

2

Rtfs

RtfilesEx1.1 Application

Notes
©2009 EBS, Inc

Revised June 2009

EBS Inc. 39 Court Street Groton MA 01450 USA

http://www.ebsembeddedsoftware.com

http://www.ebsembeddedsoftware.com/

Application Notes

3

TABLE OF CONTENTS

Interface changes introduced in version 1.1. _______________________ 4

Upgrading from version 1.0. ____________________________________ 4

Upgrading header files. __ 5

Configuring version 1.1 using version 1.0 interfaces. ________________ 6

Technical discussion. __ 8

4

Interface changes introduced in version 1.1.

Several changes were made to the external interfaces of RtfilesEx between the

release of versions 1.1 and 1.0. This application note and some wrapper software are

provided to help existing version 1.0 to upgrade to version 1.1.

The following major changes to the RtfilesEx interfaces have been made:

 The include directory has been moved.

o In the previous release the include files were locate in

rtfscommon\include\.

o In the new release they are located in the directory include\.

 Some compile time configurations have been rearranged within, removed or

moved in the rtfsconf.h, portconf.h and rtfsarch.h header files.

 The method for providing system wide buffer pools and assigning system

configuration values like maximum number of files and maximum number of

drives has changed.

o In previous versions system wide parameters were set by changing

constants a file named apicnfig.c and recompiling the library.

o In the new version system wide parameters are set by filling in a

structure that is passed to a project level callback function named

rtfs_init_configuration().

 The method that provides per mount buffer pools and per mount

configuration values, like the FAT cache size, and Failsafe buffer sizes, has

changed.

o In previous versions these values were configured when the device

driver was attached and drive letters were assigned to the volume(s)

on devices controlled by the driver.

o In the new version, the device driver itself is responsible for attaching

itself when media is inserted. It does this by calling

pc_rtfs_media_insert() and passing in configuration values and the

device handler entry points.

o In the new version, volume wide parameters (there may be more than

one volume inside multiple partitions on the media) are assigned

through another callback function.

Upgrading from version 1.0.

 This application note provides instructions to help in the upgrade process.

 The release provides source code wrappers that will help migrate your

configurations from version 1.0 and allow you to use version 1.0 device

drivers.

 The source code for this functionality is located in a few files in the

directory rtfsdrivers\v10devwrap.

 The device drivers provided in the rtfsdrivers directory are the same

device drivers that were shipped with version 1.0, unchanged.

 To enable this functionality the variable in rtfsconf.h named

INCLUDE_V_1_0_DEVICES must be set to 1.

Application Notes

5

Upgrading header files.

Follow these notes to modify the new header files to mimic your old header files.

 The location of the header files has changed from rtfs\common\include\ to

just include\. You must either update your project files or move the include

subdirectory to its old location.

 The following headers have changed and must be modified.

 Rtfsarch.h

o Do not copy your old file over this new one but edit the

configurations to match.

o INCLUDE_DEBUG_TRUE_ASSERT was moved to rtfsarch.h from

rtfsconf.h.

o The following constants are new in rtfsarch.h - If enabled they provide

useful features but by default they are left disabled. See the manual

for more information.

 INCLUDE_THREAD_SETENV_SUPPORT

 INCLUDE_THREAD_EXIT_CALLBACK

 RTFS_CACHE_LINE_SIZE_IN_BYTES

 Portconf.h

o Do not copy your old file over this new one but edit the

configurations to match.

o INCLUDE_V_1_0_DEVICES is enabled the device configuration for

version 1.1 is provide by portconf.h and the configuration constants in

portconf.h must be modified.

 Rtfsconf.h

 Do not copy your old file over this new one but edit the

configurations to match.

 INCLUDE_DEBUG_TRUE_ASSERT was moved to rtfsarch.h from rtfsconf.h

 The following constants are still included in rtfsconf.h but they have been

moved around within the file:

o INCLUDE_BASIC_POSIX_EMULATION

o INCLUDE_DEBUG_RUNTIME_STATS

o INCLUDE_DEBUG_LEAK_CHECKING

o INCLUDE_DEBUG_VERBOSE_ERRNO

o INCLUDE_DEBUG_TEST_CODE

 The following constants are obsolete in version 1.1 but they are still

required for using version 1.0 interfaces with the 1.1 code base. They

have been moved to the file rtfsdrivers\v10devwrapper\v10wrapper.h.

o RTFS_CFG_LEAN

o RTFS_CFG_SHARE_BUFFERS

o RTFS_CFG_ALLOC_FROM_HEAP

o RTFS_CFG_NUM_USERS

o RTFS_CFG_DEFAULT_SECTOR_SIZE_BYTES

 The following constants are new in version 1.1.

o INCLUDE_NAND_DRIVER - The default is 1 but this should be set

to 0 if you are not supporting nand.

o INCLUDE_V_1_0_DEVICES - This must be set to 1 to support using

version 1.0 interfaces with the 1.1 code base.

 The following constants were removed in version 1.1.

o INCLUDE_DYNAMIC_DRIVER

6

o INCLUDE_DEBUG_SIM_ASSERT

o INCLUDE_TELNET_TERMINAL

o INCLUDE_SYS_TELNET_TERMINAL

o STORE_DEVICE_NAMES_IN_DRIVE_STRUCT

o RTFS_CFG_READONLY

 The following constant was moved from rtfsconf.h to the version1.1

application callback layer.

o FAILSAFE_MODE_AUTOMATIC

 By default for version 1.1 the constants that determine what device

drivers to build where moved from portconf.h to the bottom of rtfsconf.h.

o But, if INCLUDE_V_1_0_DEVICES is enabled, these constants are

redefined in portconf.h and the values in portconf.h, not rtfsconf.h

determine if they are included or not.

 INCLUDE_IDE,INCLUDE_PCMCIA,INCLUDE_PCMCIA_SRAM,

INCLUDE_COMPACT_FLASH,INCLUDE_FLASH_FTL,

INCLUDE_ROMDISK,INCLUDE_RAMDISK,

INCLUDE_MMCCARD,INCLUDE_SMARTMEDIA,

INCLUDE_FLOPPY,INCLUDE_HOSTDISK

,INCLUDE_WINDEV,INCLUDE_UDMA,

INCLUDE_82365_PCMCTRL

Configuring version 1.1 using version 1.0 interfaces.

This section describes a set of files located the directory rtfsdrivers\v10devwrap.

These files use similar interface to the files of the same name in version1.0.

 apicnfig.c

o Provides a global configuration function using a mechanism similar to

the method used in version 1.0.

 Provides functionality previously provided by

rtfscommon\source\apicnfig.c.

 In version 1.1 and later this is done by a file named rtfsconfig.c

in project directory.

 When INCLUDE_V_1_0_DEVICES is set to 1 code in rtfsconfig.c

is excluded and replaced by code in

rtfsdrivers\v10devwrapper\apicnfig.c.

o You may diff this file with your old version of apicnfig.c in

rtfiles1.0\rtfscommon\source to determine what constants must be

changed.

o The files are similar in the section that contains defines configuration

constants, from line 1 to around line 117.

o Note: One configuration constant behaves quite differently.

o The constant named "NBLKBUFFS" was previously used to

configure the total number of directory buffers to be shared by all

drives.

o This is not what this value is used for now. NBLKBUFFS in this file

now configures the value RTFS_CFG_MAX_SCRATCH_BUFFERS that

was introduced in version 1.1. This needs to be set to a minimum

of four.

o The configuration previously provided by NBLKBUFFS is now

provided by the constant

Application Notes

7

DEFAULT_NUM_BLOCK_BUFFERS_PER_DRIVE_PER_DRIVE in

apirun.c.

 apirun.c

o This file provides functionality previously provided by the file

rtfscommon\source\apirun.c.

o In version 1.1 and later this is done by a file named rtfsrun.c in

application's project directory.

o When INCLUDE_V_1_0_DEVICES is set to 1 the code in rtfsrun.c is

excluded and replaced by code in rtfsdrivers\v10devwrapper\apirun.c.

o When upgrading you should diff this file with your version of apirun.c

in rtfiles1.0\rtfscommon\source to determine what constants must be

changed.

o The files are similar in the section that defines configuration constants,

(between approximately lines 58 and 214).

o Note: Version 1.1 introduces a new configuration constant called

DEFAULT_INDEX_BUFFER_SIZE. This is the size in sectors of the

buffer used by the Journaling package. The default setting is 1. With

this setting Failsafe uses the same buffering algorithm as in version

1.0. Larger values will consume more memory but improve

performance.

o As noted in the previous section, one configuration constant behaves

quite differently. The constant named "NBLKBUFFS" previously used to

configure the total number of directory buffers to be shared by all

drives. This is now the responsibility of the constant

"DEFAULT_NUM_BLOCK_BUFFERS_PER_DRIVE_PER_DRIVE", defined

in apirun.c. It follows the same model used by the fat buffers.

 apiinit.c

o Provides a device driver attach and start functionality using a

mechanism similar to the method used in version 1.0.

o Provides functionality that was previously provided by

rtfscommon\source\apiinit.c.

o In version 1.1 and later, the attach and startup functionality by code in

the file named rtfsrun.c in the application's project directory.

o When INCLUDE_V_1_0_DEVICES is set, the version 1.1 attach code in

rtfsrun.c is excluded and replaced by code in

rtfsdrivers\v10devwrapper\apiinit.c.

o When upgrading a version 1.0 configuration to version 1.1 you can to

diff this file with your version of apiinit.c in

rtfiles1.0\rtfscommon\source to determine what has changed.

o Since apiinit.c is usually not changed much you may not see significant

confiuration differences.

o Differences you might detect are:

 changes to drive letter assignments.

 how many partitions are supported for device type

 possibly io and interrupt address assignment.

o Note: Apiinit.c passes certain paramaters like io address, interrupt

number slot number to the device driver using fields in the drive

structure. This mechanism is not supported for version 1.1 and later

but except when using the INCLUDE_V_1_0_DEVICES methods.

8

Technical discussion.

Two additional file are supplied to complete the version 1.0 interface emulation.

 v10wrapper.h

o This file is only included by ‘C’ files in the subdirectory

rtfsdrivers\v10devwrap.

o Contains shared definitions and several compile time definitions that

were previously provided in rtfsconf.h.

o The constants are: RTFS_CFG_LEAN, RTFS_CFG_READONLY,

RTFS_CFG_SHARE_BUFFERS, RTFS_CFG_ALLOC_FROM_HEAP and

RTFS_CFG_NUM_USERS.

o To emulate an existing configuration set these constants to the values

previously defined in rtfscommon\includes\rtfsconf.h.

 v10glue.c

o You shouldn’t have to modify any source code in this file but a

description is provided here to help you understand the

mechanism.

o This file contains the run time logic necessary to support using version

1.0 device drivers with version 1.1.

o rtfs_poll_devices(void) - This is called by rtfsile1.1 every time the API

is entered. It uses the method provided by rtfiles1.0 device drivers to

detect media status changes and then uses the methods introduced in

version 1.1 to process those changes.

 In earlier versions device polling was done by the rtfs devio

layer which called the device driver's DEVCTL_CHECKSTATUS

service call to check if the driver has detected a device insert or

remove.

 The new model requires the device driver to detect media

insertion or removal and call pc_rtfs_media_alert() when media

is ejected and to call pc_rtfs_media_insert() when media is

installed.

 In rtfiles1.1 all of the configuration information needed for the

media are provided as parameters to pc_rtfs_media_insert().

o v1_0_insert_device() Is a helper fuction called by

rtfs_poll_devices(void) when a device insert is detected. It uses the

values that were provided by apirun.c to initialize a version 1.1

rtfs_media_insert_args parameter block and call

pc_rtfs_media_insert().

o v1_0_device_configure_media() - This is a version1.1 configure media

callback function (called once per insertion) that provides configuration

data to version 1.1 using data that was assigned in apiinit.c and

apirun.c in version1.0.

o v1_0_device_configure_volume() - This is a version1.1 configure

media callback function that provides configuration data when a

volume on the device is mounted. It returns data that was assigned by

apiinit.c and apirun.c.

o v1_0_device_ioctl() - This is a version1.1 device io control function. It

provides a wrapper around the version 1.0 ioctl function.

o v1_0_device_io() - This is a version1.1 device io (read/write) function.

It provides a wrapper around version 1.0 device io function.

Application Notes

9

o pc_v1_0_diskio_configure() – This simulates the function of the same

name that was provided in version1.0.

 It is called by code in apirun.c.

 It saves the configuration information in a structure similar to

the configuration structure used in version1.0.

 Values from these saved structures are later passed in a

version1.1 compatible configuration block when the volume is

mounted.

o v1_0_check_reserved_drives() – This and its companion function

v1_0_release_reserved_drives() are used to support the version1.1

method that dynamically assigns drive structures when media is

inserted while supporting version 1.0 device drivers requirement that

drive structures must be reserved when the system is started and

o pc_calculate_chs() - This function is borrowed from version 1.0.

 Version 1.1 device drivers are required to return valid h, c and

n values when they they return a valid lba value.

 Version 1.0 drivers are required to return 0 values in h, c and

n when they they return a valid lba value.

 This function is used to calculate valid values for h, c and n

when a version 1.0 device driver returns an lba only response

to the DEVCTL_GET_GEOMETRY ioctl() request.

