GimliDS/arm9/source/VIC.cpp
2025-05-18 07:53:20 -04:00

1703 lines
59 KiB
C++

// =====================================================================================
// GimliDS Copyright (c) 2025 Dave Bernazzani (wavemotion-dave)
//
// As GimliDS is a port of the Frodo emulator for the DS/DSi/XL/LL handhelds,
// any copying or distribution of this emulator, its source code and associated
// readme files, with or without modification, are permitted per the original
// Frodo emulator license shown below. Hugest thanks to Christian Bauer for his
// efforts to provide a clean open-source emulation base for the C64.
//
// Numerous hacks and 'unsafe' optimizations have been performed on the original
// Frodo emulator codebase to get it running on the small handheld system. You
// are strongly encouraged to seek out the official Frodo sources if you're at
// all interested in this emulator code.
//
// The GimliDS emulator is offered as-is, without any warranty. Please see readme.md
// =====================================================================================
/*
* VIC.cpp - 6569R5 emulation (line based)
*
* Frodo Copyright (C) Christian Bauer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* Notes:
* ------
*
* - The EmulateLine() function is called for every emulated
* raster line. It computes one pixel row of the graphics
* according to the current VIC register settings and returns
* the number of cycles available for the CPU in that line.
* - The graphics are output into an 8 bit chunky bitmap
* - The sprite-graphics priority handling and collision
* detection is done in a bit-oriented way with masks.
* The foreground/background pixel mask for the graphics
* is stored in the fore_mask_buf[] array. Multicolor
* sprites are converted from their original chunky format
* to a bitplane representation (two bit masks) for easier
* handling of priorities and collisions.
* - The sprite-sprite priority handling and collision
* detection is done in with the byte array spr_coll_buf[],
* that is used to keep track of which sprites are already
* visible at certain X positions.
*
* Incompatibilities:
* ------------------
*
* - Raster effects that are achieved by modifying VIC registers
* in the middle of a raster line cannot be emulated
* - Sprite collisions are only detected within the visible
* screen area (excluding borders)
* - Sprites are only drawn if they completely fit within the
* left/right limits of the chunky bitmap
* - The Char ROM is not visible in the bitmap displays at
* addresses $0000 and $8000
* - The IRQ is cleared on every write access to the flag
* register. This is a hack for the RMW instructions of the
* 6510 that first write back the original value.
*/
#include <nds.h>
#include "sysdeps.h"
#include "VIC.h"
#include "C64.h"
#include "CPUC64.h"
#include "Display.h"
#include "mainmenu.h"
#include "Prefs.h"
#include "CIA.h"
uint8 fast_line_buffer[512] __attribute__((section(".dtcm"))) = {0};
// Tables for sprite X expansion
uint16 ExpTable[256] __attribute__((section(".dtcm"))) = {
0x0000, 0x0003, 0x000C, 0x000F, 0x0030, 0x0033, 0x003C, 0x003F,
0x00C0, 0x00C3, 0x00CC, 0x00CF, 0x00F0, 0x00F3, 0x00FC, 0x00FF,
0x0300, 0x0303, 0x030C, 0x030F, 0x0330, 0x0333, 0x033C, 0x033F,
0x03C0, 0x03C3, 0x03CC, 0x03CF, 0x03F0, 0x03F3, 0x03FC, 0x03FF,
0x0C00, 0x0C03, 0x0C0C, 0x0C0F, 0x0C30, 0x0C33, 0x0C3C, 0x0C3F,
0x0CC0, 0x0CC3, 0x0CCC, 0x0CCF, 0x0CF0, 0x0CF3, 0x0CFC, 0x0CFF,
0x0F00, 0x0F03, 0x0F0C, 0x0F0F, 0x0F30, 0x0F33, 0x0F3C, 0x0F3F,
0x0FC0, 0x0FC3, 0x0FCC, 0x0FCF, 0x0FF0, 0x0FF3, 0x0FFC, 0x0FFF,
0x3000, 0x3003, 0x300C, 0x300F, 0x3030, 0x3033, 0x303C, 0x303F,
0x30C0, 0x30C3, 0x30CC, 0x30CF, 0x30F0, 0x30F3, 0x30FC, 0x30FF,
0x3300, 0x3303, 0x330C, 0x330F, 0x3330, 0x3333, 0x333C, 0x333F,
0x33C0, 0x33C3, 0x33CC, 0x33CF, 0x33F0, 0x33F3, 0x33FC, 0x33FF,
0x3C00, 0x3C03, 0x3C0C, 0x3C0F, 0x3C30, 0x3C33, 0x3C3C, 0x3C3F,
0x3CC0, 0x3CC3, 0x3CCC, 0x3CCF, 0x3CF0, 0x3CF3, 0x3CFC, 0x3CFF,
0x3F00, 0x3F03, 0x3F0C, 0x3F0F, 0x3F30, 0x3F33, 0x3F3C, 0x3F3F,
0x3FC0, 0x3FC3, 0x3FCC, 0x3FCF, 0x3FF0, 0x3FF3, 0x3FFC, 0x3FFF,
0xC000, 0xC003, 0xC00C, 0xC00F, 0xC030, 0xC033, 0xC03C, 0xC03F,
0xC0C0, 0xC0C3, 0xC0CC, 0xC0CF, 0xC0F0, 0xC0F3, 0xC0FC, 0xC0FF,
0xC300, 0xC303, 0xC30C, 0xC30F, 0xC330, 0xC333, 0xC33C, 0xC33F,
0xC3C0, 0xC3C3, 0xC3CC, 0xC3CF, 0xC3F0, 0xC3F3, 0xC3FC, 0xC3FF,
0xCC00, 0xCC03, 0xCC0C, 0xCC0F, 0xCC30, 0xCC33, 0xCC3C, 0xCC3F,
0xCCC0, 0xCCC3, 0xCCCC, 0xCCCF, 0xCCF0, 0xCCF3, 0xCCFC, 0xCCFF,
0xCF00, 0xCF03, 0xCF0C, 0xCF0F, 0xCF30, 0xCF33, 0xCF3C, 0xCF3F,
0xCFC0, 0xCFC3, 0xCFCC, 0xCFCF, 0xCFF0, 0xCFF3, 0xCFFC, 0xCFFF,
0xF000, 0xF003, 0xF00C, 0xF00F, 0xF030, 0xF033, 0xF03C, 0xF03F,
0xF0C0, 0xF0C3, 0xF0CC, 0xF0CF, 0xF0F0, 0xF0F3, 0xF0FC, 0xF0FF,
0xF300, 0xF303, 0xF30C, 0xF30F, 0xF330, 0xF333, 0xF33C, 0xF33F,
0xF3C0, 0xF3C3, 0xF3CC, 0xF3CF, 0xF3F0, 0xF3F3, 0xF3FC, 0xF3FF,
0xFC00, 0xFC03, 0xFC0C, 0xFC0F, 0xFC30, 0xFC33, 0xFC3C, 0xFC3F,
0xFCC0, 0xFCC3, 0xFCCC, 0xFCCF, 0xFCF0, 0xFCF3, 0xFCFC, 0xFCFF,
0xFF00, 0xFF03, 0xFF0C, 0xFF0F, 0xFF30, 0xFF33, 0xFF3C, 0xFF3F,
0xFFC0, 0xFFC3, 0xFFCC, 0xFFCF, 0xFFF0, 0xFFF3, 0xFFFC, 0xFFFF
};
uint16 MultiExpTable[256] __attribute__((section(".dtcm"))) = {
0x0000, 0x0005, 0x000A, 0x000F, 0x0050, 0x0055, 0x005A, 0x005F,
0x00A0, 0x00A5, 0x00AA, 0x00AF, 0x00F0, 0x00F5, 0x00FA, 0x00FF,
0x0500, 0x0505, 0x050A, 0x050F, 0x0550, 0x0555, 0x055A, 0x055F,
0x05A0, 0x05A5, 0x05AA, 0x05AF, 0x05F0, 0x05F5, 0x05FA, 0x05FF,
0x0A00, 0x0A05, 0x0A0A, 0x0A0F, 0x0A50, 0x0A55, 0x0A5A, 0x0A5F,
0x0AA0, 0x0AA5, 0x0AAA, 0x0AAF, 0x0AF0, 0x0AF5, 0x0AFA, 0x0AFF,
0x0F00, 0x0F05, 0x0F0A, 0x0F0F, 0x0F50, 0x0F55, 0x0F5A, 0x0F5F,
0x0FA0, 0x0FA5, 0x0FAA, 0x0FAF, 0x0FF0, 0x0FF5, 0x0FFA, 0x0FFF,
0x5000, 0x5005, 0x500A, 0x500F, 0x5050, 0x5055, 0x505A, 0x505F,
0x50A0, 0x50A5, 0x50AA, 0x50AF, 0x50F0, 0x50F5, 0x50FA, 0x50FF,
0x5500, 0x5505, 0x550A, 0x550F, 0x5550, 0x5555, 0x555A, 0x555F,
0x55A0, 0x55A5, 0x55AA, 0x55AF, 0x55F0, 0x55F5, 0x55FA, 0x55FF,
0x5A00, 0x5A05, 0x5A0A, 0x5A0F, 0x5A50, 0x5A55, 0x5A5A, 0x5A5F,
0x5AA0, 0x5AA5, 0x5AAA, 0x5AAF, 0x5AF0, 0x5AF5, 0x5AFA, 0x5AFF,
0x5F00, 0x5F05, 0x5F0A, 0x5F0F, 0x5F50, 0x5F55, 0x5F5A, 0x5F5F,
0x5FA0, 0x5FA5, 0x5FAA, 0x5FAF, 0x5FF0, 0x5FF5, 0x5FFA, 0x5FFF,
0xA000, 0xA005, 0xA00A, 0xA00F, 0xA050, 0xA055, 0xA05A, 0xA05F,
0xA0A0, 0xA0A5, 0xA0AA, 0xA0AF, 0xA0F0, 0xA0F5, 0xA0FA, 0xA0FF,
0xA500, 0xA505, 0xA50A, 0xA50F, 0xA550, 0xA555, 0xA55A, 0xA55F,
0xA5A0, 0xA5A5, 0xA5AA, 0xA5AF, 0xA5F0, 0xA5F5, 0xA5FA, 0xA5FF,
0xAA00, 0xAA05, 0xAA0A, 0xAA0F, 0xAA50, 0xAA55, 0xAA5A, 0xAA5F,
0xAAA0, 0xAAA5, 0xAAAA, 0xAAAF, 0xAAF0, 0xAAF5, 0xAAFA, 0xAAFF,
0xAF00, 0xAF05, 0xAF0A, 0xAF0F, 0xAF50, 0xAF55, 0xAF5A, 0xAF5F,
0xAFA0, 0xAFA5, 0xAFAA, 0xAFAF, 0xAFF0, 0xAFF5, 0xAFFA, 0xAFFF,
0xF000, 0xF005, 0xF00A, 0xF00F, 0xF050, 0xF055, 0xF05A, 0xF05F,
0xF0A0, 0xF0A5, 0xF0AA, 0xF0AF, 0xF0F0, 0xF0F5, 0xF0FA, 0xF0FF,
0xF500, 0xF505, 0xF50A, 0xF50F, 0xF550, 0xF555, 0xF55A, 0xF55F,
0xF5A0, 0xF5A5, 0xF5AA, 0xF5AF, 0xF5F0, 0xF5F5, 0xF5FA, 0xF5FF,
0xFA00, 0xFA05, 0xFA0A, 0xFA0F, 0xFA50, 0xFA55, 0xFA5A, 0xFA5F,
0xFAA0, 0xFAA5, 0xFAAA, 0xFAAF, 0xFAF0, 0xFAF5, 0xFAFA, 0xFAFF,
0xFF00, 0xFF05, 0xFF0A, 0xFF0F, 0xFF50, 0xFF55, 0xFF5A, 0xFF5F,
0xFFA0, 0xFFA5, 0xFFAA, 0xFFAF, 0xFFF0, 0xFFF5, 0xFFFA, 0xFFFF
};
static union {
struct {
uint8 a,b,c,d;
} a;
uint32 b;
} TextColorTable[16][16][16];
#ifdef GLOBAL_VARS
static uint16 mc_color_lookup[4] __attribute__((section(".dtcm")));
static uint8 text_chunky_buf[40*8] __attribute__((section(".dtcm")));
static uint16 mx[8] __attribute__((section(".dtcm")));
static uint8 mx8 __attribute__((section(".dtcm")));
static uint8 my[8] __attribute__((section(".dtcm")));
static uint8 ctrl1 __attribute__((section(".dtcm")));
static uint8 ctrl2 __attribute__((section(".dtcm")));
static uint8 lpx __attribute__((section(".dtcm")));
static uint8 lpy __attribute__((section(".dtcm")));
static uint8 me __attribute__((section(".dtcm")));
static uint8 mxe __attribute__((section(".dtcm")));
static uint8 mye __attribute__((section(".dtcm")));
static uint8 mdp __attribute__((section(".dtcm")));
static uint8 mmc __attribute__((section(".dtcm")));
static uint8 vbase __attribute__((section(".dtcm")));
static uint8 irq_flag __attribute__((section(".dtcm")));
static uint8 irq_mask __attribute__((section(".dtcm")));
static uint8 clx_spr __attribute__((section(".dtcm")));
static uint8 clx_bgr __attribute__((section(".dtcm")));
static uint8 ec __attribute__((section(".dtcm")));
static uint8 b0c __attribute__((section(".dtcm")));
static uint8 b1c __attribute__((section(".dtcm")));
static uint8 b2c __attribute__((section(".dtcm")));
static uint8 b3c __attribute__((section(".dtcm")));
static uint8 mm0 __attribute__((section(".dtcm")));
static uint8 mm1 __attribute__((section(".dtcm")));
static uint8 sc[8] __attribute__((section(".dtcm")));
static uint8 *ram __attribute__((section(".dtcm")));
static uint8 *char_rom __attribute__((section(".dtcm")));
static uint8 *color_ram __attribute__((section(".dtcm"))); // Pointers to RAM and ROM
static C64 *the_c64 __attribute__((section(".dtcm"))); // Pointer to C64
static C64Display *the_display __attribute__((section(".dtcm"))); // Pointer to C64Display
static MOS6510 *the_cpu __attribute__((section(".dtcm"))); // Pointer to 6510
static uint8 colors[256] __attribute__((section(".dtcm"))); // Indices of the 16 C64 colors (16 times mirrored to avoid "& 0x0f")
static uint8 ec_color __attribute__((section(".dtcm")));
static uint8 b0c_color __attribute__((section(".dtcm")));
static uint8 b1c_color __attribute__((section(".dtcm")));
static uint8 b2c_color __attribute__((section(".dtcm")));
static uint8 b3c_color __attribute__((section(".dtcm")));
static uint32 b0c_color32 __attribute__((section(".dtcm")));
static uint8 mm0_color __attribute__((section(".dtcm")));
static uint8 mm1_color __attribute__((section(".dtcm"))); // Indices for MOB multicolors
static uint8 spr_color[8] __attribute__((section(".dtcm"))); // Indices for MOB colors
static uint32 ec_color_long __attribute__((section(".dtcm"))); // ec_color expanded to 32 bits
static uint8 matrix_line[40] __attribute__((section(".dtcm"))); // Buffer for video line, read in Bad Lines
static uint8 color_line[40] __attribute__((section(".dtcm"))); // Buffer for color line, read in Bad Lines
static uint8 *matrix_base __attribute__((section(".dtcm"))); // Video matrix base
static uint8 *char_base __attribute__((section(".dtcm"))); // Character generator base
static uint8 *bitmap_base __attribute__((section(".dtcm"))); // Bitmap base
static uint16 raster_y __attribute__((section(".dtcm"))); // Current raster line
static uint16 irq_raster __attribute__((section(".dtcm"))); // Interrupt raster line
static uint16 dy_start __attribute__((section(".dtcm"))); // Comparison values for border logic
static uint16 dy_stop __attribute__((section(".dtcm")));
static uint16 rc __attribute__((section(".dtcm"))); // Row counter
static uint16 vc __attribute__((section(".dtcm"))); // Video counter
static uint16 vc_base __attribute__((section(".dtcm"))); // Video counter base
static uint16 x_scroll __attribute__((section(".dtcm"))); // X scroll value
static uint16 y_scroll __attribute__((section(".dtcm")));
static uint16 cia_vabase __attribute__((section(".dtcm"))); // CIA VA14/15 video base
static int display_idx __attribute__((section(".dtcm"))); // Index of current display mode
static uint32 mc[8] __attribute__((section(".dtcm"))); // Sprite data counters
static uint8 sprite_on __attribute__((section(".dtcm"))); // 8 Flags: Sprite display/DMA active
static uint8 spr_coll_buf[DISPLAY_X] __attribute__((section(".dtcm"))); // Buffer for sprite-sprite collisions and priorities
static uint8 fore_mask_buf[DISPLAY_X/8] __attribute__((section(".dtcm"))); // Foreground mask for sprite-graphics collisions and priorities
static u8 display_state __attribute__((section(".dtcm"))); // true: Display state, false: Idle state
static u8 border_on __attribute__((section(".dtcm"))); // Flag: Upper/lower border on
static u8 border_40_col __attribute__((section(".dtcm"))); // Flag: 40 column border
static u8 frame_skipped __attribute__((section(".dtcm"))); // Flag: Frame is being skipped
static u8 bad_lines_enabled __attribute__((section(".dtcm"))); // Flag: Bad Lines enabled for this frame
static u8 lp_triggered __attribute__((section(".dtcm"))); // Flag: Lightpen was triggered in this frame
static u32 total_frames __attribute__((section(".dtcm"))); // Total frames - used for consistent frame skip on DS-Lite
#endif
/*
* Constructor: Initialize variables
*/
void MOS6569::init_text_color_table(uint8 *colors)
{
for (int i = 0; i < 16; i++)
for (int j = 0; j < 16; j++)
for (int k = 0; k < 16; k++) {
TextColorTable[i][j][k].a.a = colors[k & 8 ? i : j];
TextColorTable[i][j][k].a.b = colors[k & 4 ? i : j];
TextColorTable[i][j][k].a.c = colors[k & 2 ? i : j];
TextColorTable[i][j][k].a.d = colors[k & 1 ? i : j];
}
}
MOS6569::MOS6569(C64 *c64, C64Display *disp, MOS6510 *CPU, uint8 *RAM, uint8 *Char, uint8 *Color)
#ifndef GLOBAL_VARS
: char_rom(Char), color_ram(Color), the_c64(c64), the_display(disp), the_cpu(CPU)
#endif
{
int i;
// Set pointers
#ifdef GLOBAL_VARS
the_c64 = c64;
the_display = disp;
the_cpu = CPU;
ram = RAM;
char_rom = Char;
color_ram = Color;
#endif
matrix_base = RAM;
char_base = RAM;
bitmap_base = RAM;
// Initialize VIC registers
mx8 = 0;
ctrl1 = ctrl2 = 0;
lpx = lpy = 0;
me = mxe = mye = mdp = mmc = 0;
vbase = irq_flag = irq_mask = 0;
clx_spr = clx_bgr = 0;
cia_vabase = 0;
ec = b0c = b1c = b2c = b3c = mm0 = mm1 = 0;
b0c_color32 = 0;
for (i=0; i<8; i++) mx[i] = my[i] = sc[i] = 0;
// Initialize other variables
raster_y = 0xffff;
rc = 7;
irq_raster = vc = vc_base = x_scroll = y_scroll = 0;
dy_start = ROW24_YSTART;
dy_stop = ROW24_YSTOP;
display_idx = 0;
display_state = false;
border_on = false;
lp_triggered = false;
sprite_on = 0;
for (i=0; i<8; i++)
mc[i] = 21;
frame_skipped = false;
total_frames = 0;
// Clear foreground mask
memset(fore_mask_buf, 0, DISPLAY_X/8);
// Preset colors to black
disp->InitColors(colors);
init_text_color_table(colors);
ec_color = b0c_color = b1c_color = b2c_color = b3c_color = mm0_color = mm1_color = colors[0];
ec_color_long = (ec_color << 24) | (ec_color << 16) | (ec_color << 8) | ec_color;
for (i=0; i<8; i++) spr_color[i] = colors[0];
}
void MOS6569::Reset(void)
{
display_idx = 0;
display_state = false;
border_on = false;
lp_triggered = false;
total_frames = 0;
frame_skipped = false;
raster_y = 0xffff;
// Clear foreground mask
memset(fore_mask_buf, 0, DISPLAY_X/8);
}
void MOS6569::make_mc_table(void)
{
mc_color_lookup[0] = b0c_color | (b0c_color << 8);
mc_color_lookup[1] = b1c_color | (b1c_color << 8);
mc_color_lookup[2] = b2c_color | (b2c_color << 8);
}
/*
* Convert video address to pointer
*/
uint8 *MOS6569::get_physical(uint16 adr)
{
int va = adr | cia_vabase;
if ((va & 0x7000) == 0x1000)
return char_rom + (va & 0x0fff);
else
return ram + va;
}
/*
* Get VIC state
*/
void MOS6569::GetState(MOS6569State *vd)
{
int i;
vd->m0x = mx[0] & 0xff; vd->m0y = my[0];
vd->m1x = mx[1] & 0xff; vd->m1y = my[1];
vd->m2x = mx[2] & 0xff; vd->m2y = my[2];
vd->m3x = mx[3] & 0xff; vd->m3y = my[3];
vd->m4x = mx[4] & 0xff; vd->m4y = my[4];
vd->m5x = mx[5] & 0xff; vd->m5y = my[5];
vd->m6x = mx[6] & 0xff; vd->m6y = my[6];
vd->m7x = mx[7] & 0xff; vd->m7y = my[7];
vd->mx8 = mx8;
vd->ctrl1 = (ctrl1 & 0x7f) | ((raster_y & 0x100) >> 1);
vd->raster = raster_y & 0xff;
vd->lpx = lpx; vd->lpy = lpy;
vd->ctrl2 = ctrl2;
vd->vbase = vbase;
vd->irq_flag = irq_flag;
vd->irq_mask = irq_mask;
vd->me = me; vd->mxe = mxe; vd->mye = mye; vd->mdp = mdp; vd->mmc = mmc;
vd->mm = clx_spr; vd->md = clx_bgr;
vd->ec = ec;
vd->b0c = b0c; vd->b1c = b1c; vd->b2c = b2c; vd->b3c = b3c;
vd->mm0 = mm0; vd->mm1 = mm1;
vd->m0c = sc[0]; vd->m1c = sc[1];
vd->m2c = sc[2]; vd->m3c = sc[3];
vd->m4c = sc[4]; vd->m5c = sc[5];
vd->m6c = sc[6]; vd->m7c = sc[7];
vd->pad0 = 0;
vd->irq_raster = irq_raster;
vd->vc = vc;
vd->vc_base = vc_base;
vd->rc = rc;
vd->spr_dma = vd->spr_disp = sprite_on;
for (i=0; i<8; i++)
vd->mc[i] = vd->mc_base[i] = mc[i];
vd->display_state = display_state;
vd->bad_line = raster_y >= FIRST_DMA_LINE && raster_y <= LAST_DMA_LINE && ((raster_y & 7) == y_scroll) && bad_lines_enabled;
vd->bad_line_enable = bad_lines_enabled;
vd->lp_triggered = lp_triggered;
vd->border_on = border_on;
vd->bank_base = cia_vabase;
vd->matrix_base = ((vbase & 0xf0) << 6) | cia_vabase;
vd->char_base = ((vbase & 0x0e) << 10) | cia_vabase;
vd->bitmap_base = ((vbase & 0x08) << 10) | cia_vabase;
for (i=0; i<8; i++)
vd->sprite_base[i] = (matrix_base[0x3f8 + i] << 6) | cia_vabase;
vd->cycle = 1;
vd->raster_x = 0;
vd->ml_index = 0;
vd->ref_cnt = 0xff;
vd->last_vic_byte = 0;
vd->ud_border_on = border_on;
vd->total_frames = total_frames;
vd->spare1 = 0;
vd->spare2 = 0;
vd->spare3 = 0;
vd->spare4 = 0;
}
/*
* Set VIC state (only works if in VBlank)
*/
void MOS6569::SetState(MOS6569State *vd)
{
int i, j;
mx[0] = vd->m0x; my[0] = vd->m0y;
mx[1] = vd->m1x; my[1] = vd->m1y;
mx[2] = vd->m2x; my[2] = vd->m2y;
mx[3] = vd->m3x; my[3] = vd->m3y;
mx[4] = vd->m4x; my[4] = vd->m4y;
mx[5] = vd->m5x; my[5] = vd->m5y;
mx[6] = vd->m6x; my[6] = vd->m6y;
mx[7] = vd->m7x; my[7] = vd->m7y;
mx8 = vd->mx8;
for (i=0, j=1; i<8; i++, j<<=1) {
if (mx8 & j)
mx[i] |= 0x100;
else
mx[i] &= 0xff;
}
ctrl1 = vd->ctrl1;
ctrl2 = vd->ctrl2;
x_scroll = ctrl2 & 7;
y_scroll = ctrl1 & 7;
if (ctrl1 & 8) {
dy_start = ROW25_YSTART;
dy_stop = ROW25_YSTOP;
} else {
dy_start = ROW24_YSTART;
dy_stop = ROW24_YSTOP;
}
border_40_col = ctrl2 & 8;
display_idx = ((ctrl1 & 0x60) | (ctrl2 & 0x10)) >> 4;
raster_y = vd->raster | ((vd->ctrl1 & 0x80) << 1);
lpx = vd->lpx; lpy = vd->lpy;
vbase = vd->vbase;
cia_vabase = vd->bank_base;
matrix_base = get_physical((vbase & 0xf0) << 6);
char_base = get_physical((vbase & 0x0e) << 10);
bitmap_base = get_physical((vbase & 0x08) << 10);
irq_flag = vd->irq_flag;
irq_mask = vd->irq_mask;
me = vd->me; mxe = vd->mxe; mye = vd->mye; mdp = vd->mdp; mmc = vd->mmc;
clx_spr = vd->mm; clx_bgr = vd->md;
ec = vd->ec;
ec_color = colors[ec];
ec_color_long = (ec_color << 24) | (ec_color << 16) | (ec_color << 8) | ec_color;
b0c = vd->b0c; b1c = vd->b1c; b2c = vd->b2c; b3c = vd->b3c;
b0c_color = colors[b0c];
b1c_color = colors[b1c];
b2c_color = colors[b2c];
b3c_color = colors[b3c];
b0c_color32 = (b0c_color << 24) | (b0c_color << 16) | (b0c_color << 8) | (b0c_color << 0);
make_mc_table();
mm0 = vd->mm0; mm1 = vd->mm1;
mm0_color = colors[mm0];
mm1_color = colors[mm1];
sc[0] = vd->m0c; sc[1] = vd->m1c;
sc[2] = vd->m2c; sc[3] = vd->m3c;
sc[4] = vd->m4c; sc[5] = vd->m5c;
sc[6] = vd->m6c; sc[7] = vd->m7c;
for (i=0; i<8; i++)
spr_color[i] = colors[sc[i]];
irq_raster = vd->irq_raster;
vc = vd->vc;
vc_base = vd->vc_base;
rc = vd->rc;
sprite_on = vd->spr_dma;
for (i=0; i<8; i++)
mc[i] = vd->mc[i];
display_state = vd->display_state;
bad_lines_enabled = vd->bad_line_enable;
lp_triggered = vd->lp_triggered;
border_on = vd->border_on;
total_frames = vd->total_frames;
}
/*
* Trigger raster IRQ
*/
void MOS6569::raster_irq(void)
{
irq_flag |= 0x01;
if (irq_mask & 0x01) {
irq_flag |= 0x80;
the_cpu->TriggerVICIRQ();
}
}
/*
* Read from VIC register
*/
uint8 MOS6569::ReadRegister(uint16 adr)
{
switch (adr) {
case 0x00: case 0x02: case 0x04: case 0x06:
case 0x08: case 0x0a: case 0x0c: case 0x0e:
return mx[adr >> 1];
case 0x01: case 0x03: case 0x05: case 0x07:
case 0x09: case 0x0b: case 0x0d: case 0x0f:
return my[adr >> 1];
case 0x10: // Sprite X position MSB
return mx8;
case 0x11: // Control register 1
return (ctrl1 & 0x7f) | ((raster_y & 0x100) >> 1);
case 0x12: // Raster counter
return raster_y;
case 0x13: // Light pen X
return lpx;
case 0x14: // Light pen Y
return lpy;
case 0x15: // Sprite enable
return me;
case 0x16: // Control register 2
return ctrl2 | 0xc0;
case 0x17: // Sprite Y expansion
return mye;
case 0x18: // Memory pointers
return vbase | 0x01;
case 0x19: // IRQ flags
return irq_flag | 0x70;
case 0x1a: // IRQ mask
return irq_mask | 0xf0;
case 0x1b: // Sprite data priority
return mdp;
case 0x1c: // Sprite multicolor
return mmc;
case 0x1d: // Sprite X expansion
return mxe;
case 0x1e:{ // Sprite-sprite collision
uint8 ret = clx_spr;
clx_spr = 0; // Read and clear
return ret;
}
case 0x1f:{ // Sprite-background collision
uint8 ret = clx_bgr;
clx_bgr = 0; // Read and clear
return ret;
}
case 0x20: return ec | 0xf0;
case 0x21: return b0c | 0xf0;
case 0x22: return b1c | 0xf0;
case 0x23: return b2c | 0xf0;
case 0x24: return b3c | 0xf0;
case 0x25: return mm0 | 0xf0;
case 0x26: return mm1 | 0xf0;
case 0x27: case 0x28: case 0x29: case 0x2a:
case 0x2b: case 0x2c: case 0x2d: case 0x2e:
return sc[adr - 0x27] | 0xf0;
default:
return 0xff;
}
}
/*
* Write to VIC register
*/
ITCM_CODE void MOS6569::WriteRegister(uint16 adr, uint8 byte)
{
switch (adr) {
case 0x00: case 0x02: case 0x04: case 0x06:
case 0x08: case 0x0a: case 0x0c: case 0x0e:
mx[adr >> 1] = (mx[adr >> 1] & 0xff00) | byte;
break;
case 0x10:{
int i, j;
mx8 = byte;
for (i=0, j=1; i<8; i++, j<<=1) {
if (mx8 & j)
mx[i] |= 0x100;
else
mx[i] &= 0xff;
}
break;
}
case 0x01: case 0x03: case 0x05: case 0x07:
case 0x09: case 0x0b: case 0x0d: case 0x0f:
my[adr >> 1] = byte;
break;
case 0x11:{ // Control register 1
ctrl1 = byte;
y_scroll = byte & 7;
uint16 new_irq_raster = (irq_raster & 0xff) | ((byte & 0x80) << 1);
if (irq_raster != new_irq_raster && raster_y == new_irq_raster)
raster_irq();
irq_raster = new_irq_raster;
if (byte & 8) {
dy_start = ROW25_YSTART;
dy_stop = ROW25_YSTOP;
} else {
dy_start = ROW24_YSTART;
dy_stop = ROW24_YSTOP;
}
display_idx = ((ctrl1 & 0x60) | (ctrl2 & 0x10)) >> 4;
break;
}
case 0x12:{ // Raster counter
uint16 new_irq_raster = (irq_raster & 0xff00) | byte;
if (irq_raster != new_irq_raster && raster_y == new_irq_raster)
raster_irq();
irq_raster = new_irq_raster;
break;
}
case 0x15: // Sprite enable
me = byte;
break;
case 0x16: // Control register 2
ctrl2 = byte;
x_scroll = byte & 7;
border_40_col = byte & 8;
display_idx = ((ctrl1 & 0x60) | (ctrl2 & 0x10)) >> 4;
break;
case 0x17: // Sprite Y expansion
mye = byte;
break;
case 0x18: // Memory pointers
vbase = byte;
matrix_base = get_physical((byte & 0xf0) << 6);
char_base = get_physical((byte & 0x0e) << 10);
bitmap_base = get_physical((byte & 0x08) << 10);
break;
case 0x19: // IRQ flags
irq_flag = irq_flag & (~byte & 0x0f);
the_cpu->ClearVICIRQ(); // Clear interrupt (hack!)
if (irq_flag & irq_mask) // Set master bit if allowed interrupt still pending
irq_flag |= 0x80;
break;
case 0x1a: // IRQ mask
irq_mask = byte & 0x0f;
if (irq_flag & irq_mask) { // Trigger interrupt if pending and now allowed
irq_flag |= 0x80;
the_cpu->TriggerVICIRQ();
} else {
irq_flag &= 0x7f;
the_cpu->ClearVICIRQ();
}
break;
case 0x1b: // Sprite data priority
mdp = byte;
break;
case 0x1c: // Sprite multicolor
mmc = byte;
break;
case 0x1d: // Sprite X expansion
mxe = byte;
break;
case 0x20:
extern uint8_t palette_red[16];
extern uint8_t palette_green[16];
extern uint8_t palette_blue[16];
ec_color = colors[ec = byte];
ec_color_long = (ec_color << 24) | (ec_color << 16) | (ec_color << 8) | ec_color;
BG_PALETTE_SUB[1]=RGB15(palette_red[ec_color]>>3,palette_green[ec_color]>>3,palette_blue[ec_color]>>3);
break;
case 0x21:
if (b0c != byte) {
b0c_color = colors[b0c = byte & 0xF];
b0c_color32 = (b0c_color << 24) | (b0c_color << 16) | (b0c_color << 8) | (b0c_color << 0);
make_mc_table();
}
break;
case 0x22:
if (b1c != byte) {
b1c_color = colors[b1c = byte & 0xF];
make_mc_table();
}
break;
case 0x23:
if (b2c != byte) {
b2c_color = colors[b2c = byte & 0xF];
make_mc_table();
}
break;
case 0x24: b3c_color = colors[b3c = byte & 0xF]; break;
case 0x25: mm0_color = colors[mm0 = byte]; break;
case 0x26: mm1_color = colors[mm1 = byte]; break;
case 0x27: case 0x28: case 0x29: case 0x2a:
case 0x2b: case 0x2c: case 0x2d: case 0x2e:
spr_color[adr - 0x27] = colors[sc[adr - 0x27] = byte];
break;
}
}
/*
* CIA VA14/15 has changed
*/
void MOS6569::ChangedVA(uint16 new_va)
{
cia_vabase = new_va << 14;
WriteRegister(0x18, vbase); // Force update of memory pointers
}
/*
* Trigger lightpen interrupt, latch lightpen coordinates
*/
void MOS6569::TriggerLightpen(void)
{
if (!lp_triggered) { // Lightpen triggers only once per frame
lp_triggered = true;
lpx = 0; // Latch current coordinates
lpy = raster_y;
irq_flag |= 0x08; // Trigger IRQ
if (irq_mask & 0x08) {
irq_flag |= 0x80;
the_cpu->TriggerVICIRQ();
}
}
}
/*
* VIC vertical blank: Reset counters and redraw screen
*/
inline void MOS6569::vblank(void)
{
raster_y = vc_base = 0;
lp_triggered = false;
// Skip every other frame on DS-Lite/Phat
total_frames++;
if (isDSiMode())
{
extern u8 last_led_states;
frame_skipped = false;
if (myConfig.trueDrive && last_led_states) // If True Drive and we're accessing the drive...
{
frame_skipped = (total_frames & 1); // Skip every other...
}
}
else
{
frame_skipped = (total_frames & 1); // Skip every other...
if (frame_skipped)
{
if ((total_frames % 3) == 0) frame_skipped = 0; // But every so often toss in an odd frame to smooth out the display
}
}
the_c64->VBlank(!frame_skipped);
the_c64->TheCPU->VBlank();
}
__attribute__ ((noinline)) ITCM_CODE void MOS6569::el_std_text(uint8 *p, uint8 *q, uint8 *r)
{
unsigned int b0cc = b0c;
uint32 *lp = (uint32 *)p;
uint8 *cp = color_line;
uint8 *mp = matrix_line;
// Loop for 40 characters
for (int i=0; i<40; i++)
{
uint8 data = r[i] = q[mp[i] << 3];
if (!data)
{
*lp++ = b0c_color32;
*lp++ = b0c_color32;
}
else
{
uint8 color = cp[i];
*lp++ = TextColorTable[color][b0cc][data>>4].b;
*lp++ = TextColorTable[color][b0cc][data&0xf].b;
}
}
}
__attribute__ ((noinline)) ITCM_CODE void MOS6569::el_mc_text(uint8 *p, uint8 *q, uint8 *r)
{
uint32 *wp = (uint32 *)p;
uint8 *cp = color_line;
uint8 *mp = matrix_line;
// Loop for 40 characters
for (int i=0; i<40; i++)
{
uint8 data = q[mp[i] << 3];
if (cp[i] & 8) {
r[i] = (data & 0xaa) | (data & 0xaa) >> 1;
if (!data)
{
*wp++ = b0c_color32;
*wp++ = b0c_color32;
}
else
{
uint8 color = colors[cp[i] & 7];
mc_color_lookup[3] = color | (color << 8);
*wp++ = mc_color_lookup[(data >> 6) & 3] | (mc_color_lookup[(data >> 4) & 3] << 16);
*wp++ = mc_color_lookup[(data >> 2) & 3] | (mc_color_lookup[(data >> 0) & 3] << 16);
}
} else { // Standard mode in multicolor mode
r[i] = data;
if (!data)
{
*wp++ = b0c_color32;
*wp++ = b0c_color32;
}
else
{
uint8 color = cp[i];
*wp++ = TextColorTable[color][b0c][data>>4].b;
*wp++ = TextColorTable[color][b0c][data&0xf].b;
}
}
}
}
void MOS6569::el_std_bitmap(uint8 *p, uint8 *q, uint8 *r)
{
uint32 *lp = (uint32 *)p;
uint8 *mp = matrix_line;
// Loop for 40 characters
for (int i=0; i<40; i++, q+=8)
{
uint8 data = r[i] = *q;
uint8 color = mp[i] >> 4;
uint8 bcolor = mp[i] & 15;
*lp++ = TextColorTable[color][bcolor][data>>4].b;
*lp++ = TextColorTable[color][bcolor][data&0xf].b;
}
}
__attribute__ ((noinline)) ITCM_CODE void MOS6569::el_mc_bitmap(uint8 *p, uint8 *q, uint8 *r)
{
uint16 lookup[4];
uint32 *wp = (uint32 *)p;
uint8 *cp = color_line;
uint8 *mp = matrix_line;
lookup[0] = (b0c_color << 8) | b0c_color;
uint32 bg32 = (b0c_color << 24) | (b0c_color << 16) | (b0c_color << 8) | b0c_color;
// Loop for 40 characters
for (int i=0; i<40; i++, q+=8)
{
uint8 color, acolor, bcolor;
uint8 data = *q;
r[i] = (data & 0xaa) | (data & 0xaa) >> 1;
if (!data)
{
*wp++ = bg32;
*wp++ = bg32;
}
else
{
color = mp[i] >> 4;
lookup[1] = (color << 8) | color;
bcolor = mp[i] & 0xf;
lookup[2] = (bcolor << 8) | bcolor;
acolor = cp[i] & 0xf;
lookup[3] = (acolor << 8) | acolor;
*wp++ = lookup[(data >> 6) & 3] | (lookup[(data >> 4) & 3] << 16);
*wp++ = lookup[(data >> 2) & 3] | (lookup[(data >> 0) & 3] << 16);
}
}
}
__attribute__ ((noinline)) ITCM_CODE void MOS6569::el_ecm_text(uint8 *p, uint8 *q, uint8 *r)
{
uint32 *lp = (uint32 *)p;
uint8 *cp = color_line;
uint8 *mp = matrix_line;
uint8 *bcp = &b0c;
// Loop for 40 characters
for (int i=0; i<40; i++)
{
uint8 data = r[i] = mp[i];
uint8 color = cp[i];
uint8 bcolor = bcp[(data >> 6) & 3];
data = q[(data & 0x3f) << 3];
*lp++ = TextColorTable[color][bcolor][data>>4].b;
*lp++ = TextColorTable[color][bcolor][data&0xf].b;
}
}
__attribute__ ((noinline)) ITCM_CODE void MOS6569::el_std_idle(uint8 *p, uint8 *r)
{
uint8 data = *get_physical(ctrl1 & 0x40 ? 0x39ff : 0x3fff);
uint32 *lp = (uint32 *)p;
uint32 conv0 = TextColorTable[0][b0c][data>>4].b;
uint32 conv1 = TextColorTable[0][b0c][data&0xf].b;
uint32 data32 = (data << 24) | (data << 16) | (data << 8) | data;
for (int i=0; i<40; i++)
{
*lp++ = conv0;
*lp++ = conv1;
}
u32 *r32 = (uint32 *)r;
*r32++ = data32; *r32++ = data32; *r32++ = data32; *r32++ = data32; *r32++ = data32;
*r32++ = data32; *r32++ = data32; *r32++ = data32; *r32++ = data32; *r32 = data32;
}
void MOS6569::el_mc_idle(uint8 *p, uint8 *r)
{
uint8 data = *get_physical(0x3fff);
uint32 *lp = (uint32 *)p - 1;
uint32 data32 = (data << 24) | (data << 16) | (data << 8) | data;
uint16 lookup[4];
lookup[0] = (b0c_color << 8) | b0c_color;
lookup[1] = lookup[2] = lookup[3] = colors[0];
uint16 conv0 = (lookup[(data >> 6) & 3] << 16) | lookup[(data >> 4) & 3];
uint16 conv1 = (lookup[(data >> 2) & 3] << 16) | lookup[(data >> 0) & 3];
for (int i=0; i<40; i++)
{
*++lp = conv0;
*++lp = conv1;
}
u32 *r32 = (uint32 *)r;
*r32++ = data32; *r32++ = data32; *r32++ = data32; *r32++ = data32; *r32++ = data32;
*r32++ = data32; *r32++ = data32; *r32++ = data32; *r32++ = data32; *r32 = data32;
}
__attribute__ ((noinline)) ITCM_CODE void MOS6569::el_sprites(uint8 *chunky_ptr)
{
unsigned spr_coll=0, gfx_coll=0;
// Draw each active sprite
for (unsigned snum = 0; snum < 8; ++snum)
{
uint8_t sbit = 1 << snum;
// Is sprite visible?
if ((sprite_on & sbit) && mx[snum] < DISPLAY_X-32)
{
uint8_t *p = chunky_ptr + mx[snum] + 8;
uint8_t *q = spr_coll_buf + mx[snum] + 8;
// Fetch sprite data and mask
uint8_t *sdatap = get_physical(matrix_base[0x3f8 + snum] << 6 | (mc[snum]*3));
uint32_t sdata = (*sdatap << 24) | (*(sdatap+1) << 16) | (*(sdatap+2) << 8);
if (!sdata) continue; // No data... no draw... no collision...
uint8_t color = spr_color[snum];
unsigned spr_mask_pos = mx[snum] + 8 - x_scroll; // Sprite bit position in fore_mask_buf
unsigned sshift = spr_mask_pos & 7;
uint8_t *fmbp = fore_mask_buf + (spr_mask_pos / 8);
uint32_t fore_mask = (fmbp[0] << 24) | (fmbp[1] << 16) | (fmbp[2] << 8) | (fmbp[3] << 0);
fore_mask = (fore_mask << sshift) | (fmbp[4] >> (8-sshift));
if (mxe & sbit) // X-expanded
{
if (mx[snum] >= DISPLAY_X-56)
continue;
// Fetch extra sprite mask
uint32_t sdata_l = 0, sdata_r = 0;
uint32_t fore_mask_r = (fmbp[4] << 24) | (fmbp[5] << 16) | (fmbp[6] << 8);
fore_mask_r <<= sshift;
if (mmc & sbit) // X-expanded multicolor mode
{
uint32_t plane0_l, plane0_r, plane1_l, plane1_r;
// Expand sprite data
sdata_l = MultiExpTable[sdata >> 24 & 0xff] << 16 | MultiExpTable[sdata >> 16 & 0xff];
sdata_r = MultiExpTable[sdata >> 8 & 0xff] << 16;
// Convert sprite chunky pixels to bitplanes
plane0_l = (sdata_l & 0x55555555) | (sdata_l & 0x55555555) << 1;
plane1_l = (sdata_l & 0xaaaaaaaa) | (sdata_l & 0xaaaaaaaa) >> 1;
plane0_r = (sdata_r & 0x55555555) | (sdata_r & 0x55555555) << 1;
plane1_r = (sdata_r & 0xaaaaaaaa) | (sdata_r & 0xaaaaaaaa) >> 1;
// Collision with graphics?
if ((fore_mask & (plane0_l | plane1_l)) || (fore_mask_r & (plane0_r | plane1_r))) {
gfx_coll |= sbit;
}
// Mask sprite if in background
if ((mdp & sbit) == 0) {
fore_mask = 0;
fore_mask_r = 0;
}
// Paint sprite
for (unsigned i = 0; i < 32; ++i, plane0_l <<= 1, plane1_l <<= 1, fore_mask <<= 1)
{
uint8_t col;
if (plane1_l & 0x80000000)
{
if (plane0_l & 0x80000000)
{
col = mm1_color;
}
else
{
col = color;
}
}
else
{
if (plane0_l & 0x80000000)
{
col = mm0_color;
}
else
{
continue;
}
}
if (q[i]) { // Obscured by higher-priority data?
spr_coll |= q[i] | sbit;
} else if ((fore_mask & 0x80000000) == 0) {
p[i] = col;
}
q[i] |= sbit;
}
for (unsigned i = 32; i < 48; ++i, plane0_r <<= 1, plane1_r <<= 1, fore_mask_r <<= 1) {
uint8_t col;
if (plane1_r & 0x80000000) {
if (plane0_r & 0x80000000) {
col = mm1_color;
} else {
col = color;
}
} else {
if (plane0_r & 0x80000000) {
col = mm0_color;
} else {
continue;
}
}
if (q[i]) { // Obscured by higher-priority data?
spr_coll |= q[i] | sbit;
} else if ((fore_mask_r & 0x80000000) == 0) {
p[i] = col;
}
q[i] |= sbit;
}
} else { // X-expanded standard mode
// Expand sprite data
sdata_l = ExpTable[sdata >> 24 & 0xff] << 16 | ExpTable[sdata >> 16 & 0xff];
sdata_r = ExpTable[sdata >> 8 & 0xff] << 16;
// Collision with graphics?
if ((fore_mask & sdata_l) || (fore_mask_r & sdata_r)) {
gfx_coll |= sbit;
}
// Mask sprite if in background
if ((mdp & sbit) == 0) {
fore_mask = 0;
fore_mask_r = 0;
}
// Paint sprite
if (sdata_l)
for (unsigned i = 0; i < 32; ++i, sdata_l <<= 1, fore_mask <<= 1)
{
if (sdata_l & 0x80000000) {
if (q[i]) { // Obscured by higher-priority data?
spr_coll |= q[i] | sbit;
} else if ((fore_mask & 0x80000000) == 0) {
p[i] = color;
}
q[i] |= sbit;
}
}
if (sdata_r)
for (unsigned i = 32; i < 48; ++i, sdata_r <<= 1, fore_mask_r <<= 1)
{
if (sdata_r & 0x80000000)
{
if (q[i]) { // Obscured by higher-priority data?
spr_coll |= q[i] | sbit;
} else if ((fore_mask_r & 0x80000000) == 0) {
p[i] = color;
}
q[i] |= sbit;
}
}
}
}
else // Unexpanded
{
if (mmc & sbit) // Unexpanded multicolor mode
{
uint32_t plane0, plane1;
// Convert sprite chunky pixels to bitplanes
plane0 = (sdata & 0x55555555) | (sdata & 0x55555555) << 1;
plane1 = (sdata & 0xaaaaaaaa) | (sdata & 0xaaaaaaaa) >> 1;
// Collision with graphics?
if (fore_mask & (plane0 | plane1)) {
gfx_coll |= sbit;
}
// Mask sprite if in background
if ((mdp & sbit) == 0) {
fore_mask = 0;
}
// Paint sprite
for (unsigned i = 0; i < 24; ++i, plane0 <<= 1, plane1 <<= 1, fore_mask <<= 1)
{
uint8_t col;
if (plane1 & 0x80000000)
{
if (plane0 & 0x80000000)
{
col = mm1_color;
}
else
{
col = color;
}
}
else
{
if (plane0 & 0x80000000)
{
col = mm0_color;
}
else
{
continue;
}
}
if (q[i]) { // Obscured by higher-priority data?
spr_coll |= q[i] | sbit;
} else if ((fore_mask & 0x80000000) == 0) {
p[i] = col;
}
q[i] |= sbit;
}
}
else // Unexpanded standard mode
{
// Collision with graphics?
if (fore_mask & sdata) {
gfx_coll |= sbit;
}
// Mask sprite if in background
if ((mdp & sbit) == 0) {
fore_mask = 0;
}
// Paint sprite
for (unsigned i = 0; i < 24; ++i, sdata <<= 1, fore_mask <<= 1)
{
if (sdata & 0x80000000)
{
if (q[i]) { // Obscured by higher-priority data?
spr_coll |= q[i] | sbit;
} else if ((fore_mask & 0x80000000) == 0) {
p[i] = color;
}
q[i] |= sbit;
}
}
}
}
}
}
// Check sprite-sprite collisions
if (spr_coll)
{
uint8_t old_clx_spr = clx_spr;
clx_spr |= spr_coll;
if (old_clx_spr == 0) { // Interrupt on first detected collision
irq_flag |= 0x04;
if (irq_mask & 0x04) {
irq_flag |= 0x80;
the_cpu->TriggerVICIRQ();
}
}
}
// Check sprite-background collisions
if (gfx_coll)
{
uint8_t old_clx_bgr = clx_bgr;
clx_bgr |= gfx_coll;
if (old_clx_bgr == 0) { // Interrupt on first detected collision
irq_flag |= 0x02;
if (irq_mask & 0x02) {
irq_flag |= 0x80;
the_cpu->TriggerVICIRQ();
}
}
}
}
__attribute__ ((noinline)) ITCM_CODE int MOS6569::el_update_mc(int raster)
{
int i, j;
int cycles_used = 0;
uint8 spron = sprite_on;
uint8 spren = me;
uint8 sprye = mye;
uint8 raster8bit = raster & 0xff;
// Increment sprite data counters
for (i=0, j=1; i<8; i++, j<<=1)
{
// Sprite enabled?
if (spren & j)
{
// Yes, activate if Y position matches raster counter
if (my[i] == raster8bit)
{
mc[i] = 0;
spron |= j;
} else goto spr_off;
}
else
{
spr_off:
// No, turn sprite off when data counter exceeds 60 and increment counter
if (mc[i] != 21) // Instead of increment by 3 and looking for 63, we inc++ and look for 21... compensate for added speed
{
if (sprye & j) // Y expansion
{
if (!((my[i] ^ raster8bit) & 1))
{
cycles_used++;
if (++mc[i] == 21) spron &= ~j;
}
}
else
{
cycles_used++;
if (++mc[i] == 21) spron &= ~j;
}
}
}
}
sprite_on = spron;
return (cycles_used<<1); // Each cycles_used above is 2 actual cycles
}
/*
* Emulate one raster line
*/
int MOS6569::EmulateLine(void)
{
int cycles_left = CPU_CYCLES_PER_LINE + CycleDeltas[myConfig.cpuCycles]; // Cycles left for CPU
bool is_bad_line = false;
// Get raster counter into local variable for faster access and increment
unsigned int raster = raster_y+1;
// End of screen reached?
if (raster == TOTAL_RASTERS)
{
vblank(); // Yes, enter vblank - new frame coming up
raster = 0; // Start back at line 0
}
raster_y = raster;
// Trigger raster IRQ if IRQ line reached
if (raster == irq_raster)
raster_irq();
// In line $30, the DEN bit controls if Bad Lines can occur
if (raster == 0x30)
bad_lines_enabled = ctrl1 & 0x10;
// Skip frame? Only calculate Bad Lines then
if (frame_skipped)
{
if (raster >= FIRST_DMA_LINE && raster <= LAST_DMA_LINE && ((raster & 7) == y_scroll) && bad_lines_enabled)
{
is_bad_line = true;
cycles_left = BAD_CYCLES_PER_LINE + CycleDeltas[myConfig.cpuCycles] + CycleDeltas[myConfig.badCycles];
}
goto VIC_nop;
}
// Within the visible range?
if (raster >= FIRST_DISP_LINE && raster <= LAST_DISP_LINE)
{
u8 bSkipDraw = 0;
// Our output goes here
uint8 *chunky_ptr = fast_line_buffer;
uint32 *direct_scr_ptr = (uint32*)((u32)0x06000014 + (512*(raster-FIRST_DISP_LINE)));
// Set video counter
vc = vc_base;
// Bad Line condition?
if (raster >= FIRST_DMA_LINE && raster <= LAST_DMA_LINE && ((raster & 7) == y_scroll) && bad_lines_enabled)
{
// Turn on display
display_state = is_bad_line = true;
cycles_left = BAD_CYCLES_PER_LINE + CycleDeltas[myConfig.cpuCycles] + CycleDeltas[myConfig.badCycles];
rc = 0;
// Read and latch 40 bytes from video matrix and color RAM
uint8 *mp = matrix_line;
uint8 *cp = color_line;
uint8 *mbp = matrix_base + vc;
uint8 *crp = color_ram + vc;
// If we're on a 32-bit boundary, copy faster...
if ((((u32)mbp & 3) == 0) && (((u32)crp & 3) == 0))
{
uint32 *mp32 = (uint32 *) mp;
uint32 *cp32 = (uint32 *) cp;
uint32 *mbp32 = (uint32 *) mbp;
uint32 *crp32 = (uint32 *) crp;
for (int i=0; i<10; i++)
{
*mp32++ = *mbp32++;
*cp32++ = *crp32++;
}
}
else // Copy slower...
{
for (int i=0; i<40; i++)
{
*mp++ = *mbp++;
*cp++ = *crp++;
}
}
}
// Handler upper/lower border
if (raster == dy_stop)
border_on = true;
if (raster == dy_start && (ctrl1 & 0x10)) // Don't turn off border if DEN bit cleared
border_on = false;
if (!border_on)
{
// Display window contents
uint8 *p = chunky_ptr + COL40_XSTART; // Pointer in chunky display buffer
uint8 *r = fore_mask_buf + COL40_XSTART/8; // Pointer in foreground mask buffer
if (x_scroll)
{
uint8 b0cc = b0c_color;
int limit = x_scroll;
for (int i=0; i<limit; i++) // Background on the left if XScroll>0
*p++ = b0cc;
}
if (display_state)
{
switch (display_idx)
{
case 0: // Standard text
if (x_scroll & 3)
{
el_std_text(text_chunky_buf, char_base + rc, r);
// Experimentally, this is slightly faster than memcpy()
u32 *dest=(u32*)p; u32 *src=(u32*)text_chunky_buf; for (int i=0; i<80; i++) *dest++ = *src++;
}
else
{
el_std_text(p, char_base + rc, r);
}
break;
case 1: // Multicolor text
if (x_scroll & 3)
{
el_mc_text(text_chunky_buf, char_base + rc, r);
// Experimentally, this is slightly faster than memcpy()
u32 *dest=(u32*)p; u32 *src=(u32*)text_chunky_buf; for (int i=0; i<80; i++) *dest++ = *src++;
}
else
{
el_mc_text(p, char_base + rc, r);
}
break;
case 2: // Standard bitmap
if (x_scroll & 3)
{
el_std_bitmap(text_chunky_buf, bitmap_base + (vc << 3) + rc, r);
// Experimentally, this is slightly faster than memcpy()
u32 *dest=(u32*)p; u32 *src=(u32*)text_chunky_buf; for (int i=0; i<80; i++) *dest++ = *src++;
}
else
{
el_std_bitmap(p, bitmap_base + (vc << 3) + rc, r);
}
break;
case 3: // Multicolor bitmap
if (x_scroll & 3)
{
el_mc_bitmap(text_chunky_buf, bitmap_base + (vc << 3) + rc, r);
// Experimentally, this is slightly faster than memcpy()
u32 *dest=(u32*)p; u32 *src=(u32*)text_chunky_buf; for (int i=0; i<80; i++) *dest++ = *src++;
}
else
{
el_mc_bitmap(p, bitmap_base + (vc << 3) + rc, r);
}
break;
case 4: // ECM text
if (x_scroll & 3)
{
el_ecm_text(text_chunky_buf, char_base + rc, r);
// Experimentally, this is slightly faster than memcpy()
u32 *dest=(u32*)p; u32 *src=(u32*)text_chunky_buf; for (int i=0; i<80; i++) *dest++ = *src++;
}
else
{
el_ecm_text(p, char_base + rc, r);
}
break;
default: // Invalid mode (all black)
memset(p, colors[0], 320);
memset(r, 0, 40);
break;
}
vc += 40;
}
else
{ // Idle state graphics
switch (display_idx)
{
case 0: // Standard text
case 1: // Multicolor text
case 4: // ECM text
if (x_scroll & 3)
{
el_std_idle(text_chunky_buf, r);
// Experimentally, this is slightly faster than memcpy()
u32 *dest=(u32*)p; u32 *src=(u32*)text_chunky_buf; for (int i=0; i<80; i++) *dest++ = *src++;
}
else
{
el_std_idle(p, r);
}
break;
case 3: // Multicolor bitmap
if (x_scroll & 3)
{
el_mc_idle(text_chunky_buf, r);
// Experimentally, this is slightly faster than memcpy()
u32 *dest=(u32*)p; u32 *src=(u32*)text_chunky_buf; for (int i=0; i<80; i++) *dest++ = *src++;
}
else
{
el_mc_idle(p, r);
}
break;
default: // Invalid mode (all black)
memset(p, colors[0], 320);
memset(r, 0, 40);
break;
}
}
// Draw sprites
// Clear sprite collision buffer - but only if we have spites to draw on this line
if (sprite_on)
{
memset((uint32 *)spr_coll_buf, 0x00, sizeof(spr_coll_buf));
el_sprites(chunky_ptr);
}
// Handle left/right border
uint32 *lp = (uint32 *)chunky_ptr + 4;
uint32 c = ec_color_long;
for (int i=5; i<COL40_XSTART/4; i++)
*++lp = c;
lp = (uint32 *)(chunky_ptr + COL40_XSTOP) - 1;
for (int i=0; i<((DISPLAY_X-COL40_XSTOP)-16)/4; i++)
*++lp = c;
if (!border_40_col)
{
// Get us onto an even alignment and do 16-bits for added speed
u16 c16 = ec_color_long & 0xFFFF;
p = chunky_ptr + COL40_XSTART;
if ((u32)p & 1)
{
*p++ = ec_color;
u16 *p16 = (u16 *) p;
*p16++ = c16;
*p16++ = c16;
*p16 = c16;
}
else
{
u16 *p16 = (u16 *) p;
*p16++ = c16;
*p16++ = c16;
*p16++ = c16;
p = (u8 *) p16;
*p = ec_color;
}
// Get us onto an even alignment and do 32-bits for added speed
p = chunky_ptr + COL38_XSTOP;
if ((u32)p & 1)
{
*p++ = ec_color;
u32 *p32 = (u32 *) p;
*p32++ = c;
*p32 = c;
}
else
{
u32 *p32 = (u32 *) p;
*p32++ = c;
*p32++ = c;
p = (u8 *) p32;
*p = ec_color;
}
}
}
else
{
// Display border - directly to screen!
bSkipDraw = 1;
for (int i=0; i<87; i++) // 352 pixels is 320 main pixels and 16 pixel borders. Good enough for DS since we can't really show much of the border anyway.
{
*direct_scr_ptr++ = ec_color_long;
}
}
// Increment row counter, go to idle state on overflow
if (rc == 7)
{
display_state = false;
vc_base = vc;
}
else
{
rc++;
}
if (raster >= FIRST_DMA_LINE-1 && raster <= LAST_DMA_LINE-1 && (((raster+1) & 7) == y_scroll) && bad_lines_enabled)
rc = 0;
// Not end of screen... output scanline we just rendered directly to the NDS LCD Screen buffer...
if (!frame_skipped)
{
if (!bSkipDraw)
{
the_display->UpdateRasterLine(raster, (u8*)(fast_line_buffer));
}
}
}
VIC_nop:
// Skip this if all sprites are off
if (me | sprite_on)
{
cycles_left -= el_update_mc(raster);
}
return cycles_left;
}