

Command Shell Reference

Command Shell Reference

Rtfs

Rtfs Command Shell

Reference
©2006 EBS, Inc
Revised June 2009

EBS Inc. 39 Court Street Groton MA 01450 USA

http://www.ebsembeddedsoftware.com

http://www.ebsembeddedsoftware.com/

Command Shell Reference

Command Shell Reference

TABLE OF CONTENTS

Rtfs Command Shells ____________________________________ 4

Basic Command Shell Reference ____________________________ 4

Extended Command Shell Reference _______________________ 14

4

Rtfs Command Shells

By default the Rtfs sample project start-up routine calls the basic interactive shell

program provided in rtfscommon\apps. The basic shell along with the RtfsProPlus

extended sub shell, described in the next section, provides useful commands for

maintenance, debug experiments and testing.

Basic Command Shell Reference
 Random Access File Operations

o RNDOP - Open a random access file

o CLOSE - Close a random access file

o READ - Read and display a random access record

o WRITE - Write data to a random access file

o SEEK - Seek to a record in a random access file

o LSTOPEN - List file descriptors opened by RNDOP

 Test and Miscelaneous Operations

o OPENSPEED - Measure file creation and open speed

o REGRESSTEST - Execute the Rtfs regression test

o ESHELL - Enter the extended command subshell

o QUIT - Exit basic command shell

 Failsafe Operations

o FS autodisable D: - Disable callback based Failsafe configuration.

 Note: It is recommended that you execute the autodisable

before executing enter, abort, exit, jcommit, jflush, commit or

restore. These other commands will not behave as expected

until automatic mode is disabled.

o FS enter D: - Begin Journalling

o FS abort D: - Abort the current mount without flushing

o FS exit D: - Flush Journal file and synchronize FAT volume,

 stop Journalling

o FS jcommit D: - Flush Journal file but don't synchronize. Stop

 Journalling and abort. Leaves a restorable

 Journal file.

o FS jflush D: - Flush Journal file but don't synchronize and

 continue Journalling. Creates a flushed frame.

o FS commit D: - Flush Journal file and synchronize FAT volume

o FS info D: - Display information about current Failsafe

 Session

o FS clear D: - Reset Journal IO statistics

o FS restore D: - Restore the volume from the current Journal

o FS test D: - Run Failsafe test sequence

o FS autoenable D: - Re-enable callback based Failsafe configuration.

 Drive and System Operations

o DSKSEL - Set default drive

o DSKCLOSE - Abort the current mount without flushing

o DSKFLUSH - Flush all files and buffers

o DEVINFO - Print all disks and their drive designators

o SHOWFILEEXTENTS - Display block or cluster extents of a file

o SHOWDISKFREE - Display free space map of a drive

5

o SHOWDISKSTATS - Display format information and access patterns

o DEVICEFORMAT - Low level media format

o FDISK - Partition a disk

o DUMPMBR - Print contents of a partition table

o DUMPBPB - Print contents of a volume’s BPB

o FORMAT - Format a volume within a partition or disk

o EXFATFORMAT - Format an exFAT volume.

o CHKDSK - Perform a check disk procedure on a drive

o EJECT - Simulate a device removal event

o RESET - Reinitialize RTFS

 Utility Operations

o CD - Set or display working directory

o DIR - Print a directory listing

o RDIR - Print a directory listing using reverse scan.

o ENUMDIR - Recursive directory listing using

 pc_enumerate()

o STAT - Print file properties

o GETATTR - Print file attributes

o SETATTR - Change file attributes

o MKDIR - Create a directory

o RMDIR - Delete an empty directory

o DELTREE - Delete a directory and it’s descendants

o RENAME - Rename or move a file or subdirectory

o DELETE - Delete a file

o CHSIZE - Truncate or extend a file

o FILLFILE - Create a file and fill it with a text pattern

o FILLHUGEFILE - Create a file and fill it with a numeric pattern.

o READHUGEFILE - Read a file and check a numeric pattern.

o COPY - Copy a file to another

o DIFF - Compare two files

o CAT - Display contents of a file

RNDOP Open a random access file. This routine will open or reopen a file for

use by our random access file I/O test commands READ, WRITE and

SEEK. It must be given the file name and the record size for the file.

The record size is stored internally and is used to pad write operations

to the correct width. (Record size should not exceed 512). Use CLOSE

to close a file that was opened with RNDOP and use LSTOPEN to

display all open files. RNDOP does not return the file handle so use

LSTOPEN.

Note: The file handles are always returned 0, 1, 2, 3... Use this

knowledge if you want to use random access files in a script.

Example: RNDOP TESTFIL 200

CLOSE Close a random access file. This command closes a random access file

that was opened with RNDOP. See RNDOP for a discussion of random

access files.

Example: CLOSE 1

LSTOPEN Display all open random access files. This command lists all open

6

random access files along with their file handles. This is especially

handy since after the initial open all accesses are done via the handle,

and it is easy to forget which handle goes with which file.

Example: LSTOPEN

READ Read and display a random access record. This command reads data

from the random access file and prints its value to the console. (See

WRITE for how to write data to the file, SEEK for how to seek to a

record in the file, LSTOPEN to list all random access files by handle

and, RNDOP for how to open a random access file.).

Example: RNDOP \TEST\FILE 100- open(returns handle=0)

SEEK 0 0

WRITE 0 “This is record zero”

SEEK 0 1

WRITE 0 This is record one”

SEEK 0 0

READ 0 - This will print “This is record zero”

CLOSE 0

WRITE Write data to a random access file. This command writes data to the

current record of a random access file. The data is filled to the correct

width (with spaces) internally. Multi word strings should be quoted.

Example: See the READ command for an example.

SEEK Seek to a record in a random access file. This command seeks to a

record number in a random access file. It takes a file handle and a

record number as an argument.

Example: See the example for the READ command

OPENSPEED Measure the file creation and re-open speed.

Example: OPENSPEED fname 0 500 – Open or create files fname0 to fname500

Example: OPENSPEED fname 1000 100 – Open or create files fname1000 to

fname1100

REGRESSTEST Execute the Rtfs basic regression test.

Example: REGRESSTEST C:

ESHELL Enter the extended command subshell.

Example: ESHELL

QUIT Exit the command shell. This command exits the command shell and

returns to the caller.

DSKSEL Set default drive. This command sets the default drive so that

subsequent commands that do not explicitly contain a drive specifier

will refer to this drive.

Example: DSKSEL D:

7

DSKCLOSE Abort the current mount without flushing. This command aborts the

current mount without flushing. Any unflushed file operations or FAT

buffers are lost. The next access forces a re-mount of the drive.

Example: DSKCLOSE D:

DSKFLUSH Flush all files and buffers. This command flushes all files and FAT

buffers. If Failsafe is enabled the Journal file is updated but it is not

flushed. That must be done using the FS command.

Example: DSKFLUSH D:

DEVINFO Print the names of all disks and their drive designators.

Example: DEVINFO

ERTFS Device List

=================

Device name: HOST DISK HOSTDISK.DAT Is mounted on G:

Device name: RAM DISK Is mounted on I:

Device name: STATIC ROM DISK Is mounted on J:

Device name: FLASH DISK Is mounted on H:

SHOWFILEEXTENTS Display block or cluster extents of a file.

Example: SHOWFILEEXTENTS C:\data\collected.dat Y (display extents in clusters)

Example: SHOWFILEEXTENTS C:\data\collected.dat N (display extents in blocks)

SHOWDISKFREE Display free space map of a drive.

Example: SHOWDISKFREE C: Y (show total freespace and all free fragments)

Example: SHOWDISKFREE C: N (show total freespace only)

SHOWDISKSTATS Display format information and access patterns.

Example: SHOWDISKSTATS C:

DEVICEFORMAT Perform a device level format of a disk. This routine will prompt

you for the disk letter of the device that you would like to

format. It then calls the device driver to perform a low level

media format. Most drivers will not need to perform a device

format and will simply return success. Some drivers, though, do

perform low level media formats. For example disk and NAND

simulators create a host, file based media simulation when this

function is called.

Example:

In this example DEVICEFORMAT is called to format a 16 megabyte virtual drive.

CMD> DEVICEFORMAT

8

Enter the drive to perfrom device level format on A:, B: etc C:

Calling media format

What size do you want the hostdisk to be?

 1) FAT12 (4M)

 2) FAT16 (16M)

 3) FAT32 (1G)

 4) Current (~15M)

 5) Custom

 6) FAT32 (16G)

: 2

Making disk 16M.

CMD>

FORMAT Format a disk or a partition on a disk. This routine will prompt you for

the disk letter of the device that you would like to format. It then calls

the Rtfs API which formats the volume.

 If the drive letter is for a device with a dynamic device driver, then the device

driver is called to retrieve format parameters.

 If the drive letter is for a partition inside a drive then the volume is formatted

using the information stored in the partition table.

 If the drive letter is for a drive that is not partitioned then the volume is

formatted using information from the device geometry provided by the device

driver.

Example:

In this example a disk containing no partition table is formatted.

CMD> FORMAT

Enter the drive to format as A:, B: etc C:

No partition table found using default geometry

CMD>

In this example a disk containing a partition table is formatted.

CMD> FORMAT

Enter the drive to format as A:, B: etc C:

CMD>

HACKWIN7 Make a device writable on windows or writable with Rtfs..

Example:

Make a device writable with Rtfs when running on Windows..

CMD> HACKWIN7

Enter the drive A:, B: etc C:

Invalidate MBR so volume it is writeable

Now Change it back so it is accesable on Windows..

CMD> HACKWIN7

Enter the drive A:, B: etc C:

Fixing MBR so volume it is readable on windows

9

EXFORMAT Format a device for use with exFat.

Example:

Format a device.

CMD> EXFORMAT

Enter the drive to format as A:, B: etc C:

FDISK Partition a disk. This routine will prompt you for the disk letter of the

device that you would like to partition. It then prompts you for the size

of each partition in cylinders and the type of partition (FAT12, FAT16,

FAT32). It then writes the partition table(s).

Example:

In this example a partition table is created with just one partition that occupies the

entire device.

CMD> FDISK

Enter the drive to partition A:, B: etc C:

Defining partition number : 0

This many cylinders remain: 520

This many sectors remain: 32760

Select the number of cylinders for this partition or return for all:

Select the partition type 0.) FAT16(0x04), 1.) FAT12(0x01): 0

In this example a device is partitioned into five separate partitions. Because there

are more than 4 partition an extended DOS partition is created.

CMD> FDISK

Enter the drive to partition A:, B: etc C:

Defining partition number : 0

This many cylinders remain: 520

This many sectors remain: 32760

Select the number of cylinders for this partition or return for all:100

Select the partition type 0.) FAT16(0x04), 1.) FAT12(0x01): 0

Defining partition number : 1

This many cylinders remain: 420

This many sectors remain: 26460

Type X or x to stop selecting and partion now or..

Select the number of cylinders for this partition or return for all:100

Select the partition type 0.) FAT16(0x04), 1.) FAT12(0x01): 0

Defining partition number : 2

This many cylinders remain: 320

This many sectors remain: 20160

Type X or x to stop selecting and partion now or..

Select the number of cylinders for this partition or return for all:100

Select the partition type 0.) FAT16(0x04), 1.) FAT12(0x01): 0

10

Defining partition number : 3

This many cylinders remain: 220

This many sectors remain: 13860

An extended partition will be created if you do not select all..

Type X or x to stop selecting and partion now or..

Select the number of cylinders for this partition or return for all:100

Select the partition type 0.) FAT16(0x04), 1.) FAT12(0x01): 0

Defining partition number : 4

This many cylinders remain: 120

This many sectors remain: 7560

Type X or x to stop selecting and partion now or..

Select the number of cylinders for this partition or return for all:

Select the partition type 0.) FAT16(0x04), 1.) FAT12(0x01): 0

Elapsed time : 48984 Milliseconds

CMD>

DUMPMBR Print contents of a partition table.

Example:

CMD> DUMPMBR

Enter the drive to read A:, B: etc C:

Partition # ---->0

Boot == 80 , Type == 4 , Size == 18838 , Start == 63

SHead == 1 , Packed Cyl = 13f , Sector = 63 , Cylinder = 1

EHead == 1 , Packed Cyl = 2c7f , Sector = 63 , Cylinder = 300

Partition # ---->1

Boot == 80 , Type == 4 , Size == 13798 , Start == 18963

SHead == 1 , Packed Cyl = 2d7f , Sector = 63 , Cylinder = 301

EHead == 1 , Packed Cyl = 8bf , Sector = 63 , Cylinder = 520

Signature aa55

CMD>

DUMPBPB Print contents of a volume’s bpb.

Example:

CMD> DUMPBPB

Enter the drive to read A:, B: etc C:

 DOS Boot sig (0xe9) : e9

 OEM Name :MSWIN4.1

 Bytes per sector :512

 Sectors per cluster :2

 Reserved sectors :1

 Number of fats :2

 Num Root :512

 Total Sector(16) :18838

 Media Description :f8

 Total Sector(32) :0

 Sector per track :63

 Heads :1

 NumHide :63

 DOS 4 Ext Sig :29

 DOS 7 Ext Sig :0

 MSDOS-4.0 EPB detected

11

 Sector per FAT :37

 Drive :2

 Binary Volume :12345678

 Text Volume :VOLUMELABEL

 Filesys Type :FAT16

 Signature (aa55 ?) :aa55

CMD>

CHKDSK Perform a check disk procedure on a drive.

Example: CHKDSK C: 0 - check drive C: don’t write lost chains.

CHKDSK C: 1 - check drive C: write lost chains to .CHK files

EJECT Simulate a device removal event. The next access will re-mount the

drive.

Example: EJECT C:

RESET Reinitialize RTFS. This command aborts all file opens in addition to

mounting and releasing all buffers. If dynamic memory is in use it

frees all dynamic memory. It then restarts Rtfs. The sequence that is

invoked is pc_ertfs_shutdown() followed by pc_ertfs_run().

Example: RESET

CD Set or display working directory. This command sets the default

directory if an argument is supplied, otherwise it displays the current

working directory.

Example: CD - Display working directory

Example: CD \usr\data - Change working directory

STAT Print a file’s properties. This command calls the stat library routine and

prints the results.

Example: STAT A:FILE.DAT

GETATTR Print a file’s attributes. This command calls the pc_get_attributes()

library routine and prints the results.

Example: GETATTR FILE.DAT

SETATTR Change a file’s attributes. This command calls the

pc_set_attributes() library routine to change a file’s attributes.

Example: SETATTR FILE:DAT RDONLY*

The following values may be valid types for the attribute argument,

RDONLY, HIDDEN, SYSTEM, ANORMAL

DIR Print a directory listing.

Example: DIR *.*

RDIR Print a directory listing, reverse scan.

Example: RDIR *.*

12

ENUMDIR Print a recursive directory listing using pc_enumerate().

Example: ENUMDIR \users\mydirectory my_*.*

Show directories(Y/N) Y

Show files(Y/N) */

Show volume labels (Y/N) N

Show .. (Y/N) N

Show . (Y/N) N

This sequence will recursively display all files and sub-directories with the prefix my_

in the subdirectory named \users\mydirectory. The “.” And “..” entries for

subdirectories will not be displayed.

MKDIR Create a directory. This command creates a directory.

Example: MKDIR \USR\NEWDIR

RMDIR Remove a subdirectory.

Example: RMDIR C:\TEMPDIR

DELTREE Delete a directory and its descendants.

Example: DELTREE C:\TEMP

RENAME Rename a file. This command will rename a file.

Example: RENAME C:\TES\JOSUF.TXT JOSEPH.TXT

DELETE Delete a file. This command deletes a file.

Example: DELETE A:\use\ASCII\budget.txt

CHSIZE Truncate or extend a file.

Example: CHSIZE A:DATAFILE 4096 - Change DATAFILE’s size to 4096 bytes

FILLFILE Create a file and fill it with a pattern. This command creates a file and

repeatedly fills it with a pattern. It is useful when you wish to create

some files for experimenting with on an otherwise empty volume.

Example: Create and fill the file file.dat with the pattern “THIS IS A TEST” 1000

times.

FILLFILE FILE.DAT “THIS IS A TEST” 1000

FILLHUGEFILE Create a file and fill it with a numeric pattern. This command

creates a file and fills it with a numeric pattern. You can specify

gigabytes and bytes separately to create very large files. A metadata

only method is also provided to create the file without actually writing

the data blocks.

 FILLHUGEFILE Filename DOMETADATAONLY buffersizebytes GIGABYTES BYTES

 Create a file with length equal to (GIGABYTES*1073741824)+BYTES

 Example: FILLHUGEFILE myfile.dat 0 32768 1 0

 Writes a pattern in 32 K chunks into a file 1073741824 bytes long

 Example: FILLHUGEFILE myfile.dat 1 131072 1 1000

 Extends a file in 128 K increments to 1073742824 bytes long without actually

13

writing a pattern to the file.

 Example: FILLHUGEFILE myfile.dat 0 1 0 1000

 Write a pattern 1 bytes at a time into a file 1000 bytes long

READHUGEFILE Read a file and optionally test it against a numeric pattern. This

command reads a file and compares it to a numeric pattern. A

metadata only method is also provided to read the file without actually

reading the data blocks.

READHUGEFILE Filename DOMETADATAONLY(1/0) DOCOMPARE(1/0) buffersizebytes

Example: READHUGEFILE myfile.dat 0 1 32768

 Read a pattern in 32 K chunks into a file 1073741824 bytes long, check pattern

Example: READHUGEFILE myfile.dat 1 0 131072

 Read a file in 128 K increments without transferring data or comparing

Example: READHUGEFILE myfile.dat 0 1 1

 Read a pattern 1 byte at a time into a file and compare to a pattern

COPY Copy a file to another location. This command copies the source file to

the destination.

Example: COPY A:FILE.DAT B:FILE.DAT

DIFF Compare two files. This command compares two files and prints

whether or not they are the same.

Example: DIFF A:FILE1.DAT B:FILE1.DAT

FS (see the fs command reference for the extended shell)

CAT Display contents of a file. This command displays the contents of a file

to the console.

Example: CAT A:\use\ASCII\budget.txt

14

Extended Command Shell Reference

Invoke the ESHELL command from the basic shell to access commands for

extended IO, circular files, FAT64, asynchronous operations and access to ProPlus

test procedures.

Command Reference

For help on commands that take arguments, type the command with no arguments.

The following commands are available.

 Drive and System Operations

o clear

o remount

o async

o complete

o setdrive

o diskflush

 Failsafe Operations

o fs enter D: - Begin journalling

o fs abort D: - Abort the current mount without flushing

o fs exit D: - Flush Journal file and synchronize FAT volume,

 stop journalling

o fs jcommit D: - Flush Journal file but don't synchronize. Stop

 journalling and abort. Leaves a restorable

 Journal file.

o fs jflush D: - Flush Journal file but don't synchronize and

 continue journalling. Creates a flushed frame.

o fs commit D: - Flush Journal file and synchronize FAT volume

o fs info D: - Display information about current Failsafe

 Session

o fs clear D: - Reset Journal IO statistics

o fs restore D: - Restore the volume from the current Journal

 file

 File Operations -

o open - Open a file with extended options

o close - Close a linear or circular file

o flush - Flush a linear or circular file

o sethint - Force preallocation or set cluster allocation hint

o write - Write or simulate write to a linear or circular file

o read - Read or simulate read of a linear or circular file

o seek - Demonstrate seek performance

o fstat - Print extended file stats of an open linear or circular

 file

o chsize - Expand or contract a linear or circular file.

 Circular File Operations

o copen - Open a circular file.

15

o extract - Extract a section of a circular file to a linear file

 Miscelaneous Operations

o delete - Perform high speed asynchronous delete

o settime - Change a directory entry’s time and date fields.

o setsize - Change a directory entry’s size field.

o setcluster - Change a directory entry’s start cluster field.

o test

 test efile D: - Test Extendeded File API

 test extract D: - Test pc_efext_extract(), swap

 and remove

 test cfile D: - Test Circular files

 test async D: - Test Async operation and Failsafe

 test transaction D: - Test transaction files

 test failsafe D: - Test Failsafe

o quit - Return to the basic shell

All Basic shell commands are also available from the extended shell. Basic shell

commands are all uppercase while extended shell commands are all lower case. To

execute a Basic command from the extended shell simply type the basic upper case

command with its arguments. For basic HELP type upper case “HELP”.

The following pages contain usage instructions for the Individual command

descriptions:

clear D:

D: Drive id.

Reset all drive access statistics to zero for D:. After executing clear, the access

statistics reported for the next operation will reflect only those accesses needed to

complete the next operation.

remount D:

D: Drive id.

Flush the drive, close it and then re-open it and rescan the FAT.

Note: If asynchronous mode is enabled (see async) the command is

performed asynchronously and must be completed by the method assigned in the

async command.

async Y <bg|inline|manual> delay

Enable asynchronous operations and set the asynchronous completion policy.

bg – If bg is specified then asynchronous operations are completed in the

background by a thread that is spawned for that purpose.

16

Note: bg mode requires a separate task to operate. The subroutine

named spawn_async_continue() in efishellrd.c is responsible for

spawning a thread. This is supported only for the Linux and Windows

targets. To uses bg mode in other operating environments, you must

modify this function

inline – If inline is specified then immediately after asynchronous calls are started

the command shell repeatedly calls pc_async_continue() until all async processing

completes.

manual – If manual is specified then the command complete must be called to

manually invoke a loop that repeatedly calls pc_async_continue() until all async

processing completes.

delay - milliseconds between calls to pc_async_continue(). This argument is

required only when bg mode is selected.

async N

Turn off asynchronous mode and use synchronous versions operations.

complete

Call this command to complete pending asynchronous operations. This command

must be called to complete asynchronous operations when the async command

enabled asynchronous operations but specified manual mode.

setdrive D:

Select the default drive id for future ESHELL commands to operate on.

D: Drive id.

diskflush D:

Flush a drive’s directory and small file FAT caches. If asynchronous mode is enabled

(see async) then loop and complete the delete asynchronously.

D: Drive id.

fs command [N]

Execute a Failsafe related operation.

Where command is:

17

abort Abort the current mount without flushing. This

command may be used to abort an active Failsafe

Journaling session or to abort the current mount,

even if Journaling is not active.

exit Flush the Journal file, synchronize the volume and

stop journaling.

enter Begin journaling.

jcommit Flush the Journal file but do not synchronize the

volume. Then stop journaling and abort. This

command may be used to create a Journal file, that

when restored will synchronize the volume with the

application view immediately prior to when “fs

jcommit” was invoked.

jflush Flush the Journal file but do not synchronize the

volume and continue journaling.

commit Flush the Journal file, synchronize the volume and

continue journaling.

info Display information about current Failsafe Session or

the current Failsafe file if journaling is not currently

enabled

clear Reset Journal IO statistics

restore Restore the volume from the current Journal File

open filename [preallocsize (clusters)] [option option ..]

Open or re-open a file.

Note: If asynchronous mode is enabled (see async) the command is

performed asynchronously and must be completed by the method assigned in the

async command.

Filename File name to open

preallocsize Optional parameter, if specified write calls allocate this

many clusters when they need to expand the file. This

helps to reduce fragmentation. When the file is closed

unused pre-allocated clusters are freed.

[options] One or more of the following options may be used.

FIRST_FIT Always allocate new clusters from the beginning of the

FAT region instead of the default, which is to allocate

from the next cluster after the last cluster in this file.

FORCE_FIRST Force cluster allocation to allocate the first free cluster,

even if that means clusters that span multiple clusters

are broken up into multiple writes with seeks. Otherwise

by default for writes that span multiple clusters, they are

allocated in a contiguous group if possible, and if that is

not possible, then they are broken up into multiple writes

with seeks

CONTIGUOUS For writes that span multiple clusters, allocate clusters in

a contiguous group. If that is not possible, then fail.

18

KEEP_PREALLOC If preallocsize is specified, when the file is closed,

instead of releasing preallocated clusters, make them

part of the file and set the file size to include them.

FILE_64 Open the file as a FAT64 file instead of a regular FAT file.

Note: This is only necessary upon the original open of a

file, to indicate that the file is FAT64. Re-opens of these

files are not required.

LOAD_AS_NEEDED Load cluster chains as they are accessed, not when the

file is opened.

REMAP_FILE The file being opened will be used as an argument to

pc_cfilio_extract(). Cannot be written to with the write

command.

TEMP_FILE Tell Rtfs to delete the file when it is closed, this also has

the effect of never actually writing the cluster chains to

the FAT so the close happens much faster than a normal

close

TRANSACTION_FILE Open the file as a transaction file.

Note: Failsafe Journaling must be enabled or the open

will fail.

BUFFERED Open the file in buffered mode

TRUNCATE If it is a file reopen, truncate the file.

Note: this option is invalid if in asynchronous mode.

When open succeeds it prints a file index number that may be used as an argument

to the other commands that operate on open files

close fileindex

Flush a file’s directory entry and cluster chain to disk. And release the file.

Note: If asynchronous mode is enabled (see async) the command is performed

asynchronously and must be completed by the method assigned in the async

command.

Fileindex The file index printed by the open or copen command

flush fileindex

Flush a file’s directory entry and cluster chain to disk.

Note: If asynchronous mode is enabled (see async) the command is performed

asynchronously and must be completed by the method assigned in the async

command.

Fileindex The file index printed by the open or copen command

sethint fileindex clusternumber nclusters

19

Pre-allocate clusters or set a hint for where the next clusters for the file should be

allocated from.

Note: After the file is written to, SHOWFILEEXTENTS can be used to verify that

the specified clusters were used.

Fileindex The file index printed by the open or copen command

clusternumber Hint of where to allocate next clusters from

nclusters If >0 pre-allocate this many clusters

write fileindex resetfp xferdata totalsize writesize

Write bytes to a file.

fileindex The file index printed by the open or copen command

resetfp ‘y’ or ‘Y’ to seek to the beginning of the file before writing

‘n’ or ‘N’ to append from the current file pointer

xferdata ‘y’ or ‘Y’ to transfer data to the file (the contents of the

data is just random data returned from a malloc().

‘n’ or ‘N’ to pass a NULL pointer to the write call. When a

NULL pointer is passed the routine behaves exactly the

same except that data is not written to the data blocks of

the file.

totalsize Total number of bytes to write to the file. The argument is

in (GB,KB,B) formati.

writesize Number of bytes to write per write call. The write

command will call pc_efilio_write() or

pc_cfilio_write() as many times as needed until

totalsize bytes are written. The argument is in (GB,KB,B)

format*.

Note: If xferdata is ‘Y’ or ‘y’ then the write command calls malloc() to allocate a

buffer writesize bytes long to use for data (the buffer is freed when the command

finishes). So very large writesize values will result in very large malloc()s.

If xferdata is ‘N’ or ‘n’ then no buffer is allocated so gigabyte values and more are

acceptable.

read fileindex resetfp xferdata totalsize readsize

Read bytes from a file.

fileindex The file index printed by the open or copen command

resetfp ‘y’ or ‘Y’ to seek to the beginning of the file before

reading. ‘n’ or ‘N’ to read from the current file pointer

xferdata ‘y’ or ‘Y’ to transfer data from the file ‘n’ or ‘N’ to pass a

NULL pointer to the read call. When a NULL pointer is

passed the routine behaves exactly the same except that

the data is not read from the data blocks of the file.

totalsize Total number of bytes to read from the file. The argument

is in (GB,KB,B) format*.

20

readsize Number of bytes to read per call. The read command will

call pc_efilio_read() or pc_cfilio_read() as many times

as needed until totalsize bytes are read. The argument is

in (GB,KB,B) format*.

Note: if xferdata is ‘Y’ or ‘y’ then the read command call malloc() to allocate a

buffer readsize bytes long to use for data (the buffer is freed when the command

finishes). So very large readsize values will result in very large malloc()s.

If xferdata is ‘N’ or ‘n’ then no buffer is allocated so gigabyte values and more are

acceptable.

seek fileindex nseeks doread(Y/N) doxfer(Y/N)

Perform a specified number of seeks of random lengths on a file.

fileindex The file index printed by the open and copen command

nseeks Number of seeks to perform on the file. The argument is

in (GB,KB,B) format*.

doread ‘y’ or ‘Y’ to perform a one block read operation after every

seek. ‘n’ or ‘N’ to just perform the seeks.

doxfer If doread is ‘y’ or ‘Y’ then this instructs the command

whether it should perform data transfers during the read.

If doxfer is ‘y’ or ‘Y’ this will mean the underlying routine

will be passed a valid pointer. If doxfer is ‘n’ or ‘N’ then a

NULL pointer is passed to the read call. When a NULL

pointer is passed to the routine, it behaves exactly the

same except that data is not read from the data blocks of

the file.

Note: If doread is ‘y’ and doxfer is ‘y’ then for each seek performed by this

command the underlying device is forced to read a single block, which forces a seek

on the device itself.

Example:

 Perform 100000 seeks on a file

 seek 0 1000000 y n

Perform 100000 seeks on a file and do call read but do not force a call to the device

driver.

 seek 0 1000000 y n

Perform 1000 seeks on a file and do call read and do force a call to the device

driver(a head seek).

 seek 0 1000 y y

fstat fileindex

21

Print stat information on an open file.

fileindex The file index printed by the open or copen command.

chsize fileindex newsize

Expand or contract an open file.

fileindex The file index printed by the open or copen command

newsize New size of the file in bytes. The argument is in (GB,KB,B)

format*.

copen filename wrap point preallocsize [option option ..]

Open a circular file.

filename File name to open

Wrap point Required parameter. The byte offset in the file for when

the file pointer completes it’s read and write operations,

and seeks back to this offset. The argument is in

(GB,KB,B) format*.

preallocsize Optional parameter. If specified write calls allocate this

many clusters when they need to expand the file. This

helps reduce fragmentation. When the file is closed

unused pre-allocated clusters are freed. Do not use,

currently not supported.

[options] One or more of the following options may be used.

FILE_64 Open the file as a FAT64 file instead of a regular FAT file.

CONTIGUOUS For writes that span multiple clusters, allocate clusters in

a contiguous group. If that is not possible, then fail.

TEMP_FILE Tell Rtfs to delete the file when it is closed, this also has

the effect of never actually writing the cluster chains to

the FAT so the close happens much faster than a normal

close

BUFFERED Open the file in buffered mode

Do not use other options

When copen succeeds it prints a file index number that may be use as an argument

to the other commands that operate on open files.

extract circfile linfile offset length

Extract a portion of a circular file to a linear extract file.

circfile A file index that was printed by the

command copen

linfile A file index that was printed by the

command open, with REMAP_FILE

specified.

offset The stream offset in the circular file to

extract from. The argument is in

22

(GB,KB,B) format*.

length The length in bytes to extract. The

argument is in (GB,KB,B) format*.

delete filename

Delete a file from the disk.

Note: If asynchronous mode is enabled (see async) the command is performed

asynchronously and must be completed by the method assigned in the async

command.

Note: Asynchronous delete takes advantage of user buffering and performs faster

than synchronous delete.

filename Name of file to delete

settime filename

Changes the last access time and date of a file. Rather than prompt for time input,

this command demonstrates changing the file’s timestamp by changing the time to:

April, 1, 2007. 11:32:42 AM

Note: This function is designed solely for the purpose of demonstrating the

capabilities of the API.

filename Name of file to change

setsize filename newsize

Manually change the size field in a directory entry. This edits the directory entry

directly and does not free or add clusters from the file chain. It can be used to

create files with incorrect sizes according to check disk.

Filename Name of file to change

newsize New file size in bytes

setcluster filename newcluster

Manually change the first cluster field in a directory entry. This edits the directory

entry directly and does not free the current file chain. It can be used to create lost

chains and to move cluster chains from one file to another.

Filename Name of file to change

newcluster New value for first cluster in file

test testname D:

23

Run an RtfsProPlus regression test.

Note: Rtfs Pro Plus tests are not available in release 6.1a, they use internal obsolete

methods to reconfigure disk parameters on the the fly and have not been upgraded

to support the disk configuration method introduced in this release.

Note: All tests may not function properly unless the following conditions are met.

Constants in RTFSCONF.H Necessary Value

INCLUDE_DEBUG_TEST_CODE 1

INCLUDE_DEBUG_RUNTIME_STATS 1

MAX_SEGMENTS_64 at least 8

Before the tests are executed the volume should be freshly formatted.

D: Drive id.

testname The test to

execute:

quit

Exit the extended shell and return to the basic shell.

efile

extract

Test efilio and diskio interface. Test

pc_efext_extract(), swap and

remove

cfile Test cfilio interface

async Test asynchronous operations and

aspects of Failsafe

transaction Test transaction file support

failsafe Test Failsafe operations

