
Rtfs Configuration Guide

Rtfs

Configuration Guide
©2007 EBS, Inc

Revised October 2008

For best online viewing experience we recommend using Adobe Acrobat’s

Bookmarks tab for navigating

EBS Inc. 39 Court Street Groton MA 01450 USA

http://www.ebsembeddedsoftware.com

http://www.ebsembeddedsoftware.com/

Rtfs Configuration Guide

2

Table of Contents
Synopsis 3

Compile time compiler and architecture configuration 3

Compile time feature set configuration 5

Run time memory configuration 8

Compile time device driver selection 8

Synopsis

 This document describes Rtfs configuration values that may be modified.

 Compile time configuration – Conditional compilation is used to customize Rtfs

for the target environment and to select features to include in the build. The

following files contain compile time configuration values:

o Compiler and CPU configurations - rtfscommon/include/rtfsarch.h

o Feature set configurations - rtfscommon/include/rtfsconf.h

o Device driver selection - rtfscommon/include/rtfsconf.h

 Run time configuration – Rtfs buffering configuration, operating policy

selection and device driver attachment is done at run-time. See the

Initialization and shutdown and Media driver interface sections of the API

reference manual for more information on run time configuration options.

Compile time compiler and architecture configuration

These architecture specific configuration constants are provided in:

rtfscommon/include/rtfsarch.h

You must check and, if necessary, modify these definitions for your architecture

Constant Setting

KS_LITTLE_ENDIAN Set this value to 1 if your target device

has little endian byte order. An example

of a little endian target is the Intel

Pentium, and example of a non little

endian target is Motorola ColdFire.

KS_LITTLE_ODD_PTR_OK Set this value to 1 if your architecture is

little endian and it can dereference

word, and dword pointers on any

address boundary. An example of a

little endian target that can dereference

these pointers on any boundary is the

Intel Pentium. An example of a little

endian target that can not dereference

these pointers on any boundary is the

MIPS processor.

RTFS_WINDOWS Enable this if using Microsoft Windows.

This constant and RTFS_LINUX are used

sparingly to configure the emulation

host disk and raw disk drivers and the

telnet server module.

All uses are all optional and can be

disabled or worked around in other

systems.

RTFS_LINUX Enable this if using Linux.

INCLUDE_DEBUG_TRUE_ASSERT Asserts for unexpected conditions are

compiled into Rtfs using the macros

ERTFS_ASSERT(X) and

RTFS_ASSERT_TEST(X) see

rtfsarch.h.

if INCLUDE_DEBUG_TRUE_ASSERT

is enabled then these asserts use the

compiler's assert((X)); call otherwise

they result in callbacks to

rtfs_diag_callback() with arguments

RTFS_CBD_ASSERT and

RTFS_CBD_ASSERT_TEST

respectively.

INCLUDE_THREAD_SETENV_SUPPORT Set this to 1 if thread local storage is

supported. Thread thread local storage

provides an efficient way for Rtfs to

bind user context structures to the

threads using Rtfs.

Note: If this option is enabled two

porting layer functions must be

provided see the porting guide for more

information on

rtfs_port_set_task_env() and

rtfs_port_get_task_env().

INCLUDE_THREAD_EXIT_CALLBACK Set this to 1 if Rtfs can make a callback

when a task exits or is destroyed.

Note: If this option is a porting layer

function must be provided. See the

porting guide for more information on

rtfs_port_set_task_exit_handler().

If this function is not available Rtfs the

application must call pc_free_user()

before a threads exit or Rtfs will run out

of user structures.

INCLUDE_NATIVE_64_TYPE Enable this if your compiler supports bit

integers. If this value is one, the

M64XXX() macro package is

implemented using native operators

otherwise the macro package operates

on the ddword 64 bit integer meta-

structure.

ddword If INCLUDE_NATIVE_64_TYPE is set

to 1 you must set this to your

compiler’s native 64 bit integer type. If

INCLUDE_NATIVE_64_TYPE is set to

0 a ddword typedef is provided that

consists of two dwords. The default

definition is:

 #define ddword unsigned long long

The following table contains additional element from rtfsarch.h that should rarely,

if ever need to be changed.

Byte (8 bit unsigned) typedef unsigned char byte;

Word (16 bit unsigned) typedef unsigned short word;

Dword (32 bit unsigned) typedef unsigned long dword;

Boolean (TRUE, FALSE) #define BOOLEAN int

TRUE #define TRUE 1

FALSE #define FALSE 0

KS_CONSTANT (const

declaration)

#define KS_CONSTANT const

Compile time feature set configuration

These compile time options are defined in:

rtfscommon/include/rtfsconf.h

Modify values in this file to enable and disable features or Rtfs

Constant Setting

The following configuration constants are available for all configurations of Rtfs

INCLUDE_CS_JIS Set to 1 to support Japanese

Language

SUPPORT_EXTENDED_PARTITIONS If 1 Rtfs will include code to interpret

disks with extended partitions and to

create extended DOS partitions if more

than 4 partitions on a single device is

required.

RTFS_CFG_MAX_DIRENTS

Set to the maximum number of

directory entries allowed per

subdirectory.

The default value, 32768, is very large,

but sufficient to force breaking out of

endless loops. Reduce the number if a

more conservative maximum is

desired. The

RTFS_CFG_MAX_DIRENTS policy is

enforced at block boundaries so slightly

more than the dictated maximum may

be created.

The following configuration constants are included in Rtfsconf.h but are meaningful only

when the Failsafe Journaling option has been purchased.

INCLUDE_FAILSAFE_CODE Include Failsafe

INCLUDE_TRANSACTION_FILES Include transaction file support. Also

requires INCLUDE_FAILSAFE_CODE

(see pc_efilio_open()).

The following configuration constants are included in Rtfsconf.h but are not meaningful if

only the RtfsBasic configuration has been purchased.

INCLUDE_CS_UNICODE

Set to 1 to support Unicode characters.

Note: If Unicode is enabled many API

calls have a counterpart API that

processes Unicode arguments and

returns strings in Unicode. These APIs

have the suffix _uc and are

documented along with the API

reference guide.

INCLUDE_VFAT Include long file name support

INCLUDE_FAT16 Include FAT12 and FAT16 support

INCLUDE_FAT32 Include FAT32 support

INCLUDE_FAT32 Include EXFAT support

INCLUDE_RTFS_FREEMANAGER Enable to include a memory based free

manager. This feature eliminates the

need to scan the FAT table to allocate

clusters. When this feature is enabled

all cluster allocations occur in “real

time”, This greatly improves operating

speed and makes extending data files

deterministic, eliminating the stalls

that can otherwise occur when

extending data files.

The following configuration constants are included in Rtfsconf.h but are meaningful only

for RtfsProPlus configurations. They are not used for RtfsBasic or RtfsPro.

INCLUDE_ASYNCRONOUS_API Enable to include the asynchronous API

calls described in the API reference

guide.

INCLUDE_DEBUG_TEST_CODE Enable this to include additional

compile time code required to perform

package regression tests. The basic

regression test does not require this to

be set.

INCLUDE_DEBUG_RUNTIME_STATS If

INCLUDE_DEBUG_RUNTIME_STATS

additional statistics are accumulated

while Rtfs is running that may be

accessed be calling

pc_diskio_runtime_stats(). These

are useful during application

development to determine if your disk

access patterns are optimal. See

manual page for be calling

pc_diskio_runtime_stats() for a

description of what statistics are

available.

Note: Enabling this option does not

consume a lot of additional resources,

requiring a few hundred bytes of

additional ram per drive and very

negligible additional code space and

run time overhead.

If you wish to use the monitoring

features of

pc_diskio_runtime_stats() in your

product you may consider leaving

INCLUDE_DEBUG_RUNTIME_STATS

enabled.

Run time memory configuration

Run time configuration – Rtfs buffering configuration, operating policy selection and

device driver attachment is done at run-time. See the Initialization and shutdown

and Media driver interface sections of the API reference manual for more information

on run time configuration options.

Compile time device driver selection

Device drivers provided with Rtfs may be enabled by modifying several constants

at the end of the file rtfscommon/include/rtfsconf.h.

Notes:

 Externally provided device drivers must be attached using procedures

outlined in the Driver and Porting Guide. These following compile time

setting are required to enable and disable Rtfs supplied device drivers only

Rtfs uses the compile time constants to conditionally include or exclude the

device driver from the standard build and to enable certain features in

target specific porting layer files, the main source code does not reference

these constants.

 Some target specific modifications to the porting layer will be needed when

certain devices are enabled. See the RTFS porting guide for more

information.

 Result if set to 1 Notes

INCLUDE_IDE

Include

IDE driver

Requires modifications to

portkern.c and portio.c

INCLUDE_PCMCIA

Include

PCMCIA driver

Requires modifications to

portkern.c and portio.c. Also

requires

INCLUDE_82365_PCMCTRL

or an alternate controller

implementation

INCLUDE_PCMCIA_SRAM

Include PCMCIA

static ram

card driver

Requires INCLUDE_PCMCIA.

INCLUDE_COMPACT_FLA

SH

Support compact

flash

Requires INCLUDE_IDE,

requires INCLUDE_PCMCIA

if not using TRUE-IDE mode.

INCLUDE_FLASH_FTL Include linear

flash driver

Includes support for several

Intel flash parts as well as

ram and disk based

emulation. See drflsmtd.c.

INCLUDE_ROMDISK Include rom Rom Disk images may be

 disk driver generated from Windows

subdirectories with the

mkrom tool.

INCLUDE_RAMDISK

Include RAM

disk driver

The constants

NUM_RAMDISK_PAGES

and RAMDISK_PAGE_SIZE

in drramdisk.c determine the

size of the ram disk.

INCLUDE_SMARTMEDIA

Include smart

Media driver

Requires modifications to

portkern.c and portio.c.

INCLUDE_FLOPPY

Include floppy

disk driver

Requires modifications to

portkern.c and portio.c.

Supports only PC

architectures, other

architectures require

customization.

INCLUDE_HOSTDISK Include

host disk

simulator

Available only for Windows

and Linux desktop emulation

platforms.

INCLUDE_HOSTDEV

Include raw

access to

disks under

windows

Available only for Windows

and Linux platforms.

INCLUDE_UDMA

Include

ultra-dma

support

for ide

Requires modifications to

portkern.c and portio.c.

INCLUDE_82365_PCMCT

RL

Include the

82365

PCMCIA

controller

Requires modifications to

portkern.c and portio.c.

