This implements execute-only support for ARM code generation, which
prevents the compiler from generating data accesses to code sections.
The following changes are involved:
* Add the CodeGen option "-arm-execute-only" to the ARM code generator.
* Add the clang flag "-mexecute-only" as well as the GCC-compatible
alias "-mpure-code" to enable this option.
* When enabled, literal pools are replaced with MOVW/MOVT instructions,
with VMOV used in addition for floating-point literals. As the MOVT
instruction is required, execute-only support is only available in
Thumb mode for targets supporting ARMv8-M baseline or Thumb2.
* Jump tables are placed in data sections when in execute-only mode.
* The execute-only text section is assigned section ID 0, and is
marked as unreadable with the SHF_ARM_PURECODE flag with symbol 'y'.
This also overrides selection of ELF sections for globals.
llvm-svn: 289784
Summary:
Changes to llvm-mc to move common logic to separate function.
Related clang patch: https://reviews.llvm.org/D26213
Reviewers: rafael, t.p.northover, colinl, echristo, rengolin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26214
llvm-svn: 288396
MCContext already has many tasks, and separating CodeView out from it is
probably a good idea. The .cv_loc tracking was modelled on the DWARF
tracking which lived directly in MCContext.
Removes the inclusion of MCCodeView.h from MCContext.h, so now there are
only 10 build actions while I hack on CodeView support instead of 265.
llvm-svn: 279847
Group" sections while lowering. In particular, for ELF sections this is
useful for creating function-specific groups that get merged into the
same named section.
Also use const Twine& instead of StringRef for the getELF functions
while we're here.
Differential Revision: http://reviews.llvm.org/D21743
llvm-svn: 274336
Now, after landing r270560, r270557, r270320 it is a proper time.
Original commit message:
[llvm-mc] - Teach llvm-mc to generate compressed debug sections in zlib style.
Before this patch llvm-mc generated zlib-gnu styled sections.
That means no SHF_COMPRESSED flag was set, magic 'zlib' signature
was used in combination with full size field. Sections were renamed to "*.z*".
This patch reimplements the compression style to zlib one as zlib-gnu looks
to be depricated everywhere.
Differential revision: http://reviews.llvm.org/D20331
llvm-svn: 270569
It broke buildbot:
http://lab.llvm.org:8011/builders/clang-s390x-linux/builds/4817/steps/ninja%20check%201/logs/stdio
Actually it is just because D20273 not yet commited, but these 2 were crossing with each other,
and I`ll better find the way to land them separatelly soon.
Initial commit message:
[llvm-mc] - Teach llvm-mc to generate compressed debug sections in zlib style.
Before this patch llvm-mc generated zlib-gnu styled sections.
That means no SHF_COMPRESSED flag was set, magic 'zlib' signature
was used in combination with full size field. Sections were renamed to "*.z*".
This patch reimplements the compression style to zlib one as zlib-gnu looks
to be depricated everywhere.
Differential revision: http://reviews.llvm.org/D20331
llvm-svn: 270075
Before this patch llvm-mc generated zlib-gnu styled sections.
That means no SHF_COMPRESSED flag was set, magic 'zlib' signature
was used in combination with full size field. Sections were renamed to "*.z*".
This patch reimplements the compression style to zlib one as zlib-gnu looks
to be depricated everywhere.
Differential revision: http://reviews.llvm.org/D20331
llvm-svn: 270070
Summary:
This adds a unique ID to the COFF section uniquing map, similar to the
one we have for ELF. The unique id is not currently exposed via the
assembler because we don't have a use case for it yet. Users generally
create .pdata with the .seh_* family of directives, and the assembler
internally needs to produce .pdata and .xdata sections corresponding to
the code section.
The association between .text sections and the assembler-created .xdata
and .pdata sections is maintained as an ID field of MCSectionCOFF. The
CFI-related sections are created with the given unique ID, so if more
code is added to the same text section, we can find and reuse the CFI
sections that were already created.
Reviewers: majnemer, rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19376
llvm-svn: 268331
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
This is a fix for PR26941.
When there is both a section and a global definition with the same
name, the global wins.
Section symbols are not added to the symbol table; section references
are left undefined and fixed up in the object writer unless they've
been satisfied by some other definition.
llvm-svn: 264649
MCContext shouldn't be accessing the filesystem - that's a gross
layering violation and makes it awkward to use as a library or in a
daemon where it may not even be allowed filesystem access.
The CWD lookup here is normally redundant anyway, since the calling
context either also looks up the CWD or sets this to something more
specific. Here, we fix up the one caller that doesn't already set up a
debug compilation dir and make it clear that the responsibility for
such set up is in the users of MCContext.
llvm-svn: 264109
This reverts commit r259117.
The LineInfo constructor is defined in the codeview library and we have
to link against it now. Doing that isn't trivial, so reverting for now.
llvm-svn: 259126
Adds a new family of .cv_* directives to LLVM's variant of GAS syntax:
- .cv_file: Similar to DWARF .file directives
- .cv_loc: Similar to the DWARF .loc directive, but starts with a
function id. CodeView line tables are emitted by function instead of
by compilation unit, so we needed an extra field to communicate this.
Rather than overloading the .loc direction further, we decided it was
better to have our own directive.
- .cv_stringtable: Emits the codeview string table at the current
position. Currently this just contains the filenames as
null-terminated strings.
- .cv_filechecksums: Emits the file checksum table for all files used
with .cv_file so far. There is currently no support for emitting
actual checksums, just filenames.
This moves the line table emission code down into the assembler. This
is in preparation for implementing the inlined call site line table
format. The inline line table format encoding algorithm requires knowing
the absolute code offsets, so it must run after the assembler has laid
out the code.
David Majnemer collaborated on this patch.
llvm-svn: 259117
This adds reportError to MCContext, which can be used as an alternative to
reportFatalError when the assembler wants to try to continue processing the
rest of the file after the error is reported, so that all of the errors ina
file can be reported. It records the fact that an error was encountered, so we
can avoid emitting an object file if any errors occurred.
This patch doesn't add any uses of this function (a later patch will convert
most uses of reportFatalError to use it), but there is a small functional
change: we use the SourceManager to print the error message, even if we have a
null SMLoc. This means that we get a SourceManager-style message, with the file
and line information shown as <unknown>, rather than the "LLVM ERROR" style
used by report_fatal_error.
llvm-svn: 253327
MCRelaxableFragment previously kept a copy of MCSubtargetInfo and
MCInst to enable re-encoding the MCInst later during relaxation. A copy
of MCSubtargetInfo (instead of a reference or pointer) was needed
because the feature bits could be modified by the parser.
This commit replaces the MCSubtargetInfo copy in MCRelaxableFragment
with a constant reference to MCSubtargetInfo. The copies of
MCSubtargetInfo are kept in MCContext, and the target parsers are now
responsible for asking MCContext to provide a copy whenever the feature
bits of MCSubtargetInfo have to be toggled.
With this patch, I saw a 4% reduction in peak memory usage when I
compiled verify-uselistorder.lto.bc using llc.
rdar://problem/21736951
Differential Revision: http://reviews.llvm.org/D14346
llvm-svn: 253127
This was just forgotten when SectionSymbols was introduced and could cause
corruption if the MCContext was reused after Reset.
Reviewers: rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13547
llvm-svn: 249854
This prevents MC clients from getting COFF.h, which conflicts with
winnt.h macros. Also a minor IWYU cleanup. Now the only public headers
including COFF.h are in Object, and they actually need it.
llvm-svn: 246784
This reverts commit r245047.
It was failing on the darwin bots. The problem was that when running
./bin/llc -march=msp430
llc gets to
if (TheTriple.getTriple().empty())
TheTriple.setTriple(sys::getDefaultTargetTriple());
Which means that we go with an arch of msp430 but a triple of
x86_64-apple-darwin14.4.0 which fails badly.
That code has to be updated to select a triple based on the value of
march, but that is not a trivial fix.
llvm-svn: 245062
Other than some places that were handling unknown as ELF, this should
have no change. The test updates are because we were detecting
arm-coff or x86_64-win64-coff as ELF targets before.
It is not clear if the enum should live on the Triple. At least now it lives
in a single location and should be easier to move somewhere else.
llvm-svn: 245047
This causes errors like:
ld: error: blah.o: requires dynamic R_X86_64_PC32 reloc against '' which
may overflow at runtime; recompile with -fPIC
blah.cc:function f(): error: undefined reference to ''
blah.o:g(): error: undefined reference to ''
I have not yet come up with an appropriate reproduction.
llvm-svn: 240394
Now that pr23900 is fixed, we can bring it back with no changes.
Original message:
Make all temporary symbols unnamed.
What this does is make all symbols that would otherwise start with a .L
(or L on MachO) unnamed.
Some of these symbols still show up in the symbol table, but we can just
make them unnamed.
In order to make sure we produce identical results when going thought assembly,
all .L (not just the compiler produced ones), are now unnamed.
Running llc on llvm-as.opt.bc, the peak memory usage goes from 208.24MB to
205.57MB.
llvm-svn: 240302
What this does is make all symbols that would otherwise start with a .L
(or L on MachO) unnamed.
Some of these symbols still show up in the symbol table, but we can just
make them unnamed.
In order to make sure we produce identical results when going thought assembly,
all .L (not just the compiler produced ones), are now unnamed.
Running llc on llvm-as.opt.bc, the peak memory usage goes from 208.24MB to
205.57MB.
llvm-svn: 240130
Directional labels can show up in symbol tables (and we have a llvm-mc test for
that). Given that, we need to make sure they are named.
With that out of the way, use setUseNamesOnTempLabels in llvm-mc so that it
too benefits from the memory saving.
llvm-svn: 239914
Similarly to User which allocates a number of Use's prior to the this pointer,
allocate space for the Name* for MCSymbol only when we need a name.
Given that an MCSymbol is 48-bytes on 64-bit systems, this saves a decent % of space.
Given the verify_uselistorder test case with debug info and llc, 50k symbols have names
out of 700k so this optimises for the common case of temporary unnamed symbols.
Reviewed by David Blaikie.
llvm-svn: 239423
Some temporary symbols are created by MC itself. These symbols are never used
for lookup and are never included in the object symbol table, so we can
avoid creating a name for them.
Other temporaries are created by CodeGen or by the user by explicitly asking
for a name starting with .L (or L on MachO).
These temporaries behave like regular symbols, we just try to avoid including
them in the object symbol table, but sometimes they end up there:
const char *foo() {
return "abc" + 3;
}
will have a relocation pointing to a .L symbol.
It just so happens that almost all MC created temporary has the AlwaysAddSuffix
option and CodeGen/user created ones don't.
One interesting future optimization would be to use unnamed symbols for
all temporaries, but that would require use an st_name of 0 or
having the object writer create the names if a symbol does end up in the
symbol table.
No testcase since this just avoid creating a few extra names for MC created
temporaries.
llvm-svn: 238887
This create a MCSymbolELF class and moves SymbolSize since only ELF
needs a size expression.
This reduces the size of MCSymbol from 56 to 48 bytes.
llvm-svn: 238801
Shave a pointer off of `MCSymbolName` by storing `StringMapEntry<bool>*`
instead of `StringRef`. This brings `sizeof(MCSymbol)` down to 64 on
64-bit platforms, a nice round number. My profile showed memory
dropping from 914 MB down to 908 MB, roughly 0.7%. Other than memory
usage, no functionality change here.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
llvm-svn: 238005
This starts merging MCSection and MCSectionData.
There are a few issues with the current split between MCSection and
MCSectionData.
* It optimizes the the not as important case. We want the production
of .o files to be really fast, but the split puts the information used
for .o emission in a separate data structure.
* The ELF/COFF/MachO hierarchy is not represented in MCSectionData,
leading to some ad-hoc ways to represent the various flags.
* It makes it harder to remember where each item is.
The attached patch starts merging the two by moving the alignment from
MCSectionData to MCSection.
Most of the patch is actually just dropping 'const', since
MCSectionData is mutable, but MCSection was not.
llvm-svn: 237936
Don't create names for temporary symbols when using an object streamer.
The names never make it to the output anyway. From the starting point
of r236629, my heap profile says this drops peak memory usage from 1100
MB to 1058 MB for CodeGen of `verify-uselistorder`, a savings of almost
4% on peak memory, and removes `StringMap<bool, BumpPtrAllocator...>`
from the profile entirely.
(I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`;
see r236629 for details.)
llvm-svn: 236642
Currently symbol names are printed in quotes if it contains something
outside of the arbitrary set of characters that isAcceptableChar tests
for. On somem targets, it is never OK to print a symbol name in quotes
so allow targets to opt out of this behavior.
llvm-svn: 235670
This allows the compiler/assembly programmer to switch back to a
section. This in turn fixes the bootstrap failure on powerpc (tested
on gcc110) without changing the ppc codegen at all.
I will try to cleanup the various getELFSection overloads in a followup patch.
Just using a default argument now would lead to ambiguities.
llvm-svn: 234099
This lets us catch exceptions in simple cases.
N.B. Things that do not work include (but are not limited to):
- Throwing from within a catch handler.
- Catching an object with a named catch parameter.
- 'CatchHigh' is fictitious, we aren't sure of its purpose.
- We aren't entirely efficient with regards to the number of EH states
that we generate.
- IP-to-State tables are sensitive to the order of emission.
llvm-svn: 233767
These sections are never looked up and we know when have to create them. Use
that to save adding them to the regular map and avoid a symbol->string->symbol
conversion for the group symbol.
This also makes the implementation independent of the details of how unique
sections are implemented.
llvm-svn: 233539
Before this patch code wanting to create temporary labels for a given entity
(function, cu, exception range, etc) had to keep its own counter to have stable
symbol names.
createTempSymbol would still add a suffix to make sure a new symbol was always
returned, but it kept a single counter. Because of that, if we were to use
just createTempSymbol("cu_begin"), the label could change from cu_begin42 to
cu_begin43 because some other code started using temporary labels.
Simplify this by just keeping one counter per prefix and removing the various
specialized counters.
llvm-svn: 232535
Same as MakeArgString in r232465, keep only LookupSymbol(Twine)
while making sure it handles the StringRef like cases efficiently
using twine::toStringRef.
llvm-svn: 232517
This lets us pass the symbol to the constructor and avoid the mutable field.
This also opens the way for outputting the symbol only when needed, instead
of outputting them at the start of the file.
llvm-svn: 231859
This removes a bit of duplicated code and more importantly, remembers the
labels so that they don't need to be looked up by name.
This in turn allows for any name to be used and avoids a crash if the name
we wanted was already taken.
llvm-svn: 230772
Add support for having multiple sections with the same name and comdat.
Using this in combination with -ffunction-sections allows LLVM to output a .o
file with mulitple sections named .text. This saves space by avoiding long
unique names of the form .text.<C++ mangled name>.
llvm-svn: 229541
regressions for LLDB on Linux. Rafael indicated on lldb-dev that we
should just go ahead and revert these but that he wasn't at a computer.
The patches backed out are as follows:
r228980: Add support for having multiple sections with the name and ...
r228889: Invert the section relocation map.
r228888: Use the existing SymbolTableIndex intsead of doing a lookup.
r228886: Create the Section -> Rel Section map when it is first needed.
These patches look pretty nice to me, so hoping its not too hard to get
them re-instated. =D
llvm-svn: 229080
Using this in combination with -ffunction-sections allows LLVM to output a .o
file with mulitple sections named .text. This saves space by avoiding long
unique names of the form .text.<C++ mangled name>.
llvm-svn: 228980
Any code creating an MCSectionELF knows ELF and already provides the flags.
SectionKind is an abstraction used by common code that uses a plain
MCSection.
Use the flags to compute the SectionKind. This removes a lot of
guessing and boilerplate from the MCSectionELF construction.
llvm-svn: 227476
These intrinsics allow multiple functions to share a single stack
allocation from one function's call frame. The function with the
allocation may only perform one allocation, and it must be in the entry
block.
Functions accessing the allocation call llvm.recoverframeallocation with
the function whose frame they are accessing and a frame pointer from an
active call frame of that function.
These intrinsics are very difficult to inline correctly, so the
intention is that they be introduced rarely, or at least very late
during EH preparation.
Reviewers: echristo, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D6493
llvm-svn: 225746
Having two ways to do this doesn't seem terribly helpful and
consistently using the insert version (which we already has) seems like
it'll make the code easier to understand to anyone working with standard
data structures. (I also updated many references to the Entry's
key and value to use first() and second instead of getKey{Data,Length,}
and get/setValue - for similar consistency)
Also removes the GetOrCreateValue functions so there's less surface area
to StringMap to fix/improve/change/accommodate move semantics, etc.
llvm-svn: 222319
The only difference from r219829 is using
getOrCreateSectionSymbol(*ELFSec)
instead of
GetOrCreateSymbol(ELFSec->getSectionName())
in ELFObjectWriter which causes us to use the correct section symbol even if
we have multiple sections with the same name.
Original messages:
r219829:
Correctly handle references to section symbols.
When processing assembly like
.long .text
we were creating a new undefined symbol .text. GAS on the other hand would
handle that as a reference to the .text section.
This patch implements that by creating the section symbols earlier so that
they are visible during asm parsing.
The patch also updates llvm-readobj to print the symbol number in the relocation
dump so that the test can differentiate between two sections with the same name.
r219835:
Allow forward references to section symbols.
llvm-svn: 220021
Revert "Correctly handle references to section symbols."
Revert "Allow forward references to section symbols."
Rui found a regression I am debugging.
llvm-svn: 220010
When processing assembly like
.long .text
we were creating a new undefined symbol .text. GAS on the other hand would
handle that as a reference to the .text section.
This patch implements that by creating the section symbols earlier so that
they are visible during asm parsing.
The patch also updates llvm-readobj to print the symbol number in the relocation
dump so that the test can differentiate between two sections with the same name.
llvm-svn: 219829
Summary:
This fixes a long standing issue where we would emit many little .text
sections and only one .pdata and .xdata section. Now we generate one
.pdata / .xdata pair per .text section and associate them correctly.
Fixes PR19667.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5181
llvm-svn: 217176
COFF lacks a feature that other object file formats support: mergeable
sections.
To work around this, MSVC sticks constant pool entries in special COMDAT
sections so that each constant is in it's own section. This permits
unused constants to be dropped and it also allows duplicate constants in
different translation units to get merged together.
This fixes PR20262.
Differential Revision: http://reviews.llvm.org/D4482
llvm-svn: 213006
Use 0 for the invalid buffer instead of -1/~0 and switch to unsigned
representation to enable more idiomatic usage.
Also introduce a trivial SourceMgr::getMainFileID() instead of hard-coding 0/1
to identify the main file.
llvm-svn: 212398
COFF sections in MC were represented by a tuple of section-name and
COMDAT-name. This is not sufficient to represent a .text section
associated with another .text section; we need a way to distinguish
between the key section and the one marked associative.
llvm-svn: 211913
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.
small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.
This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.
The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.
llvm-svn: 211749
Currently, when using llvm as an assembler, DWARF debug information is only
generated for the .text section. This patch modifies this so that DWARF info
is emitted for all executable sections.
llvm-svn: 211273
* Section association cannot use just the section name as many
sections can have the same name. With this patch, the comdat symbol in
an assoc section is interpreted to mean a symbol in the associated
section and the mapping is discovered from it.
* Comdat symbols were not being set correctly. Instead we were getting
whatever was output first for that section.
A consequence is that associative sections now must use .section to
set the association. Using .linkonce would not work since it is not
possible to change a sections comdat symbol (it is used to decide if
we should create a new section or reuse an existing one).
This includes r210298, which was reverted because it was asserting
on an associated section having the same comdat as the associated
section.
llvm-svn: 210367
This was initialized by llvm-mc (calling setDwarfVersion) but other
clients (such as clang, llc, etc) aren't necessarily initializing this
so we were getting garbage DWARF version values in the output.
Initialize it to a reasonable default (the same default used in llvm-mc,
though this is higher than it was (2) previously).
llvm-svn: 207788
from places like MCCodeEmitter() in the MC backend when the
MCContext is const.
I was going to use this in my change for r206669 but Jim convinced
me to use an assert there. But this still is a good tweak.
llvm-svn: 206923
This seems to have been a cargo-culted habit from the very first such
cache which didn't have any specific justification (but might've been a
layering constraint at the time).
llvm-svn: 206003
To support compressing the debug_line section that contains multiple
fragments (due, I believe, to variation in choices of line table
encoding depending on the size of instruction ranges in the actual
program code) we needed to support compressing multiple MCFragments in a
single pass.
This patch implements that behavior by mutating the post-relaxed and
relocated section to be the compressed form of its former self,
including renaming the section.
This is a more flexible (and less invasive, to a degree) implementation
that will allow for other features such as "use compression only if it's
smaller than the uncompressed data".
Compressing debug_frame would be a possible further extension to this
work, but I've left it for now. The hurdle there is alignment sections -
which might require going as far as to refactor
MCAssembler.cpp:writeFragment to handle writing to a byte buffer or an
MCObjectWriter (there's already a virtual call there, so it shouldn't
add substantial compile-time cost) which could in turn involve
refactoring MCAsmBackend::writeNopData to use that same abstraction...
which involves touching all the backends. This would remove the limited
handling of fragment writing seen in
ELFObjectWriter.cpp:getUncompressedData which would be nice - but it's
more invasive.
I did discover that I (perhaps obviously) don't need to handle
relocations when I rewrite the fragments - since the relocations have
already been applied and computed (and stored into
ELFObjectWriter::Relocations) by this stage (necessarily, because we
need to have written any immediate values or assembly-time relocations
into the data already before we compress it, which we have). The test
case doesn't necessarily cover that in detail - I can add more test
coverage if that's preferred.
llvm-svn: 205990
To support compression for debug_line and debug_frame a different
approach is required. To simplify review, revert the old implementation
and XFAIL the test case. New implementation to follow shortly.
Reverts r205059 and r204958.
llvm-svn: 205989
The upcoming ARM64 backend doesn't have section-relative relocations,
so we give each section its own symbol to provide this functionality.
Of course, it doesn't need to appear in the final executable, so
linker-private is the best kind for this purpose.
llvm-svn: 205081
Turns out debug_frame does use multiple fragments, so it doesn't
compress correctly with the current approach. Disable compressing it for
now while I figure out what's the best solution for it.
llvm-svn: 205059
1) When creating a .debug_* section and instead create a .zdebug_
section.
2) When creating a fragment in a .zdebug_* section, make it a compressed
fragment.
3) When computing the size of a compressed section, compress the data
and use the size of the compressed data.
4) Emit the compressed bytes.
Also, check that only if a section has a compressed fragment, then that
is the only fragment in the section.
Assert-fail if the fragment's data is modified after it is compressed.
Initial review on llvm-commits by Eric Christopher and Rafael Espindola.
llvm-svn: 204958