
callbr doesn't (yet) have outputs, so there's nothing to unpoison,
and conservative assembly handling doesn't apply either.
Fixes PR42479.
Reviewers: eugenis
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64072
llvm-svn: 365008
Summary:
When a variable goes into scope several times within a single function
or when two variables from different scopes share a stack slot it may
be incorrect to poison such scoped locals at the beginning of the
function.
In the former case it may lead to false negatives (see
https://github.com/google/sanitizers/issues/590), in the latter - to
incorrect reports (because only one origin remains on the stack).
If Clang emits lifetime intrinsics for such scoped variables we insert
code poisoning them after each call to llvm.lifetime.start().
If for a certain intrinsic we fail to find a corresponding alloca, we
fall back to poisoning allocas for the whole function, as it's now
impossible to tell which alloca was missed.
The new instrumentation may slow down hot loops containing local
variables with lifetime intrinsics, so we allow disabling it with
-mllvm -msan-handle-lifetime-intrinsics=false.
Reviewers: eugenis, pcc
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60617
llvm-svn: 359536
Summary:
They simply shuffle bits. MSan needs to do the same with shadow bits,
after making sure that the shuffle mask is fully initialized.
Reviewers: pcc, vitalybuka
Subscribers: hiraditya, #sanitizers, llvm-commits
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D58858
llvm-svn: 355348
This cleans up all GetElementPtr creation in LLVM to explicitly pass a
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57173
llvm-svn: 352913
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
This cleans up all CallInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57170
llvm-svn: 352909
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
This reverts commit f47d6b38c7 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary: To avoid adding an extern function to the global ctors list, apply the changes of D56538 also to MSan.
Reviewers: chandlerc, vitalybuka, fedor.sergeev, leonardchan
Subscribers: hiraditya, bollu, llvm-commits
Differential Revision: https://reviews.llvm.org/D56734
llvm-svn: 351322
That is, remove many of the calls to Type::getNumContainedTypes(),
Type::subtypes(), and Type::getContainedType(N).
I'm not intending to remove these accessors -- they are
useful/necessary in some cases. However, removing the pointee type
from pointers would potentially break some uses, and reducing the
number of calls makes it easier to audit.
llvm-svn: 350835
Summary:
Keeping msan a function pass requires replacing the module level initialization:
That means, don't define a ctor function which calls __msan_init, instead just
declare the init function at the first access, and add that to the global ctors
list.
Changes:
- Pull the actual sanitizer and the wrapper pass apart.
- Add a newpm msan pass. The function pass inserts calls to runtime
library functions, for which it inserts declarations as necessary.
- Update tests.
Caveats:
- There is one test that I dropped, because it specifically tested the
definition of the ctor.
Reviewers: chandlerc, fedor.sergeev, leonardchan, vitalybuka
Subscribers: sdardis, nemanjai, javed.absar, hiraditya, kbarton, bollu, atanasyan, jsji
Differential Revision: https://reviews.llvm.org/D55647
llvm-svn: 350305
MSan used to report false positives in the case the argument of
llvm.is.constant intrinsic was uninitialized.
In fact checking this argument is unnecessary, as the intrinsic is only
used at compile time, and its value doesn't depend on the value of the
argument.
llvm-svn: 350173
LLVM treats void* pointers passed to assembly routines as pointers to
sized types.
We used to emit calls to __msan_instrument_asm_load() for every such
void*, which sometimes led to false positives.
A less error-prone (and truly "conservative") approach is to unpoison
only assembly output arguments.
llvm-svn: 349734
This change enables conservative assembly instrumentation in KMSAN builds
by default.
It's still possible to disable it with -msan-handle-asm-conservative=0
if something breaks. It's now impossible to enable conservative
instrumentation for userspace builds, but it's not used anyway.
llvm-svn: 348112
Turns out it's not always possible to figure out whether an asm()
statement argument points to a valid memory region.
One example would be per-CPU objects in the Linux kernel, for which the
addresses are calculated using the FS register and a small offset in the
.data..percpu section.
To avoid pulling all sorts of checks into the instrumentation, we replace
actual checking/unpoisoning code with calls to
msan_instrument_asm_load(ptr, size) and
msan_instrument_asm_store(ptr, size) functions in the runtime.
This patch doesn't implement the runtime hooks in compiler-rt, as there's
been no demand in assembly instrumentation for userspace apps so far.
llvm-svn: 345702
Introduce the -msan-kernel flag, which enables the kernel instrumentation.
The main differences between KMSAN and MSan instrumentations are:
- KMSAN implies msan-track-origins=2, msan-keep-going=true;
- there're no explicit accesses to shadow and origin memory.
Shadow and origin values for a particular X-byte memory location are
read and written via pointers returned by
__msan_metadata_ptr_for_load_X(u8 *addr) and
__msan_store_shadow_origin_X(u8 *addr, uptr shadow, uptr origin);
- TLS variables are stored in a single struct in per-task storage. A call
to a function returning that struct is inserted into every instrumented
function before the entry block;
- __msan_warning() takes a 32-bit origin parameter;
- local variables are poisoned with __msan_poison_alloca() upon function
entry and unpoisoned with __msan_unpoison_alloca() before leaving the
function;
- the pass doesn't declare any global variables or add global constructors
to the translation unit.
llvm-svn: 341637
Add the __msan_va_arg_origin_tls TLS array to keep the origins for variadic function parameters.
Change the instrumentation pass to store parameter origins in this array.
This is a reland of r341528.
test/msan/vararg.cc doesn't work on Mips, PPC and AArch64 (because this
patch doesn't touch them), XFAIL these arches.
Also turned out Clang crashed on i80 vararg arguments because of
incorrect origin type returned by getOriginPtrForVAArgument() - fixed it
and added a test.
llvm-svn: 341554
Add the __msan_va_arg_origin_tls TLS array to keep the origins for
variadic function parameters.
Change the instrumentation pass to store parameter origins in this array.
llvm-svn: 341528
Turns out that calling a variadic function with too many (e.g. >100 i64's)
arguments overflows __msan_va_arg_tls, which leads to smashing other TLS
data with function argument shadow values.
getShadow() already checks for kParamTLSSize and returns clean shadow if
the argument does not fit, so just skip storing argument shadow for such
arguments.
llvm-svn: 341525