nitrogfx/gfx.c
2023-07-04 00:40:46 +01:00

1337 lines
46 KiB
C

// Copyright (c) 2015 YamaArashi, 2021-2023 red031000
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include "global.h"
#include "gfx.h"
#include "util.h"
#define GET_GBA_PAL_RED(x) (((x) >> 0) & 0x1F)
#define GET_GBA_PAL_GREEN(x) (((x) >> 5) & 0x1F)
#define GET_GBA_PAL_BLUE(x) (((x) >> 10) & 0x1F)
#define SET_GBA_PAL(r, g, b) (((b) << 10) | ((g) << 5) | (r))
#define UPCONVERT_BIT_DEPTH(x) (((x) * 255) / 31)
#define DOWNCONVERT_BIT_DEPTH(x) ((x) / 8)
static void AdvanceMetatilePosition(int *subTileX, int *subTileY, int *metatileX, int *metatileY, int metatilesWide, int metatileWidth, int metatileHeight)
{
(*subTileX)++;
if (*subTileX == metatileWidth) {
*subTileX = 0;
(*subTileY)++;
if (*subTileY == metatileHeight) {
*subTileY = 0;
(*metatileX)++;
if (*metatileX == metatilesWide) {
*metatileX = 0;
(*metatileY)++;
}
}
}
}
static void ConvertFromTiles1Bpp(unsigned char *src, unsigned char *dest, int numTiles, int metatilesWide, int metatileWidth, int metatileHeight, bool invertColors)
{
int subTileX = 0;
int subTileY = 0;
int metatileX = 0;
int metatileY = 0;
int pitch = metatilesWide * metatileWidth;
for (int i = 0; i < numTiles; i++) {
for (int j = 0; j < 8; j++) {
int destY = (metatileY * metatileHeight + subTileY) * 8 + j;
int destX = metatileX * metatileWidth + subTileX;
unsigned char srcPixelOctet = *src++;
unsigned char *destPixelOctet = &dest[destY * pitch + destX];
for (int k = 0; k < 8; k++) {
*destPixelOctet <<= 1;
*destPixelOctet |= (srcPixelOctet & 1) ^ invertColors;
srcPixelOctet >>= 1;
}
}
AdvanceMetatilePosition(&subTileX, &subTileY, &metatileX, &metatileY, metatilesWide, metatileWidth, metatileHeight);
}
}
static void ConvertFromTiles4Bpp(unsigned char *src, unsigned char *dest, int numTiles, int metatilesWide, int metatileWidth, int metatileHeight, bool invertColors)
{
int subTileX = 0;
int subTileY = 0;
int metatileX = 0;
int metatileY = 0;
int pitch = (metatilesWide * metatileWidth) * 4;
for (int i = 0; i < numTiles; i++) {
for (int j = 0; j < 8; j++) {
int destY = (metatileY * metatileHeight + subTileY) * 8 + j;
for (int k = 0; k < 4; k++) {
int destX = (metatileX * metatileWidth + subTileX) * 4 + k;
unsigned char srcPixelPair = *src++;
unsigned char leftPixel = srcPixelPair & 0xF;
unsigned char rightPixel = srcPixelPair >> 4;
if (invertColors) {
leftPixel = 15 - leftPixel;
rightPixel = 15 - rightPixel;
}
dest[destY * pitch + destX] = (leftPixel << 4) | rightPixel;
}
}
AdvanceMetatilePosition(&subTileX, &subTileY, &metatileX, &metatileY, metatilesWide, metatileWidth, metatileHeight);
}
}
static uint32_t ConvertFromScanned4Bpp(unsigned char *src, unsigned char *dest, int fileSize, bool invertColours, bool scanFrontToBack)
{
uint32_t encValue = 0;
if (scanFrontToBack) {
encValue = (src[1] << 8) | src[0];
for (int i = 0; i < fileSize; i += 2)
{
uint16_t val = src[i] | (src[i + 1] << 8);
val ^= (encValue & 0xFFFF);
src[i] = val;
src[i + 1] = val >> 8;
encValue = encValue * 1103515245;
encValue = encValue + 24691;
}
} else {
encValue = (src[fileSize - 1] << 8) | src[fileSize - 2];
for (int i = fileSize; i > 0; i -= 2)
{
uint16_t val = (src[i - 1] << 8) | src[i - 2];
val ^= (encValue & 0xFFFF);
src[i - 1] = (val >> 8);
src[i - 2] = val;
encValue = encValue * 1103515245;
encValue = encValue + 24691;
}
}
for (int i = 0; i < fileSize; i++)
{
unsigned char srcPixelPair = src[i];
unsigned char leftPixel = srcPixelPair & 0xF;
unsigned char rightPixel = srcPixelPair >> 4;
if (invertColours) {
leftPixel = 15 - leftPixel;
rightPixel = 15 - rightPixel;
}
dest[i] = (leftPixel << 4) | rightPixel;
}
return encValue;
}
static void ConvertFromTiles8Bpp(unsigned char *src, unsigned char *dest, int numTiles, int metatilesWide, int metatileWidth, int metatileHeight, bool invertColors)
{
int subTileX = 0;
int subTileY = 0;
int metatileX = 0;
int metatileY = 0;
int pitch = (metatilesWide * metatileWidth) * 8;
for (int i = 0; i < numTiles; i++) {
for (int j = 0; j < 8; j++) {
int destY = (metatileY * metatileHeight + subTileY) * 8 + j;
for (int k = 0; k < 8; k++) {
int destX = (metatileX * metatileWidth + subTileX) * 8 + k;
unsigned char srcPixel = *src++;
if (invertColors)
srcPixel = 255 - srcPixel;
dest[destY * pitch + destX] = srcPixel;
}
}
AdvanceMetatilePosition(&subTileX, &subTileY, &metatileX, &metatileY, metatilesWide, metatileWidth, metatileHeight);
}
}
static void ConvertToTiles1Bpp(unsigned char *src, unsigned char *dest, int numTiles, int metatilesWide, int metatileWidth, int metatileHeight, bool invertColors)
{
int subTileX = 0;
int subTileY = 0;
int metatileX = 0;
int metatileY = 0;
int pitch = metatilesWide * metatileWidth;
for (int i = 0; i < numTiles; i++) {
for (int j = 0; j < 8; j++) {
int srcY = (metatileY * metatileHeight + subTileY) * 8 + j;
int srcX = metatileX * metatileWidth + subTileX;
unsigned char srcPixelOctet = src[srcY * pitch + srcX];
unsigned char *destPixelOctet = dest++;
for (int k = 0; k < 8; k++) {
*destPixelOctet <<= 1;
*destPixelOctet |= (srcPixelOctet & 1) ^ invertColors;
srcPixelOctet >>= 1;
}
}
AdvanceMetatilePosition(&subTileX, &subTileY, &metatileX, &metatileY, metatilesWide, metatileWidth, metatileHeight);
}
}
static void ConvertToTiles4Bpp(unsigned char *src, unsigned char *dest, int numTiles, int metatilesWide, int metatileWidth, int metatileHeight, bool invertColors)
{
int subTileX = 0;
int subTileY = 0;
int metatileX = 0;
int metatileY = 0;
int pitch = (metatilesWide * metatileWidth) * 4;
for (int i = 0; i < numTiles; i++) {
for (int j = 0; j < 8; j++) {
int srcY = (metatileY * metatileHeight + subTileY) * 8 + j;
for (int k = 0; k < 4; k++) {
int srcX = (metatileX * metatileWidth + subTileX) * 4 + k;
unsigned char srcPixelPair = src[srcY * pitch + srcX];
unsigned char leftPixel = srcPixelPair >> 4;
unsigned char rightPixel = srcPixelPair & 0xF;
if (invertColors) {
leftPixel = 15 - leftPixel;
rightPixel = 15 - rightPixel;
}
*dest++ = (rightPixel << 4) | leftPixel;
}
}
AdvanceMetatilePosition(&subTileX, &subTileY, &metatileX, &metatileY, metatilesWide, metatileWidth, metatileHeight);
}
}
static void ConvertToScanned4Bpp(unsigned char *src, unsigned char *dest, int fileSize, bool invertColours, uint32_t encValue, uint32_t scanMode)
{
for (int i = 0; i < fileSize; i++)
{
unsigned char srcPixelPair = src[i];
unsigned char leftPixel = srcPixelPair & 0xF;
unsigned char rightPixel = srcPixelPair >> 4;
if (invertColours) {
leftPixel = 15 - leftPixel;
rightPixel = 15 - rightPixel;
}
dest[i] = (leftPixel << 4) | rightPixel;
}
if (scanMode == 2) { // front to back
for (int i = fileSize - 1; i > 0; i -= 2)
{
uint16_t val = dest[i - 1] | (dest[i] << 8);
encValue = (encValue - 24691) * 4005161829;
val ^= (encValue & 0xFFFF);
dest[i] = (val >> 8);
dest[i - 1] = val;
}
}
else if (scanMode == 1) {
for (int i = 1; i < fileSize; i += 2)
{
uint16_t val = (dest[i] << 8) | dest[i - 1];
encValue = (encValue - 24691) * 4005161829;
val ^= (encValue & 0xFFFF);
dest[i] = (val >> 8);
dest[i - 1] = val;
}
}
}
static void ConvertToTiles8Bpp(unsigned char *src, unsigned char *dest, int numTiles, int metatilesWide, int metatileWidth, int metatileHeight, bool invertColors)
{
int subTileX = 0;
int subTileY = 0;
int metatileX = 0;
int metatileY = 0;
int pitch = (metatilesWide * metatileWidth) * 8;
for (int i = 0; i < numTiles; i++) {
for (int j = 0; j < 8; j++) {
int srcY = (metatileY * metatileHeight + subTileY) * 8 + j;
for (int k = 0; k < 8; k++) {
int srcX = (metatileX * metatileWidth + subTileX) * 8 + k;
unsigned char srcPixel = src[srcY * pitch + srcX];
if (invertColors)
srcPixel = 255 - srcPixel;
*dest++ = srcPixel;
}
}
AdvanceMetatilePosition(&subTileX, &subTileY, &metatileX, &metatileY, metatilesWide, metatileWidth, metatileHeight);
}
}
void ReadImage(char *path, int tilesWidth, int bitDepth, int metatileWidth, int metatileHeight, struct Image *image, bool invertColors)
{
int tileSize = bitDepth * 8;
int fileSize;
unsigned char *buffer = ReadWholeFile(path, &fileSize);
int numTiles = fileSize / tileSize;
int tilesHeight = (numTiles + tilesWidth - 1) / tilesWidth;
if (tilesWidth % metatileWidth != 0)
FATAL_ERROR("The width in tiles (%d) isn't a multiple of the specified metatile width (%d)", tilesWidth, metatileWidth);
if (tilesHeight % metatileHeight != 0)
FATAL_ERROR("The height in tiles (%d) isn't a multiple of the specified metatile height (%d)", tilesHeight, metatileHeight);
image->width = tilesWidth * 8;
image->height = tilesHeight * 8;
image->bitDepth = bitDepth;
image->pixels = calloc(tilesWidth * tilesHeight, tileSize);
if (image->pixels == NULL)
FATAL_ERROR("Failed to allocate memory for pixels.\n");
int metatilesWide = tilesWidth / metatileWidth;
switch (bitDepth) {
case 1:
ConvertFromTiles1Bpp(buffer, image->pixels, numTiles, metatilesWide, metatileWidth, metatileHeight, invertColors);
break;
case 4:
ConvertFromTiles4Bpp(buffer, image->pixels, numTiles, metatilesWide, metatileWidth, metatileHeight, invertColors);
break;
case 8:
ConvertFromTiles8Bpp(buffer, image->pixels, numTiles, metatilesWide, metatileWidth, metatileHeight, invertColors);
break;
}
free(buffer);
}
uint32_t ReadNtrImage(char *path, int tilesWidth, int bitDepth, int metatileWidth, int metatileHeight, struct Image *image, bool invertColors, bool scanFrontToBack)
{
int fileSize;
unsigned char *buffer = ReadWholeFile(path, &fileSize);
if (memcmp(buffer, "RGCN", 4) != 0)
{
FATAL_ERROR("Not a valid NCGR character file.\n");
}
unsigned char *charHeader = buffer + 0x10;
if (memcmp(charHeader, "RAHC", 4) != 0)
{
FATAL_ERROR("No valid CHAR file after NCLR header.\n");
}
bitDepth = bitDepth ? bitDepth : (charHeader[0xC] == 3 ? 4 : 8);
if (bitDepth == 4)
{
image->palette.numColors = 16;
}
unsigned char *imageData = charHeader + 0x20;
bool scanned = charHeader[0x14];
int tileSize = bitDepth * 8;
if (tilesWidth == 0) {
tilesWidth = ReadS16(charHeader, 0xA);
if (tilesWidth < 0) {
tilesWidth = 1;
}
}
int numTiles = ReadS32(charHeader, 0x18) / (64 / (8 / bitDepth));
int tilesHeight = ReadS16(charHeader, 0x8);
if (tilesHeight < 0)
tilesHeight = (numTiles + tilesWidth - 1) / tilesWidth;
if (tilesWidth % metatileWidth != 0)
FATAL_ERROR("The width in tiles (%d) isn't a multiple of the specified metatile width (%d)", tilesWidth, metatileWidth);
if (tilesHeight % metatileHeight != 0)
FATAL_ERROR("The height in tiles (%d) isn't a multiple of the specified metatile height (%d)", tilesHeight, metatileHeight);
image->width = tilesWidth * 8;
image->height = tilesHeight * 8;
image->bitDepth = bitDepth;
image->pixels = calloc(tilesWidth * tilesHeight, tileSize);
if (image->pixels == NULL)
FATAL_ERROR("Failed to allocate memory for pixels.\n");
int metatilesWide = tilesWidth / metatileWidth;
uint32_t key = 0;
if (scanned)
{
switch (bitDepth)
{
case 4:
key = ConvertFromScanned4Bpp(imageData, image->pixels, fileSize - 0x30, invertColors, scanFrontToBack);
break;
case 8:
FATAL_ERROR("8bpp is not implemented yet\n");
break;
}
}
else
{
switch (bitDepth)
{
case 4:
ConvertFromTiles4Bpp(imageData, image->pixels, numTiles, metatilesWide, metatileWidth, metatileHeight,
invertColors);
break;
case 8:
ConvertFromTiles8Bpp(imageData, image->pixels, numTiles, metatilesWide, metatileWidth, metatileHeight,
invertColors);
break;
}
}
free(buffer);
return key;
}
void WriteImage(char *path, int numTiles, int bitDepth, int metatileWidth, int metatileHeight, struct Image *image, bool invertColors)
{
int tileSize = bitDepth * 8;
if (image->width % 8 != 0)
FATAL_ERROR("The width in pixels (%d) isn't a multiple of 8.\n", image->width);
if (image->height % 8 != 0)
FATAL_ERROR("The height in pixels (%d) isn't a multiple of 8.\n", image->height);
int tilesWidth = image->width / 8;
int tilesHeight = image->height / 8;
if (tilesWidth % metatileWidth != 0)
FATAL_ERROR("The width in tiles (%d) isn't a multiple of the specified metatile width (%d)", tilesWidth, metatileWidth);
if (tilesHeight % metatileHeight != 0)
FATAL_ERROR("The height in tiles (%d) isn't a multiple of the specified metatile height (%d)", tilesHeight, metatileHeight);
int maxNumTiles = tilesWidth * tilesHeight;
if (numTiles == 0)
numTiles = maxNumTiles;
else if (numTiles > maxNumTiles)
FATAL_ERROR("The specified number of tiles (%d) is greater than the maximum possible value (%d).\n", numTiles, maxNumTiles);
int bufferSize = numTiles * tileSize;
unsigned char *buffer = malloc(bufferSize);
if (buffer == NULL)
FATAL_ERROR("Failed to allocate memory for pixels.\n");
int metatilesWide = tilesWidth / metatileWidth;
switch (bitDepth) {
case 1:
ConvertToTiles1Bpp(image->pixels, buffer, numTiles, metatilesWide, metatileWidth, metatileHeight, invertColors);
break;
case 4:
ConvertToTiles4Bpp(image->pixels, buffer, numTiles, metatilesWide, metatileWidth, metatileHeight, invertColors);
break;
case 8:
ConvertToTiles8Bpp(image->pixels, buffer, numTiles, metatilesWide, metatileWidth, metatileHeight, invertColors);
break;
}
WriteWholeFile(path, buffer, bufferSize);
free(buffer);
}
void WriteNtrImage(char *path, int numTiles, int bitDepth, int metatileWidth, int metatileHeight, struct Image *image,
bool invertColors, bool clobberSize, bool byteOrder, bool version101, bool sopc, uint32_t scanMode,
uint32_t key, bool wrongSize)
{
FILE *fp = fopen(path, "wb");
if (fp == NULL)
FATAL_ERROR("Failed to open \"%s\" for writing.\n", path);
int tileSize = bitDepth * 8;
if (image->width % 8 != 0)
FATAL_ERROR("The width in pixels (%d) isn't a multiple of 8.\n", image->width);
if (image->height % 8 != 0)
FATAL_ERROR("The height in pixels (%d) isn't a multiple of 8.\n", image->height);
int tilesWidth = image->width / 8;
int tilesHeight = image->height / 8;
if (tilesWidth % metatileWidth != 0)
FATAL_ERROR("The width in tiles (%d) isn't a multiple of the specified metatile width (%d)", tilesWidth, metatileWidth);
if (tilesHeight % metatileHeight != 0)
FATAL_ERROR("The height in tiles (%d) isn't a multiple of the specified metatile height (%d)", tilesHeight, metatileHeight);
int maxNumTiles = tilesWidth * tilesHeight;
if (numTiles == 0)
numTiles = maxNumTiles;
else if (numTiles > maxNumTiles)
FATAL_ERROR("The specified number of tiles (%d) is greater than the maximum possible value (%d).\n", numTiles, maxNumTiles);
int bufferSize = numTiles * tileSize;
unsigned char *pixelBuffer = malloc(bufferSize);
if (pixelBuffer == NULL)
FATAL_ERROR("Failed to allocate memory for pixels.\n");
int metatilesWide = tilesWidth / metatileWidth;
if (scanMode)
{
switch (bitDepth)
{
case 4:
ConvertToScanned4Bpp(image->pixels, pixelBuffer, bufferSize, invertColors, key, scanMode);
break;
case 8:
FATAL_ERROR("8Bpp not supported yet.\n");
break;
}
}
else
{
switch (bitDepth)
{
case 4:
ConvertToTiles4Bpp(image->pixels, pixelBuffer, numTiles, metatilesWide, metatileWidth, metatileHeight,
invertColors);
break;
case 8:
ConvertToTiles8Bpp(image->pixels, pixelBuffer, numTiles, metatilesWide, metatileWidth, metatileHeight,
invertColors);
break;
}
}
WriteGenericNtrHeader(fp, "RGCN", bufferSize + (sopc ? 0x30 : 0x20) + (wrongSize ? -8 : 0), byteOrder, version101, sopc ? 2 : 1);
unsigned char charHeader[0x20] = { 0x52, 0x41, 0x48, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00 };
charHeader[4] = (bufferSize + 0x20 + (wrongSize ? -8 : 0)) & 0xFF;
charHeader[5] = ((bufferSize + 0x20 + (wrongSize ? -8 : 0)) >> 8) & 0xFF;
charHeader[6] = ((bufferSize + 0x20 + (wrongSize ? -8 : 0)) >> 16) & 0xFF;
charHeader[7] = ((bufferSize + 0x20 + (wrongSize ? -8 : 0)) >> 24) & 0xFF;
if (!clobberSize)
{
charHeader[8] = tilesHeight & 0xFF;
charHeader[9] = (tilesHeight >> 8) & 0xFF;
charHeader[10] = tilesWidth & 0xFF;
charHeader[11] = (tilesWidth >> 8) & 0xFF;
}
else
{
charHeader[8] = 0xFF;
charHeader[9] = 0xFF;
charHeader[10] = 0xFF;
charHeader[11] = 0xFF;
charHeader[16] = 0x10; //seems to be set when size is clobbered
}
charHeader[12] = bitDepth == 4 ? 3 : 4;
if (scanMode)
{
charHeader[20] = 1;
}
charHeader[24] = bufferSize & 0xFF;
charHeader[25] = (bufferSize >> 8) & 0xFF;
charHeader[26] = (bufferSize >> 16) & 0xFF;
charHeader[27] = (bufferSize >> 24) & 0xFF;
fwrite(charHeader, 1, 0x20, fp);
fwrite(pixelBuffer, 1, bufferSize, fp);
if (sopc)
{
unsigned char sopcBuffer[0x10] = { 0x53, 0x4F, 0x50, 0x43, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
sopcBuffer[12] = tilesWidth & 0xFF;
sopcBuffer[13] = (tilesWidth >> 8) & 0xFF;
sopcBuffer[14] = tilesHeight & 0xFF;
sopcBuffer[15] = (tilesHeight >> 8) & 0xFF;
fwrite(sopcBuffer, 1, 0x10, fp);
}
free(pixelBuffer);
fclose(fp);
}
void FreeImage(struct Image *image)
{
free(image->pixels);
image->pixels = NULL;
}
void ReadGbaPalette(char *path, struct Palette *palette)
{
int fileSize;
unsigned char *data = ReadWholeFile(path, &fileSize);
if (fileSize % 2 != 0)
FATAL_ERROR("The file size (%d) is not a multiple of 2.\n", fileSize);
palette->numColors = fileSize / 2;
for (int i = 0; i < palette->numColors; i++) {
uint16_t paletteEntry = (data[i * 2 + 1] << 8) | data[i * 2];
palette->colors[i].red = UPCONVERT_BIT_DEPTH(GET_GBA_PAL_RED(paletteEntry));
palette->colors[i].green = UPCONVERT_BIT_DEPTH(GET_GBA_PAL_GREEN(paletteEntry));
palette->colors[i].blue = UPCONVERT_BIT_DEPTH(GET_GBA_PAL_BLUE(paletteEntry));
}
free(data);
}
void ReadNtrPalette(char *path, struct Palette *palette, int bitdepth, int palIndex)
{
int fileSize;
unsigned char *data = ReadWholeFile(path, &fileSize);
if (memcmp(data, "RLCN", 4) != 0 && memcmp(data, "RPCN", 4) != 0) //NCLR / NCPR
{
FATAL_ERROR("Not a valid NCLR or NCPR palette file.\n");
}
unsigned char *paletteHeader = data + 0x10;
if (memcmp(paletteHeader, "TTLP", 4) != 0)
{
FATAL_ERROR("No valid PLTT file after NCLR header.\n");
}
if ((fileSize - 0x28) % 2 != 0)
FATAL_ERROR("The file size (%d) is not a multiple of 2.\n", fileSize);
palette->bitDepth = paletteHeader[0x8] == 3 ? 4 : 8;
bitdepth = bitdepth ? bitdepth : palette->bitDepth;
palette->numColors = bitdepth == 4 ? 16 : 256; //remove header and divide by 2
unsigned char *paletteData = paletteHeader + 0x18;
palIndex = palIndex - 1;
for (int i = 0; i < 256; i++)
{
if (i < palette->numColors)
{
uint16_t paletteEntry = (paletteData[(32 * palIndex) + i * 2 + 1] << 8) | paletteData[(32 * palIndex) + i * 2];
palette->colors[i].red = UPCONVERT_BIT_DEPTH(GET_GBA_PAL_RED(paletteEntry));
palette->colors[i].green = UPCONVERT_BIT_DEPTH(GET_GBA_PAL_GREEN(paletteEntry));
palette->colors[i].blue = UPCONVERT_BIT_DEPTH(GET_GBA_PAL_BLUE(paletteEntry));
}
else
{
palette->colors[i].red = 0;
palette->colors[i].green = 0;
palette->colors[i].blue = 0;
}
}
free(data);
}
void WriteGbaPalette(char *path, struct Palette *palette)
{
FILE *fp = fopen(path, "wb");
if (fp == NULL)
FATAL_ERROR("Failed to open \"%s\" for writing.\n", path);
for (int i = 0; i < palette->numColors; i++) {
unsigned char red = DOWNCONVERT_BIT_DEPTH(palette->colors[i].red);
unsigned char green = DOWNCONVERT_BIT_DEPTH(palette->colors[i].green);
unsigned char blue = DOWNCONVERT_BIT_DEPTH(palette->colors[i].blue);
uint16_t paletteEntry = SET_GBA_PAL(red, green, blue);
fputc(paletteEntry & 0xFF, fp);
fputc(paletteEntry >> 8, fp);
}
fclose(fp);
}
void WriteNtrPalette(char *path, struct Palette *palette, bool ncpr, bool ir, int bitdepth, bool pad, int compNum)
{
FILE *fp = fopen(path, "wb");
if (fp == NULL)
FATAL_ERROR("Failed to open \"%s\" for writing.\n", path);
int colourNum = pad ? 256 : 16;
uint32_t size = colourNum * 2; //todo check if there's a better way to detect :/
uint32_t extSize = size + (ncpr ? 0x10 : 0x18);
//NCLR header
WriteGenericNtrHeader(fp, (ncpr ? "RPCN" : "RLCN"), extSize, !ncpr, false, 1);
unsigned char palHeader[0x18] =
{
0x54, 0x54, 0x4C, 0x50, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00
};
//section size
palHeader[4] = extSize & 0xFF;
palHeader[5] = (extSize >> 8) & 0xFF;
palHeader[6] = (extSize >> 16) & 0xFF;
palHeader[7] = (extSize >> 24) & 0xFF;
if (!palette->bitDepth)
palette->bitDepth = 4;
bitdepth = bitdepth ? bitdepth : palette->bitDepth;
//bit depth
palHeader[8] = bitdepth == 4 ? 0x03: 0x04;
if (compNum)
{
palHeader[10] = compNum; //assuming this is an indicator of compression, literally no docs for it though
}
//size
palHeader[16] = size & 0xFF;
palHeader[17] = (size >> 8) & 0xFF;
palHeader[18] = (size >> 16) & 0xFF;
palHeader[19] = (size >> 24) & 0xFF;
fwrite(palHeader, 1, 0x18, fp);
unsigned char * colours = malloc(colourNum * 2);
//palette data
for (int i = 0; i < colourNum; i++)
{
if (i < palette->numColors)
{
unsigned char red = DOWNCONVERT_BIT_DEPTH(palette->colors[i].red);
unsigned char green = DOWNCONVERT_BIT_DEPTH(palette->colors[i].green);
unsigned char blue = DOWNCONVERT_BIT_DEPTH(palette->colors[i].blue);
uint16_t paletteEntry = SET_GBA_PAL(red, green, blue);
colours[i * 2] = paletteEntry & 0xFF;
colours[i * 2 + 1] = paletteEntry >> 8;
}
else
{
colours[i * 2] = 0x00;
colours[i * 2 + 1] = 0x00;
}
}
if (ir)
{
colours[colourNum * 2 - 2] = 'I';
colours[colourNum * 2 - 1] = 'R';
}
fwrite(colours, 1, colourNum * 2, fp);
free(colours);
fclose(fp);
}
void ReadNtrCell(char *path, struct JsonToCellOptions *options)
{
int fileSize;
unsigned char *data = ReadWholeFile(path, &fileSize);
if (memcmp(data, "RECN", 4) != 0) //NCER
{
FATAL_ERROR("Not a valid NCER cell file.\n");
}
options->labelEnabled = data[0xE] != 1;
if (memcmp(data + 0x10, "KBEC", 4) != 0 ) //KBEC
{
FATAL_ERROR("Not a valid KBEC cell file.\n");
}
options->cellCount = data[0x18] | (data[0x19] << 8);
options->extended = data[0x1A] == 1;
if (!options->extended)
{
FATAL_ERROR("Don't know how to deal with not extended yet, bug red031000.\n");
}
options->mappingType = data[0x20];
options->cells = malloc(sizeof(struct Cell *) * options->cellCount);
for (int i = 0; i < options->cellCount; i++)
{
int offset = 0x30 + (i * 0x10);
options->cells[i] = malloc(sizeof(struct Cell));
short cellAttrs = data[offset + 2] | (data[offset + 3] << 8);
options->cells[i]->attributes.hFlip = (cellAttrs >> 8) & 1;
options->cells[i]->attributes.vFlip = (cellAttrs >> 9) & 1;
options->cells[i]->attributes.hvFlip = (cellAttrs >> 10) & 1;
options->cells[i]->attributes.boundingRect = (cellAttrs >> 11) & 1;
options->cells[i]->attributes.boundingSphereRadius = cellAttrs & 0x3F;
options->cells[i]->maxX = data[offset + 8] | (data[offset + 9] << 8);
options->cells[i]->maxY = data[offset + 10] | (data[offset + 11] << 8);
options->cells[i]->minX = data[offset + 12] | (data[offset + 13] << 8);
options->cells[i]->minY = data[offset + 14] | (data[offset + 15] << 8);
}
for (int i = 0; i < options->cellCount; i++)
{
int offset = 0x30 + (options->cellCount * 0x10) + (i * 0x6);
//Attr0
//bits 0-7 Y coordinate
options->cells[i]->oam.attr0.YCoordinate = data[offset];
//bit 8 rotation
options->cells[i]->oam.attr0.Rotation = data[offset + 1] & 1;
//bit 9 Obj Size (if rotation) or Obj Disable (if not rotation)
options->cells[i]->oam.attr0.SizeDisable = (data[offset + 1] >> 1) & 1;
//bits 10-11 Obj Mode
options->cells[i]->oam.attr0.Mode = (data[offset + 1] >> 2) & 3;
//bit 12 Obj Mosaic
options->cells[i]->oam.attr0.Mosaic = (data[offset + 1] >> 4) & 1;
//bit 13 Colours
options->cells[i]->oam.attr0.Colours = ((data[offset + 1] >> 5) & 1) == 0 ? 16 : 256;
//bits 14-15 Obj Shape
options->cells[i]->oam.attr0.Shape = (data[offset + 1] >> 6) & 3;
//Attr1
//bits 0-8 X coordinate
options->cells[i]->oam.attr1.XCoordinate = data[offset + 2] | ((data[offset + 3] & 1) << 8);
//bits 9-13 Rotation and scaling (if rotation) bit 12 Horizontal flip, bit 13 Vertical flip (if not rotation)
options->cells[i]->oam.attr1.RotationScaling = (data[offset + 3] >> 1) & 0x1F;
//bits 14-15 Obj Size
options->cells[i]->oam.attr1.Size = (data[offset + 3] >> 6) & 3;
//Attr2
//bits 0-9 Character Name?
options->cells[i]->oam.attr2.CharName = data[offset + 4] | ((data[offset + 5] & 3) << 8);
//bits 10-11 Priority
options->cells[i]->oam.attr2.Priority = (data[offset + 5] >> 2) & 3;
//bits 12-15 Palette Number
options->cells[i]->oam.attr2.Palette = (data[offset + 5] >> 4) & 0xF;
}
if (options->labelEnabled)
{
int count = 0;
int offset = 0x30 + (options->cellCount * 0x16) + 0x8;
bool flag = false;
//this entire thing is a huge assumption, it will not work with labels that are less than 2 characters long
while (!flag)
{
if (strlen((char *) data + offset) < 2)
{
//probably a pointer, maybe?
count++;
offset += 4;
}
else
{
//huzzah a string
flag = true;
}
}
options->labelCount = count;
options->labels = malloc(sizeof(char *) * count);
for (int i = 0; i < count; i++)
{
options->labels[i] = malloc(strlen((char *) data + offset) + 1);
strcpy(options->labels[i], (char *) data + offset);
offset += strlen(options->labels[i]) + 1;
}
//after this should be txeu, if everything was done right
}
free(data);
}
void WriteNtrCell(char *path, struct JsonToCellOptions *options)
{
FILE *fp = fopen(path, "wb");
if (fp == NULL)
FATAL_ERROR("Failed to open \"%s\" for writing.\n", path);
unsigned int totalSize = (options->labelEnabled > 0 ? 0x34 : 0x20) + options->cellCount * (options->extended ? 0x16 : 0xe);
if (options->labelEnabled)
{
for (int j = 0; j < options->labelCount; j++)
{
totalSize += (unsigned)strlen(options->labels[j]) + 5; //strlen + terminator + pointer
}
}
WriteGenericNtrHeader(fp, "RECN", totalSize, true, false, options->labelEnabled ? 3 : 1);
unsigned char KBECHeader[0x20] =
{
0x4B, 0x42, 0x45, 0x43, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
KBECHeader[8] = options->cellCount; //cell count
if (options->extended)
{
KBECHeader[10] = 1; //extended
}
unsigned int size = options->cellCount * (options->extended ? 0x16 : 0xe);
KBECHeader[4] = (size + 0x20) & 0xFF; //size
KBECHeader[5] = (size + 0x20) >> 8; //unlikely to be more than 16 bits, but there are 32 allocated, change if necessary
KBECHeader[16] = (options->mappingType & 0xFF); //not possible to be more than 8 bits, though 32 are allocated
fwrite(KBECHeader, 1, 0x20, fp);
unsigned char *KBECContents = malloc(size);
memset(KBECContents, 0, size);
if (!options->extended)
{
FATAL_ERROR("Don't know how to deal with not extended yet, bug red031000.\n");
}
int i;
for (i = 0; i < options->cellCount * 0x10; i += 0x10)
{
KBECContents[i] = 0x01; //number of images
short cellAttrs = (options->cells[i / 0x10]->attributes.hFlip << 8) | (options->cells[i / 0x10]->attributes.vFlip << 9)
| (options->cells[i / 0x10]->attributes.hvFlip << 10) | (options->cells[i / 0x10]->attributes.boundingRect << 11)
| (options->cells[i / 0x10]->attributes.boundingSphereRadius & 0x3F);
KBECContents[i + 2] = cellAttrs & 0xff; //cell attributes
KBECContents[i + 3] = cellAttrs >> 8;
KBECContents[i + 4] = (i / 0x10 * 6) & 0xff; //pointer to OAM data
KBECContents[i + 5] = (i / 0x10 * 6) >> 8; //unlikely to be more than 16 bits, but there are 32 allocated, change if necessary
KBECContents[i + 8] = options->cells[i / 0x10]->maxX & 0xff; //maxX
KBECContents[i + 9] = options->cells[i / 0x10]->maxX >> 8;
KBECContents[i + 10] = options->cells[i / 0x10]->maxY & 0xff; //maxY
KBECContents[i + 11] = options->cells[i / 0x10]->maxY >> 8;
KBECContents[i + 12] = options->cells[i / 0x10]->minX & 0xff; //minX
KBECContents[i + 13] = options->cells[i / 0x10]->minX >> 8;
KBECContents[i + 14] = options->cells[i / 0x10]->minY & 0xff; //minY
KBECContents[i + 15] = options->cells[i / 0x10]->minY >> 8;
}
//OAM data
for (int j = i; j < options->cellCount * 6 + i; j += 6)
{
//Attr0
//bits 0-7 Y coordinate
KBECContents[j] = options->cells[(j - i) / 6]->oam.attr0.YCoordinate & 0xff;
//bit 8 rotation
KBECContents[j + 1] = options->cells[(j - i) / 6]->oam.attr0.Rotation;
//bit 9 Obj Size (if rotation) or Obj Disable (if not rotation)
KBECContents[j + 1] |= options->cells[(j - i) / 6]->oam.attr0.SizeDisable << 1;
//bits 10-11 Obj Mode
KBECContents[j + 1] |= options->cells[(j - i) / 6]->oam.attr0.Mode << 2;
//bit 12 Obj Mosaic
KBECContents[j + 1] |= options->cells[(j - i) / 6]->oam.attr0.Mosaic << 4;
//bit 13 Colours
KBECContents[j + 1] |= (options->cells[(j - i) / 6]->oam.attr0.Colours == 16 ? 0 : 1) << 5;
//bits 14-15 Obj Shape
KBECContents[j + 1] |= options->cells[(j - i) / 6]->oam.attr0.Shape << 6;
//Attr1
//bits 0-8 X coordinate
KBECContents[j + 2] = options->cells[(j - i) / 6]->oam.attr1.XCoordinate & 0xff;
KBECContents[j + 3] = options->cells[(j - i) / 6]->oam.attr1.XCoordinate >> 8;
//bits 9-13 Rotation and scaling (if rotation) bit 12 Horizontal flip, bit 13 Vertical flip (if not rotation)
KBECContents[j + 3] |= options->cells[(j - i) / 6]->oam.attr1.RotationScaling << 1;
//bits 14-15 Obj Size
KBECContents[j + 3] |= options->cells[(j - i) / 6]->oam.attr1.Size << 6;
//Attr2
//bits 0-9 Character Name?
KBECContents[j + 4] = options->cells[(j - i) / 6]->oam.attr2.CharName & 0xff;
KBECContents[j + 5] = options->cells[(j - i) / 6]->oam.attr2.CharName >> 8;
//bits 10-11 Priority
KBECContents[j + 5] |= options->cells[(j - i) / 6]->oam.attr2.Priority << 2;
//bits 12-15 Palette Number
KBECContents[j + 5] |= options->cells[(j - i) / 6]->oam.attr2.Palette << 4;
}
fwrite(KBECContents, 1, size, fp);
free(KBECContents);
if (options->labelEnabled)
{
unsigned int lablSize = 8;
for (int j = 0; j < options->labelCount; j++)
{
lablSize += (unsigned)strlen(options->labels[j]) + 5;
}
unsigned char *labl = malloc(lablSize);
memset(labl, 0, lablSize);
strcpy((char *) labl, "LBAL");
labl[4] = lablSize & 0xff;
labl[5] = lablSize >> 8;
unsigned int position = 0;
i = 0;
for (int j = 0; j < options->labelCount; j++)
{
labl[i + 8] = position & 0xff;
labl[i + 9] = position >> 8;
position += (unsigned)strlen(options->labels[j]) + 1;
i += 4;
}
for (int j = 0; j < options->labelCount; j++)
{
strcpy((char *) (labl + (i + 8)), options->labels[j]);
i += (int)strlen(options->labels[j]) + 1;
}
fwrite(labl, 1, lablSize, fp);
free(labl);
unsigned char txeu[0xc] = {0x54, 0x58, 0x45, 0x55, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
fwrite(txeu, 1, 0xc, fp);
}
fclose(fp);
}
void WriteNtrScreen(char *path, struct JsonToScreenOptions *options)
{
FILE *fp = fopen(path, "wb");
if (fp == NULL)
FATAL_ERROR("Failed to open \"%s\" for writing.\n", path);
int totalSize = options->width * options->height * 2 + 0x14;
WriteGenericNtrHeader(fp, "RCSN", totalSize, true, false, 1);
unsigned char NSCRHeader[0x14] = { 0x4E, 0x52, 0x43, 0x53, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00 };
NSCRHeader[0x4] = totalSize & 0xff;
NSCRHeader[0x5] = (totalSize >> 8) & 0xff;
NSCRHeader[0x6] = (totalSize >> 16) & 0xff;
NSCRHeader[0x7] = totalSize >> 24;
NSCRHeader[0x8] = (options->width * 8) & 0xff;
NSCRHeader[0x9] = (options->width * 8) >> 8;
NSCRHeader[0xA] = (options->height * 8) & 0xff;
NSCRHeader[0xB] = (options->height * 8) >> 8;
NSCRHeader[0xC] = options->bitdepth == 4 ? 0 : 1;
NSCRHeader[0x10] = (totalSize - 0x14) & 0xff;
NSCRHeader[0x11] = ((totalSize - 0x14) >> 8) & 0xff;
NSCRHeader[0x12] = ((totalSize - 0x14) >> 16) & 0xff;
NSCRHeader[0x13] = (totalSize - 0x14) >> 24;
fwrite(NSCRHeader, 1, 0x14, fp);
fwrite(options->data, 1, totalSize - 0x14, fp);
fclose(fp);
}
void WriteNtrAnimation(char *path, struct JsonToAnimationOptions *options)
{
FILE *fp = fopen(path, "wb");
if (fp == NULL)
FATAL_ERROR("Failed to open \"%s\" for writing.\n", path);
unsigned int totalSize = 0x20 + options->sequenceCount * 0x10 + options->frameCount * 0x8;
//todo: check these
for (int i = 0; i < options->resultCount; i++)
{
if (options->animationResults[i]->resultType == 0)
totalSize += 0x4;
else if (options->animationResults[i]->resultType == 1)
totalSize += 0x10;
else if (options->animationResults[i]->resultType == 2)
totalSize += 0x8;
}
unsigned int KNBASize = totalSize;
if (options->labelEnabled)
{
totalSize += options->multiCell ? 0x8 : 0x14;
for (int j = 0; j < options->labelCount; j++)
{
totalSize += (unsigned)strlen(options->labels[j]) + 5; //strlen + terminator + pointer
}
}
WriteGenericNtrHeader(fp, options->multiCell ? "RAMN" : "RNAN", totalSize, true, false, options->labelEnabled ? (options->multiCell ? 2 : 3) : 1);
unsigned char KBNAHeader[0x20] =
{
0x4B, 0x4E, 0x42, 0x41, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
KBNAHeader[4] = KNBASize & 0xff;
KBNAHeader[5] = (KNBASize >> 8) & 0xff;
KBNAHeader[6] = (KNBASize >> 16) & 0xff;
KBNAHeader[7] = KNBASize >> 24;
KBNAHeader[8] = options->sequenceCount & 0xff;
KBNAHeader[9] = options->sequenceCount >> 8;
KBNAHeader[10] = options->frameCount & 0xff;
KBNAHeader[11] = options->frameCount >> 8;
unsigned int frameOffset = 0x18 + options->sequenceCount * 0x10;
KBNAHeader[16] = frameOffset & 0xff;
KBNAHeader[17] = (frameOffset >> 8) & 0xff;
KBNAHeader[18] = (frameOffset >> 16) & 0xff;
KBNAHeader[19] = frameOffset >> 24;
unsigned int resultsOffset = frameOffset + options->frameCount * 0x8;
KBNAHeader[20] = resultsOffset & 0xff;
KBNAHeader[21] = (resultsOffset >> 8) & 0xff;
KBNAHeader[22] = (resultsOffset >> 16) & 0xff;
KBNAHeader[23] = resultsOffset >> 24;
fwrite(KBNAHeader, 1, 0x20, fp);
int contentsSize = KNBASize - 0x20;
unsigned char *KBNAContents = malloc(contentsSize);
int i;
int framePtrCounter = 0;
for (i = 0; i < options->sequenceCount * 0x10; i += 0x10)
{
KBNAContents[i] = options->sequenceData[i / 0x10]->frameCount & 0xff;
KBNAContents[i + 1] = options->sequenceData[i / 0x10]->frameCount >> 8;
KBNAContents[i + 2] = options->sequenceData[i / 0x10]->loopStartFrame & 0xff;
KBNAContents[i + 3] = options->sequenceData[i / 0x10]->loopStartFrame >> 8;
KBNAContents[i + 4] = options->sequenceData[i / 0x10]->animationElement & 0xff;
KBNAContents[i + 5] = options->sequenceData[i / 0x10]->animationElement >> 8;
KBNAContents[i + 6] = options->sequenceData[i / 0x10]->animationType & 0xff;
KBNAContents[i + 7] = options->sequenceData[i / 0x10]->animationType >> 8;
KBNAContents[i + 8] = options->sequenceData[i / 0x10]->playbackMode & 0xff;
KBNAContents[i + 9] = (options->sequenceData[i / 0x10]->playbackMode >> 8) & 0xff;
KBNAContents[i + 10] = (options->sequenceData[i / 0x10]->playbackMode >> 16) & 0xff;
KBNAContents[i + 11] = options->sequenceData[i / 0x10]->playbackMode >> 24;
KBNAContents[i + 12] = framePtrCounter & 0xff;
KBNAContents[i + 13] = (framePtrCounter >> 8) & 0xff;
KBNAContents[i + 14] = (framePtrCounter >> 16) & 0xff;
KBNAContents[i + 15] = framePtrCounter >> 24;
framePtrCounter += options->sequenceData[i / 0x10]->frameCount * 8;
}
int j;
int m;
for (j = i, m = 0; m < options->sequenceCount; m++)
{
for (int k = 0; k < options->sequenceData[m]->frameCount; k++) {
int resPtr = 0;
for (int l = 0; l < options->sequenceData[m]->frameData[k]->resultId; l++) {
if (options->animationResults[l]->resultType == 0)
resPtr += 0x4;
else if (options->animationResults[l]->resultType == 1)
resPtr += 0x10;
else if (options->animationResults[l]->resultType == 2)
resPtr += 0x8;
}
KBNAContents[j + (k * 8)] = resPtr & 0xff;
KBNAContents[j + (k * 8) + 1] = (resPtr >> 8) & 0xff;
KBNAContents[j + (k * 8) + 2] = (resPtr >> 16) & 0xff;
KBNAContents[j + (k * 8) + 3] = resPtr >> 24;
KBNAContents[j + (k * 8) + 4] = options->sequenceData[m]->frameData[k]->frameDelay & 0xff;
KBNAContents[j + (k * 8) + 5] = options->sequenceData[m]->frameData[k]->frameDelay >> 8;
KBNAContents[j + (k * 8) + 6] = 0xEF;
KBNAContents[j + (k * 8) + 7] = 0xBE;
}
j += options->sequenceData[m]->frameCount * 8;
}
//todo: these are extrapolated, need confirming
int resPtrCounter = j;
for (int k = 0; k < options->resultCount; k++)
{
switch (options->animationResults[k]->resultType)
{
case 0:
KBNAContents[resPtrCounter] = options->animationResults[k]->index & 0xff;
KBNAContents[resPtrCounter + 1] = options->animationResults[k]->index >> 8;
KBNAContents[resPtrCounter + 2] = 0xCC;
KBNAContents[resPtrCounter + 3] = 0xCC;
resPtrCounter += 0x4;
break;
case 1:
KBNAContents[resPtrCounter] = options->animationResults[k]->dataSrt.index & 0xff;
KBNAContents[resPtrCounter + 1] = options->animationResults[k]->dataSrt.index >> 8;
KBNAContents[resPtrCounter + 2] = options->animationResults[k]->dataSrt.rotation & 0xff;
KBNAContents[resPtrCounter + 3] = options->animationResults[k]->dataSrt.rotation >> 8;
KBNAContents[resPtrCounter + 4] = options->animationResults[k]->dataSrt.scaleX & 0xff;
KBNAContents[resPtrCounter + 5] = (options->animationResults[k]->dataSrt.scaleX >> 8) & 0xff;
KBNAContents[resPtrCounter + 6] = (options->animationResults[k]->dataSrt.scaleX >> 16) & 0xff;
KBNAContents[resPtrCounter + 7] = options->animationResults[k]->dataSrt.scaleX >> 24;
KBNAContents[resPtrCounter + 8] = options->animationResults[k]->dataSrt.scaleY & 0xff;
KBNAContents[resPtrCounter + 9] = (options->animationResults[k]->dataSrt.scaleY >> 8) & 0xff;
KBNAContents[resPtrCounter + 10] = (options->animationResults[k]->dataSrt.scaleY >> 16) & 0xff;
KBNAContents[resPtrCounter + 11] = options->animationResults[k]->dataSrt.scaleY >> 24;
KBNAContents[resPtrCounter + 12] = options->animationResults[k]->dataSrt.positionX & 0xff;
KBNAContents[resPtrCounter + 13] = options->animationResults[k]->dataSrt.positionX >> 8;
KBNAContents[resPtrCounter + 14] = options->animationResults[k]->dataSrt.positionY & 0xff;
KBNAContents[resPtrCounter + 15] = options->animationResults[k]->dataSrt.positionY >> 8;
resPtrCounter += 0x10;
break;
case 2:
KBNAContents[resPtrCounter] = options->animationResults[k]->dataT.index & 0xff;
KBNAContents[resPtrCounter + 1] = options->animationResults[k]->dataT.index >> 8;
//KBNAContents[resPtrCounter + 2] = options->animationResults[k]->dataT.rotation & 0xff;
//KBNAContents[resPtrCounter + 3] = options->animationResults[k]->dataT.rotation >> 8;
KBNAContents[resPtrCounter + 2] = 0xEF;
KBNAContents[resPtrCounter + 3] = 0xBE;
KBNAContents[resPtrCounter + 4] = options->animationResults[k]->dataT.positionX & 0xff;
KBNAContents[resPtrCounter + 5] = options->animationResults[k]->dataT.positionX >> 8;
KBNAContents[resPtrCounter + 6] = options->animationResults[k]->dataT.positionY & 0xff;
KBNAContents[resPtrCounter + 7] = options->animationResults[k]->dataT.positionY >> 8;
resPtrCounter += 0x8;
break;
}
}
fwrite(KBNAContents, 1, contentsSize, fp);
free(KBNAContents);
if (options->labelEnabled)
{
unsigned int lablSize = 8;
for (int j = 0; j < options->labelCount; j++)
{
lablSize += (unsigned)strlen(options->labels[j]) + 5;
}
unsigned char *labl = malloc(lablSize);
memset(labl, 0, lablSize);
strcpy((char *) labl, "LBAL");
labl[4] = lablSize & 0xff;
labl[5] = lablSize >> 8;
unsigned int position = 0;
i = 0;
for (int j = 0; j < options->labelCount; j++)
{
labl[i + 8] = position & 0xff;
labl[i + 9] = position >> 8;
position += (unsigned)strlen(options->labels[j]) + 1;
i += 4;
}
for (int j = 0; j < options->labelCount; j++)
{
strcpy((char *) (labl + (i + 8)), options->labels[j]);
i += (int)strlen(options->labels[j]) + 1;
}
fwrite(labl, 1, lablSize, fp);
free(labl);
if(!options->multiCell)
{
unsigned char txeu[0xc] = {0x54, 0x58, 0x45, 0x55, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
fwrite(txeu, 1, 0xc, fp);
}
}
fclose(fp);
}