
Application Notes

1

Rtfs

Application Notes
©2006 EBS, Inc

Revised June 2008

EBS Inc. 39 Court Street Groton MA 01450 USA

http://www.ebsembeddedsoftware.com

http://www.ebsembeddedsoftware.com/

2

TABLE OF CONTENTS

Notes on direct DMA to disk applications _____________________ 4

Notes on Usage and Configuration _________________________ 14

Configuring for asynchronous mounting. _________________________ 14

Configuring and using RtfsProPlus for deterministic operation. ________ 18

Rtfs Design Document __________________________________ 20

Extended File - Principals _____________________________________ 20

The Freespace Manager ______________________________________ 21

The File Fragment Manager ___________________________________ 21

Asynchronous Operations _____________________________________ 21

Asynchronous Volume Mount Operations _________________________ 22

Asynchronous File Operations __________________________________ 22

Asynchronous Journal File Operations ___________________________ 23

Circular Files ___ 23

The FAT64 Sixty Four Bit Metafile API ___________________________ 24

Rtfs Test Procedures and API programming Examples _________ 26

Rtfs regression test procedures ________________________________ 26

The pc_regression_test() API entry point _________________________ 27

Rtfs regression test procedure reference _________________________ 28

Regression Test for features common to all Rtfs releases ____________ 29

Regression Tests for RtfsProPlus features ________________________ 32

Regression Test for Failsafe features ____________________________ 33

Regression Test for asynchronous features _______________________ 36

Additional Failsafe Regression Testing ___________________________ 36

Regression Tests for Direct cluster Manipulation Routines ____________ 37

Application Notes

3

Regression Tests for circular file routines _________________________ 38

Regression Tests for transaction file overwrite routines ______________ 40

Command Shell for Common Rtfs functions _______________________ 41

Command Shell for Controlling Failsafe __________________________ 43

Command Shell for extended Rtfs functions ______________________ 43

4

Notes on direct DMA to disk applications

Introduction

The RtfsProPlus API may be used to create applications that can use DMA to burst

application data directly to and from the disk. We take advantage of the following

features of RtfsProPlus to achieve this:

 Cluster pre-allocation

 Contiguous cluster allocation

 Reading, writing and appending to data files without performing any data

transfers

 Real time, guaranteed zero disk access, file extent tracking and allocation.

 Specialized usage of API routines.

How it’s done:

The routine pc_efilio_fpos_sector returns the raw sector number at the current

file pointer and the number of contiguous sectors in the file, starting at, and

including that sector. pc_efilio_fpos_sector may be used in conjunction with

features of pc_cfilio_write, pc_efilio_read, pc_cfilio_read and pc_efilio_read

to achieve full DMA data transfer to and from data files from the application layer.

The following pages explain by example the steps that are needed to build DMA

enabled applications. Three examples are provided:

Example 1: Filling a file using DMA operations controlled at the application layer.

Example 2: Reading a file using DMA operations controlled at the application layer.

Example 3: Writing and Reading a circular file using DMA operations controlled at

the application layer.

These examples are provided along with commentary in this manual. The source

code for the examples is contained within the file efishell.c.

Application Notes

5

Example 1: Filling a file using DMA operations controlled at the application

layer.

This code fragment demonstrates the basic methods needed to use RtfsProPlus to

create files that you will populate using direct memory access.

For this demonstration we are using ideal conditions that demonstrate the principals

involved without going into excess detail.

For these ideal conditions we will use a DMA transfer size that is an even multiple of

the cluster size, and set the minimum pre-allocation size to the same as the transfer

size. This way there is a one to one to one to one correspondence of pre-allocated

requests, get block number requests, DMA data to the disk requests, expand the file

and advance the file pointer requests.

If these ideal conditions were not met we would be forced to repeat one or more of

the steps within an internal loop, but the principals are the same.

 The steps are:

 First open the file with the minimum allocation field set to two clusters

 Then in a repeating loop (512 times)

 1. Call pc_efilio_write with a null buffer and zero write count. This calling

sequence instructs pc_efilio_write to pre-allocate clusters if it is currently at the

end of file and more clusters are required. It does not advance the file pointer or

change the file size.

 2. Call pc_efilio_fpos_sector to retrieve the raw sector number at the current

file pointer and the number of contiguous sectors.

 3. Simulate a DMA transfer to the disk with pc_raw_write, which writes

contiguous sectors to the disk at the raw sector returned from

pc_efilio_fpos_sector.

 4. Call pc_efilio_write with a null buffer and a write count equal to 512 times the

number of sectors we just transfered. This instructs pc_efilio_write to make the

previously pre-allocated clusters a permanent part of the file and to adjust the file

size and advance the file pointer.

 A few things to keep in mind are:

 1. No disk IO takes place during steps one, two and four. So these steps are

essentially real time processes.

 2. Because this is only a simulation we are waiting for step three to complete

before we perform step four to update the file structure and then step one and two

again to prepare for another "DMA" transfer. This "synchronous" operation is not

necessary. The algorithm could be implemented in several other ways.

For example:

 1. Step three could simply start a DMA transfer and return from the loop. Steps

four, one and two could then be executed asynchronously when the DMA transfer

completed.

 2. Step three could start the DMA transfer and steps four, one and two could

then be executed immediately. This would have the affect of creating a DMA write

behind a scheme where the file size is up to date, the file pointer is up to date, the

DMA circuit is armed to perform the transfer, and where the next sector number and

sector count are ready so the DMA circuit can be re-armed immediately after

completion of the current iteration. This could be repeated as many times as desired

to provide a simple method of queuing multiple unattended DMA transfers to

populate the file.

6

void demonstrate_dma_to_efile(byte *filename)

{

 int fd, i, driveno;

 dword cluster_size_bytes,dma_data_size_blocks,ltemp;

 byte *pdma_buffer, drive_name[8];

 EFILEOPTIONS my_options;

 // We'll simulate ideal conditions for this demonstration by

 // setting dma transfer size and minumum allocation size

 // the same, at two clusters

 driveno = pc_get_default_drive(drive_name);

 cluster_size_bytes = (dword) pc_cluster_size(drive_name);

 if (!cluster_size_bytes)

 return; // ????

 rtfs_memset(&my_options, 0, sizEOF(my_options));

 // Set the minumum allocation size to two clusters

 my_options.min_clusters_per_allocation = 2;

 // And the dma transfer size to two clusters

 dma_data_size_blocks = (2 * cluster_size_bytes)/512;

 // Open the file

 fd = pc_efilio_open(filename,

(word)(PO_BINARY|PO_RDWR|PO_TRUNC|PO_CREAT),

 (word)(PS_IWRITE | PS_IREAD),&my_options);

 if (fd<0)

 return;

 // Perform 512 simulated cluster sized dma transfers while

 // extending the file

 pdma_buffer = (byte *) pro_test_malloc(dma_data_size_blocks*512);

 for(i=0;i<512;i++)

 {

 dword raw_sector_number,raw_sector_count;

 // force pc_efilio_write to preallocate clusters if neccessary

 // without changing the file size or advancing the file pointer

 if (!pc_efilio_write(fd, 0,0,<emp))

 break;

 // Get the raw disk sector associated with the file pointer

 if (!pc_efilio_fpos_sector(fd, FALSE, TRUE, &raw_sector_number,

 &raw_sector_count))

 break;

 // This should never happen because we are cluster aligned

 if (raw_sector_count < dma_data_size_blocks)

 break;

 // raw_sector_number contains the sector at the file pointer

 // raw_sector_count is the count of contiguous sectors there

 // truncate the raw sector count if it is greater than our

 // transfer size. This won't happen in this demonstration

 // because we set min_clusters_per_allocation to 1, but

 // if we had used a larger minimum value raw_sector_count would

 // reflect that we are preallocating larger chunks

 if (raw_sector_count > dma_data_size_blocks)

Application Notes

7

 raw_sector_count = dma_data_size_blocks;

 // Now use the RtfsProPlus raw block write routine to

 // Simulate a dma transfer

 if (!pc_raw_write(driveno, pdma_buffer, raw_sector_number,

 raw_sector_count, TRUE))

 break;

 // Now call write with a null data buffer to advance the file

 // pointer and update the file size

 if (!pc_efilio_write(fd, 0,raw_sector_count*512,<emp))

 break;

 }

 pc_efilio_close(fd);

 pro_test_free(pdma_buffer);

}

Example 2: Reading a file using DMA operations controlled at the

application layer.

This code fragment demonstrates the basic methods needed to use RtfsProPlus to

read files using direct memory access.

For this demonstration we will use a DMA transfer size that is larger than the

transfer size used in example one, and it is not an even multiple of the cluster size.

This size is chosen to demonstrate that the transfer size does not have to be cluster

aligned and that RtfsProPlus will return to us the number of contiguous sectors at

the file pointer.

 The steps are:

 First re-open the file (presumably the file created in example one) Then in a

repeating loop (repeating as many times as required)

 1. Call pc_efilio_fpos_sector to retrieve the raw sector number at the current

file pointer and the number of contiguous sectors.

 2. Simulate a DMA transfer from the disk with pc_raw_read, which reads

contiguous sectors from the disk at the raw sector returned from

pc_efilio_fpos_sector.

 3. Call pc_efilio_read with a null buffer and a read count equal to 512 times the

number of sectors we just transferred. This instructs pc_efilio_read to advance the

file pointer.

 A few things to keep in mind are:

 1. No disk IO takes place during steps 1, and 3. So these steps are essentially real

time processes.

 2. Because this is only a simulation we are waiting for step 2 to complete before

we perform step three and step one again to prepare for another DMA transfer.

 This synchronous operation is not necessary. The algorithm could be

implemented in several other ways.

8

For example:

 1. Step two could simply start a DMA transfer and return from the loop. Steps

three and one could then be executed asynchronously when the DMA transfer

completed.

 2. Step two could start the DMA transfer and steps three and one could then be

executed immediately. This would have the affect of creating a DMA read behind a

scheme where the DMA circuit is armed to perform the transfer, and where the next

sector number and sector count are ready so the DMA circuit can be re-armed

immediately after completion of the current iteration. This can be repeated as many

times as desired and provides a simple method of queuing up multiple unattended

DMA transfers to read the file. The file could even be closed before the transfers

complete.

void demonstrate_dma_from_efile(byte *filename)

{

 int fd, driveno;

 dword cluster_size_bytes,dma_data_size_blocks,ltemp;

 byte *pdma_buffer, drive_name[8];

 EFILEOPTIONS my_options;

 // Re-open the file

 rtfs_memset(&my_options, 0, sizEOF(my_options));

 fd = pc_efilio_open(filename, (word)(PO_BINARY|PO_RDWR),

 (word)(PS_IWRITE | PS_IREAD),&my_options);

 if (fd<0)

 return;

 // We'll set a dma transfer size of 8 clusters minus

 // one block to demonstrate that the transfers have to

 // be block aligned, but not cluster aligned

 // In this example we'll use pc_fd_to_driveid to get the drive number

 // and drive name from the open file.

 driveno = pc_fd_to_driveid(fd,drive_name);

 cluster_size_bytes = (dword) pc_cluster_size(drive_name);

 if (!cluster_size_bytes)

 return; // ????

 dma_data_size_blocks = ((8 * cluster_size_bytes) - 1)/512;

 // Perform as many dma transfers as needed to read the whole file

 pdma_buffer = (byte *) pro_test_malloc(dma_data_size_blocks*512);

 for(;;)

 {

 dword raw_sector_number,raw_sector_count;

 // Get the raw disk sector associated with the file pointer

 // The second argument is TRUE (check for read)

 if (!pc_efilio_fpos_sector(fd, TRUE, TRUE, &raw_sector_number,

 &raw_sector_count))

 break;

 // This will happen when the file pointer is at the end

 if (!raw_sector_count)

Application Notes

9

 break;

 // raw_sector_number contains the sector at the file pointer,

 // raw_sector_count is the count of contiguous sectors there,

 // truncate the raw sector count if it is greater than our

 // transfer size. This will happen because the file is more

 // than likely contiguous and raw_sector_count returns the

 // number of contiguous sectors

 if (raw_sector_count > dma_data_size_blocks)

 raw_sector_count = dma_data_size_blocks;

 // Now use the RtfsProPlus raw block write routine to

 // Simulate a dma transfer from the drive

 if (!pc_raw_read(driveno, pdma_buffer, raw_sector_number,

 raw_sector_count, TRUE))

 break;

 // Now call read with a null data buffer to advance the file

 // pointer

 if (!pc_efilio_read(fd, 0,raw_sector_count*512,<emp))

 break;

 }

 pc_efilio_close(fd);

 pro_test_free(pdma_buffer);

}

Example 3: Writing and Reading a circular file using DMA operations

controlled at the application layer.

This code fragment demonstrates the basic methods needed to use RtfsProPlus to

read and write circular files using direct memory access.

For this demonstration we will use a DMA transfer size that is larger than the

transfer size used in example one, and that is not an even multiple of the cluster

size. This size is chosen to demonstrate that the transfer size does not have to be

cluster aligned and that RtfsProPlus will return to us the number of contiguous

sectors at the file pointer.

 The steps are:

 First re-open the file (presumably the file created in example one)

 Then in a repeating loop (repeating as many times as required)

 1. Call pc_efilio_fpos_sector to retrieve the raw sector number at the current

file pointer and the number of contiguous sectors.

 2. Simulate a DMA transfer from the disk with pc_raw_read, which reads

contiguous sectors from the disk at the raw sector returned from

pc_efilio_fpos_sector.

 3. Call pc_cfilio_read with a null buffer and a read count equal to 512 times the

number of sectors we just transferred. This instructs pc_cfilio_read to advance the

file pointer.

10

 A few things to keep in mind are:

 1. No disk IO takes place during steps 1, and 3. So these steps are essentially real

time processes.

 2. Because this is only a simulation we are waiting for step 2 to complete before

we perform step three and step one again to prepare for another DMA transfer. This

synchronous operation is not necessary. The algorithm could be implemented in

several other ways.

For example:

 1. Step two could simply start a DMA transfer and return from the loop. Steps

three and one could then be executed asynchronously when the DMA transfer

completed.

 2. Step two could start the DMA transfer and steps three and one could be then

be executed immediately. This would have the affect of creating a DMA read behind

scheme where the DMA circuit is armed to perform the transfer and the next sector

number and sector count are ready so the DMA circuit can be re-armed immediately

after completion of the current iteration. This can be repeated as many times as

desired and provides a simple method of queuing up multiple unattended DMA

transfers to read the file. The file could even be closed before the transfers

complete.

void demonstrate_dma_with_cfile(byte *filename, BOOLEAN use_cfile_mode)

{

 int fd, i, driveno;

 dword cluster_size_bytes,ltemp, nwritten;

 dword dma_data_size_blocks;

 byte *dma_buffer;

 byte drive_name[8];

 EFILEOPTIONS my_options;

 dword raw_sector_number,raw_sector_count;

 driveno = pc_get_default_drive(drive_name);

 cluster_size_bytes = (dword) pc_cluster_size(drive_name);

 if (!cluster_size_bytes)

 return; // ????

 // Open a circular file

 // Set the wrap point at megabyte

 rtfs_memset(&my_options, 0, sizEOF(my_options));

 my_options.circular_file_size_lo = (1024*1024);

 // Use a 1 megabyte minimum allocation and force

 // contiguous allocation so it's completely contiguous

 my_options.min_clusters_per_allocation =

 (my_options.circular_file_size_lo+cluster_size_bytes-1)/

 cluster_size_bytes;

 my_options.allocation_policy = PCE_FORCE_CONTIGUOUS;

 // The default is PCE_CIRCULAR_BUFFER mode, where the write

 // pointer can overtake the read pointer. In PCE_CIRCULAR_FILE

 // mode writes are truncated if the write pointer catches the

 // read pointer.

 if (use_cfile_mode)

 my_options.allocation_policy |= PCE_CIRCULAR_FILE;

Application Notes

11

 fd = pc_cfilio_open((byte *)filename,

 (word)(PO_BINARY|PO_RDWR|PO_CREAT|PO_TRUNC)

 ,&my_options);

 if (fd<0)

 return;

 // Allocate a 128 k buffer

 dma_data_size_blocks = 256;

 dma_buffer = (byte *) pro_test_malloc(dma_data_size_blocks*512);

 // Start by writing zero bytes to the file. This should force a

 // Pre-alloc

 if (!pc_cfilio_write(fd, 0, 0, <emp))

 return;

 // Check the readable raw sectors now there should be 0 blocks

 if (!pc_efilio_fpos_sector(fd, TRUE, TRUE, &raw_sector_number,

 &raw_sector_count))

 return;

 if (raw_sector_count != 0)

 return;

 // Check the writable raw sectors now there should be 2048 blocks

 if (!pc_efilio_fpos_sector(fd, FALSE, TRUE, &raw_sector_number,

 &raw_sector_count))

 return;

 if (raw_sector_count != 2048)

 return;

 if (!pc_raw_write(driveno,dma_buffer,raw_sector_number,256,TRUE))

 return;

 // Check the readable raw sectors there should still be 0 blocks

 if (!pc_efilio_fpos_sector(fd, TRUE, TRUE, &raw_sector_number,

 &raw_sector_count))

 return;

 // Now tell RtfsProPlus that we wrote 256 blocks

 if (!pc_cfilio_write(fd, 0, (256*512), &nwritten))

 return;

 // Check the readable raw sectors now there should be 256 blocks

 if (!pc_efilio_fpos_sector(fd, TRUE, TRUE, &raw_sector_number,

 &raw_sector_count))

 return;

 if (raw_sector_count != 256)

 return;

 // Check the writable raw sectors now there should be 2048-256 blocks

 if (!pc_efilio_fpos_sector(fd, FALSE, TRUE, &raw_sector_number,

 &raw_sector_count))

 return;

 if (raw_sector_count != (2048-256))

 return;

 // Now write 6 more chunks to get within 256 blocks of the wrap point

 for (i = 0; i < 6; i++)

 {

 if (!pc_efilio_fpos_sector(fd, FALSE, TRUE, &raw_sector_number,

 &raw_sector_count))

12

 return;

 if (raw_sector_count < 256)

 return;

 if (!pc_raw_write(driveno,dma_buffer,raw_sector_number,256,TRUE))

 return;

 if (!pc_cfilio_write(fd, 0, (256*512), &nwritten))

 return;

 }

 // Make sure we are where we think we should be

 if (!pc_efilio_fpos_sector(fd, FALSE, TRUE, &raw_sector_number,

 &raw_sector_count))

 return;

 if (raw_sector_count != 256)

 return;

 // Now write 128 blocks

 if (!pc_raw_write(driveno,dma_buffer,raw_sector_number,128,TRUE))

 return;

 if (!pc_cfilio_write(fd, 0, (128*512), &nwritten))

 return;

 // Ever vigilant, make sure RtfsProPlus indicates that we can only

 // write 128 contiguous blocks

 if (!pc_efilio_fpos_sector(fd, FALSE, TRUE, &raw_sector_number,

 &raw_sector_count))

 return;

 if (raw_sector_count != 128)

 return;

 // Now write up to the wrap point

 if (!pc_raw_write(driveno,dma_buffer,raw_sector_number,128,TRUE))

 return;

 if (!pc_cfilio_write(fd, 0, (128*512), &nwritten))

 return;

 // Check the readable raw sectors now there should be 2048 blocks

 if (!pc_efilio_fpos_sector(fd, TRUE, TRUE, &raw_sector_number,

 &raw_sector_count))

 return;

 if (raw_sector_count != 2048)

 return;

 // Check the writable raw sectors since we're back at the beginning

 if (!pc_efilio_fpos_sector(fd, FALSE, TRUE, &raw_sector_number,

 &raw_sector_count))

 return;

 if (use_cfile_mode)

 {// PCE_CIRCULAR_FILE mode. Should be no blcks available tp write

 if (raw_sector_count != 0)

 return;

 }

 // PCE_CIRCULAR_BUFFER mode. there should be 2048 blocks

 else if (raw_sector_count != 2048)

 return;

 // Now show that the writeable blocks track the read pointer

 // in PCE_CIRCULAR_FILE mode.

 if (use_cfile_mode)

 { // Now consume some blocks an make sure they are freed up for the

Application Notes

13

 // writer

 for (i = 1; i < 10; i++)

 {

 if (!pc_efilio_fpos_sector(fd, TRUE, TRUE, &raw_sector_number,

 &raw_sector_count))

 return;

 if (raw_sector_count < 128)

 return;

 if (!pc_raw_read(driveno,dma_buffer,raw_sector_number,128,TRUE))

 return;

 if (!pc_cfilio_read(fd, 0, (128*512), &nwritten))

 return;

 // Check the writable raw sectors

 if (!pc_efilio_fpos_sector(fd, FALSE, TRUE, &raw_sector_number,

 &raw_sector_count))

 return;

 if (raw_sector_count != (dword)(i * 128))

 return;

 }

 }

 pc_cfilio_close(fd);

 pro_test_free(dma_buffer);

}

14

Notes on Usage and Configuration

Configuring for asynchronous mounting.

HEREHERE

The following code fragment is a simple application which demonstrates the use of

RtfsProPlus asynchronous mounting:

The application performs the following steps:

 Use the Rtfs callback interface to configure the drive for asynchronous

mounting.

 Use the Rtfs callback interface to signal when asynchronous mount

completion should be carried out.

 Spawn a thread that waits for a signal from the callback and then completes

the mount.

 Run a dummy application loop that creates a directory and immediately

removes it.

 Since asynchronous mounting is enabled, when the drive is not currently

mounted the mkdir API call will initiate an asynchronous mount start and

return failure.

 When mkdir fails for this reason the application waits for the background

thread to complete the asynchronous mount and signal that the disk has been

re-mounted and the application may resume.

To keep things simple we use a simple state variable to coordinate things.

The main points to notice are:

 The call to pc_mkdir fails because the drive is not configured to auto-mount

 When pc_mkdir fails errno is set to PENOTMOUNTED

 The failed pc_mkdir call initiates an asynchronous mount and invokes the

callback routine with the starting argument set to 1

 The callback routine signals to the background thread that it should call

pc_async_continue as many times as needed in order to complete the

mount process

 When the mount completes, the callback routine is called again and signals

that the mount is complete

 The application layer uses the signal to resume operation

To request asynchronous mounting you must modify the function rtfs_app_callback()

in he applications rtfscalllback.c file.

The lines in this function that read:

case RTFS_CBA_ASYNC_MOUNT_CHECK:

break;

Should be changed to:

case RTFS_CBA_ASYNC_MOUNT_CHECK:

return(1);

Application Notes

15

To signal when asynchronous mount completion should be carried out you must

modify the function rtfs_app_callback() in he applications rtfscalllback.c file.

The lines in this function that read:
case RTFS_CBA_ASYNC_START:

break;

Should be changed to the foreground thread to step the asynch state machine.

int rtfs_app_callback(int cb_code, int iarg0, int iargs1, int iargs2, void *pvargs)

{

 switch (cb_code) {

 case RTFS_CBA_INFO_MOUNT_STARTED: /* iarg0 == drive number. Mount starting */

break;

 case RTFS_CBA_INFO_MOUNT_FAILED: /* iarg0 == drive number. Mount failed

*/

 break;

 case RTFS_CBA_INFO_MOUNT_COMPLETE: /* iarg0 == drive number. Mount

succeeded */

 break;

 case RTFS_CBA_ASYNC_MOUNT_CHECK: /* iarg0 == drive number. Return 1

to request asynchronous mounting */

 break;

 case RTFS_CBA_ASYNC_START: /* iarg0 == cycle the statemachine

*/

 break;

 case RTFS_CBA_ASYNC_DRIVE_COMPLETE: /* iarg0 == drive number. iarg1 == operation iarg2

== status */

 break;

 case RTFS_CBA_ASYNC_FILE_COMPLETE: /* iarg0 == file number. iarg1 == status */

 break;

 case RTFS_CBA_DVR_EXTRACT_RELEASE: /* iarg0 == file number. iarg1 == abort if 1,

overwritten if 0 */

 break;

 }

 return(0);

}

The sample code follows:

16

int mount_state = 0; /* 0 == not mounted, 1 == in progress, 2 == complete */

static void __cdecl MountProc(void *args);

void demonstrate_async_mount_config(void);

void demonstrate_mount_request_cb(int driveno, int starting);

int driveno = 2; /* Running on the C: drive */

char *drivename = "C:";

void demonstrate_async_mount_application(void)

{

 mount_state = 0; /* not mounted */

 demonstrate_async_mount_config();

 _beginthread(MountProc, 0, NULL);

 for (;;)

 {

 if (!pc_mkdir((byte *)"test"))

 {

 if (get_errno() == PENOTMOUNTED)

 {

 printf("Mkdir failed. Wait for mount\n");

 while (mount_state != 2)

 rtfs_port_sleep(100);

 }

 else

 {

 printf("Some other error occured\n");

 return;

 }

 }

 else

 { /* Mkdir worked. remove the directory and close the disk out */

 pc_rmdir((byte *)"test");

 pc_dskfree(driveno);

 }

 }

}

void demonstrate_async_mount_config(void)

{

DRIVE_CONFIGURE config;

 rtfs_memset(&config, 0, sizEOF(config));

 /* Special asynchronous mount configurations. Everything else

 Is fairly generic */

 config.drive_operating_policy=DRVPOL_EXTENDED_IO|DRVPOL_ASYNC_MOUNT;

 config.drive_mount_request_cb = demonstrate_mount_request_cb;

 config.free_ctxt_num_hash_slots = 32;

 config.user_buffer_size_blocks = 128;

 config.num_fat_buffers = 2;

 config.num_dir_clusters = 0;

 config.num_small_file_clusters = 0;

 config.free_ctxt_region_hash_tbl =

Application Notes

17

 (void *) malloc(config.free_ctxt_num_hash_slots*sizEOF(void *));

 config.user_buffer =

 (byte *) malloc(config.user_buffer_size_blocks*512);

 config.fat_buffer_structures =

 (struct fatbuff *) malloc(config.num_fat_buffers*sizEOF(struct fatbuff));

 config.fat_buffer_data =

 (byte *) malloc(config.num_fat_buffers*512);

 pc_diskio_configure((byte *)drivename, &config);

}

void demonstrate_mount_request_cb(int driveno, int starting)

{

 if (starting)

 {

 printf("Callback signaling to start mount\n");

 mount_state = 1; /* in progress */

 }

 else

 {

 printf("Callback signaling mount completed\n");

 mount_state = 2; /* complete */

 }

}

18

Configuring and using RtfsProPlus for deterministic operation.

RtfsProPlus provides methods that control the maximum number of disk accesses

made per API call and the amount of data transferred per disk access. When it is

configured and used in this manner it provides a deterministic operating environment

in which a single seek and data transfer of the underlying media controls the worst

case latency of any individual call to RTFS. RtfsProPlus guarantees it will not

introduce “hidden” disk accesses while it operates.

The rules for using RtfsProPlus in this manner are as follows:

 Use block aligned data sizes during file IO operations. Failure to do this can

add up to two additional disk IO calls to a write call or one additional disk IO

call to a read.

 If there are both synchronous and asynchronous fuctions to perform a task,

choose the asynchronous method.

 Use cluster aligned data sizes during transactional file overwrites. Failure to

do this can add up to four additional disk IO calls.

 If you are using pc_cfilio_extract try to extract data on cluster aligned

boundaries. Failure to do this can add up to four additional disk IO calls.

 Always use asynchronous routines instead of their synchronous counterparts

 Set the DRVPOL_ASYNC_MOUNT policy bit in the disk configuration value

drive_operating_policy and use asynchronous mounting techniques in the

manner describe in the previous section.

 Set the DRVPOL_NO_AUTOFLUSH policy bit in the disk configuration value

drive_operating_policy. This instructs RTFS to not add unexpected delays

by automatically flushing buffers after successful completion of directory

management API calls. It is now your responsibility to flush from the

applications layer using the asynchronous flush API call.

 Make sure the user buffer that is set by the disk configuration value,

user_buffer_size_blocks, is large enough to hold at least one cluster. This

will almost certainly be the case, and it is advisable to set it much larger, but

failure to do this will force directory maintenance routines to perform multiple

individual block accesses.

 Avoid using pc_deltree, pc_chksk and pc_enumerate.

20

Rtfs Design Document

Extended File - Principals

RtfsProPlus provides an extended filio IO (efilio) package and a circular file (cfilio)

package. The extended IO (efilio) package contains two components, a high

performance, near zero latency packages for 32 bit file operations, and a 64 bit

metafile IO package derived from the 32 bit file IO package with similar

performance. The circular file (cfilio) package provides support for reading and

writing from circular files and for efficiently extracting linear segments from circular

files.

Extended File - Design Goals

The design goal for the extended IO package is to provide a high performance,

reliable, deterministic file system capable of supporting 32 and 64 bit files. This

underlying high performance file system has the following features:

Zero disk latency cluster allocation and linking - During write operations all

cluster management is done on in-memory region caches. This allows write

operations to operate in near real time. All disk operations that pertain to cluster

management are deferred until the file is closed or flushed. The flush may be

performed asynchronously.

Zero disk latency seek operations - A seek may be performed from any location

in a file to any location in a file without ever accessing the disk. This makes file seek

operations, essentially, real time operations. In addition this feature makes it

practical to develop applications that rely on file seek operations but still perform

deterministically.

Contiguous file support using cluster pre-allocation - The user may set the

policy for file extent allocation. The policy may enforce guaranteed contiguous

allocation of extents or it may request that the first free available fragments be

used. In addition, the user can set a minimum allocation unit for the file to provide

large contiguous file regions even when data is presented to the API in smaller

quantities.

Optimized FAT access techniques – FAT tables are read and written via multi-

block transfers to the disk whenever possible. A FAT cache is also maintained for

frequently accessed FAT blocks.

Asynchronous Operation - Asynchronous versions are provided for all API calls

that could potentially perform multiple disk accesses. Routines such as disk mount,

file reopen, file flush and disk flush require multiple disk accesses and can introduce

non-deterministic delays in the application.

Application Notes

21

Deterministic Operation – The combined asynchronous and Zero disk latency API

calls provide a fully deterministic run time environment.

RtfsProPlus uses this underlying high performance file IO technology to implement

a high performance 32/64 bit file IO package and a circular file IO for video and

data acquisition applications.

The Freespace Manager

RtfsPro and RtfsProPlus both utilize a ram based free space manager. This

subsystem stores disk free space maps and cluster chain maps in run length encoded

lists. When a disk is mounted, the free space list is read from disk and converted to

in-memory structures that run length encode the free space map. After this initial

scan, RtfsPro and RtfsProPlus no longer access the disk or FAT cache to allocate disk

blocks.

The File Fragment Manager

RtfsProPlus utilizes a ram based file extent manager. The extent maps of open files

are stored in run length encoded lists. This makes it possible for RtfsProPlus to

guarantee that no accesses of the disk or FAT cache are needed to seek within or

append to the end of the file.

Asynchronous Operations

RtfsProPlus maintains internal run length encoded lists of allocated file extents and

free disk blocks. These compact lists are memory based and thus provide

deterministic operation for most operations.

There are however several non-deterministic operations that the library must

perform. These operations synchronize RTFS’s internal map with the external on-

media FAT representation of the volume.

 These operations include:

 Disk mount - When a disk is mounted RTFS must scan the file application

table and preload some mapped views of the volume.

 Failsafe Volume Synchronize – Several regions of the volume are

updated requiring multiple accesses.

 Disk flush – Several writes may be required.

 File reopen - When a file is reopened, if its cluster chain is not already

cached, the chain must be read from the disk and converted to an internal

form. (Note: This delay may be eliminated by using the

PCE_LOAD_AS_NEEDED option)

 File flush - When a file has been expanded or contracted, when the file is

flushed, the changes to the chain structure must be converted from the

internal form to on-disk FAT representation.

 File delete - Deletes are really a combined reopen and flush pair, having

the non-deterministic characteristics of both reopen and flush.

22

Rtfs Pro Plus provides asynchronous routines to perform these FAT

synchronization operations. These routines provide a deterministic, iterative

alternative to the standard synchronous method. When these asynchronous routines

are used in combination with the deterministic extended file IO API, deterministic

behavior can be assured for all disk management operations.

Asynchronous Volume Mount Operations

When the disk is first mounted, a scan of the file allocation table is performed. This

routine is optimized to usually take less than ten seconds to run to completion, even

on very large media. However, for many applications it is unacceptable to block the

application thread for this long during the boot process or when new media is

accessed.

Rtfs Pro Plus provides an asynchronous mount procedure to resolve this problem.

The application begins the mount process by establishing the

DRVPOL_ASYNC_MOUNT operating policy or by calling the

pc_diskio_async_mount_start subroutine. The mount process is completed by

the application repeatedly calling pc_async_continue until it reports completion or

failure. The volume’s files and directories will not be accessible while the

asynchronous mount is completing but the application is free to interleave other

tasks with the mount completion operation.

Asynchronous mounts provide a simple solution during the system boot process.

The problem is a bit more complex to asynchronously re-mount hot swapped media.

A set of guidelines and callback techniques are provided to aid in this. For more

information on this see pc_diskio_configure in the API Reference Guide.

Asynchronous FAT Flush Operations

RtfsProPlus maintains a small memory based buffer pool of file allocation table

pages. It must be flushed at regular intervals to synchronize changes made by the

API with the disk image.

The number of pages requiring flushing is usually very small but the number is

application dependant and the time required to flush all blocks is non-deterministic.

Normally RTFS automatically flushes the FAT cache at appropriate times such as

when a directory is created or when a file is closed. These flushes cause small

delays in execution that may not be tolerated in all applications.

To resolve this problem RtfsProPlus has an asynchronous FAT flush routine.

To use asynchronous FAT flushing the application must first disable automatic FAT

flushing by calling pc_diskio_configure. The application can then schedule a

background task to periodically call the asynchronous completion routine or it can

insert calls to the routine in its round robin scheduling loop.

Asynchronous File Operations

During extended file operations that read, write, seek, and append files, RTFS

Application Notes

23

operates in a deterministic manner. RTFS guarantees that no disk accesses will be

made to track or extend a file’s extent map during these operations, so the disk

accesses are limited to data transfer operations exclusively. These optimizations are

made using an internal data representation, not the underlying FAT based disk

representation.

File open and file flush operations are responsible for converting the file’s FAT based

cluster representation to the internal form when a file is reopened and converting it

back to FAT based cluster representation when it is flushed.

On a typical FAT32 volume with a cluster size of 32 K, file cluster chains will

consume approximately one FAT block per 2 megabytes of data. One gigabyte of

data (2 million blocks) requires 256 blocks of the FAT table (128 Kbytes).

For larger files, the cluster chains can be long enough that the time to open, flush or

delete files using synchronous methods can interfere with smooth execution of the

application. To resolve this problem RtfsProPlus provides routines that perform

these operations asynchronously. These routines break the operations into multiple

separate smaller operations that consume less time per iteration. The routines may

be called either as part of a round robin (polling) loop or from a separate thread.

While asynchronous operations are in progress on a file most accesses to that file

are prohibited, but asynchronous operations on directories and other files are

allowed.

Asynchronous Journal File Operations

Journal file flush and commit operations may be run asynchronously to periodically

flush the journal and synchronize the FAT volume with the Journal. Journal file flush

operations are coordinated with other asynchronous operations to ensure that

completed asynchronous operations won’t be committed to the fat volume.

Circular Files

RtfsProPlus supports circular files through a set of cfilio API calls. Circular files are

intended, mainly, to support developers in the important digital video segment.

Though since circular files act as ring buffers to data blocks they may be used in any

application that buffers data to disks.

Separate file pointers are maintained for read and write operations. These file

pointers range from zero to the wrap point (circular file size) of the circular file.

They map directly to the linear offset in the file of the read and write pointer. A

stream view of the circular file is also provided. In stream view, the file pointers are

the sixty four bit offsets of the read and write file pointers from the origin when the

file was created. In stream view, the circular file provides a sliding window overlay

on the circular buffer from the sixty four bit index of the last byte written backward

to the 64 bit index of the oldest byte in the file. The read pointer may only reside

within the current sliding window and stream view seek functions are provided to

move both the read pointer and the write pointer within this sliding window.

Two variations of circular files are also provided, one mode is optimized for digital

video and similar applications, and the other mode is optimized for data acquisition

applications. The two modes differ only by how they handle data overrun conditions.

24

Circular files are designed to support digital video and similar applications. Circular

files provide the ability to record data to the file while simultaneously allowing

random access within the file to render the contents or to extract portions of the

buffer to a permanent archive. A special API call is provided that extracts portions of

the circular file to traditional linear files for permanent storage. When portions of

the circular buffer have been extracted to permanent storage they temporarily exist

in two locations, the circular file and the linear extract file. For example, a DVR

device may be playing a 30 minute sequence of video from inside a twenty four

hour video stream and the user may choose to archive the program for permanent

storage while continuing to view the program. RtfsPro performs this extract

operation in real time, in most cases without copying any data, and causing

processor and disk bandwidth problems for the data collect and data display

processes.

Circular files opened in circular file mode are more useful in traditional data

acquisition applications. In circular file mode RTFS truncates circular file write

operations if the write pointer will overtake the read pointer. The write call returns a

short write count to the user indicating to the application that not all data could be

written without losing data. This mode is useful for streaming data acquisition

systems that must take data overruns into account. This may be either to log and

clear the overrun error or to tune the data acquisition process by either increasing

the buffer capacity or balancing the load. Buffering depths may be made arbitrarily

large, allowing very deep buffering for high volume burst mode data acquisition

applications. The application can also take advantage of the library to coordinate

communications handshaking with the buffering process. The circular file stat

function may be queried to determine how much unfilled buffer space is available

between the current write pointer and the last unread data. Applications may use

this depth indicator to hold off a burst mode data source while a data consumer

process offloads data from the FIFO.

The FAT64 Sixty Four Bit Metafile API

Because disks are becoming larger and larger, bigger data sets, such as full length

videos, are becoming common. 64 bit file support that goes beyond the FAT32 4-

gigabyte file size barrier is necessary and RtfsProPlus provides a 64 bit

abstraction layer that accomplishes this, by providing 64 bit files and a 64 bit

capable File IO API while remaining FAT32 compatible.

FAT64 files are stored on disk, not as files, but as subdirectories that contain file

data segments. The file’s data is stored in one or more data segment files within the

subdirectory containing the file’s name. These segment files are simple 8.3 files

named, “FAT64000.F64”, “FAT64001.F64”, “FAT64002.F64” and so on. Each of

these files holds two gigabytes of data so 64 bit Meta files can grow to almost

infinite length.

The FAT64 abstraction layer hides the complexity of 64 bit metafiles from the

RtfsProPlus API so that the API calls needed for accessing 64 bit files are identical

to the ones used for accessing standard 32 bit files. Because FAT64 file IO is really

just segmented access to high performance 32 bit files there is only a marginal

performance cost for using 64 bit files versus native 32 bit files.

Application Notes

25

These 64 bit files may be exchanged with standard PCs, or other FAT32 enabled

devices.

The FAT64 abstraction is transportable to standard PCs but without some help, PC

applications will not recognized FAT64 files as anything more than subdirectories

containing multiple 2 gigabyte files.

Several approaches could be used to make FAT64 files transparently accessible to

standard PC applications:

1. Utilities can be devised to copy a FAT64 file from a FAT32 volume to a single

NTFS 64 bit file.

2. A file system driver plug-in can be devised to make a FAT64 enabled volume

appear as a 64 bit capable file system.

3. Applications may be modified to be made FAT64 aware at the application

layer, calling FAT64 aware libraries to perform file IO.

26

Rtfs Test Procedures and API programming

Examples

Rtfs is tested using interactive test shells in combination with several automated

regression tests.

Rtfs regression test procedures

The Rtfs test suite includes a baseline regression test suite and several unit test

suites that verify correct operation of Rtfs subsystems.

The baseline regression test is part of the API and may either be invoked from the

Rtfs command shell or by calling the tests entry point. It is documented on the

following page.

The unit test suites are also included with Rtfs but they are not part of the standard

API, they are normally controlled from the Rtfs interactive control shell.

The unit tests are described in the sections that follow the pc_regression_test()

manual page.

A separate application note contains a tutorial on Rtfs interactive command shells

and running Rtfs regression tests from the command shells

Application Notes

27

The pc_regression_test() API entry point
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Rtfs baseline feature set regression test suite. This subroutine calls all or most of the

API routines while stress testing the system for driver bugs, memory leaks and

freespace leaks.

SUMMARY

#include <rtfs.h>

BOOLEAN pc_regression_test(byte *driveid, BOOLEAN do_clean)

driveid Name of the volume “A:” “B:” etc.

do_clean If do_clean is TRUE, the test suite will loop multiple times.

The number of loops is determined by the compile time

constants INNERLOOP and OUTERLOOP in the source file

apiregr.c.

If do_clean is FALSE, the test suite executes once and

returns without deleting the files and directories that it

created.

DESCRIPTION

This routine verifies the basic operation of the Rtfs. It, along with other tests

described later, is used to verify Rtfs before it is released.

The regression test may be used in the field to validate ports to new targets and to

stress test device drivers. The tests that are performed by pc_regression_test()

are described in the next sections.

If pc_regression_test() detects an error condition it calls the routine

regress_error() passing an integer containing one of the 30 or so possible error

conditions. By default this routine prints the error number to the console and invokes

ERTFS_ASSERT_TEST().

 To run the regression test from your application:

o Make sure Rtfs is initialized by calling pc_ertfs_run()

o Call pc_regression_test()

 To run the regression test from the command shell:

o typing REGRESS D:

o Note: The next section provides examples of invoking this and other

tests from the command shell.

RETURNS

TRUE Success

FALSE Invalid drive specified in an argument.

ERTFS_ASSERT_TEST() will loop endlessly or

trap to a debugger for other errors.

Application Level Error Return Codes

None

28

Rtfs regression test procedure reference

The source code for the command shells and regression tests may be found in the

following files:

rtfscommon\source\apiregrs.c Rtfs baseline feature set regression test suite.

rtfspackages\apps\prfstest.c RTFS standard Failsafe regression test

rtfspackages\apps\preftest.c RTFSProPlus Extended file and FAT64 regression

test suite.

rtfspackages\apps\prasytest.c RTFSProPlus asynchronous feature set

regression test suite.

rtfspackages\apps\prcftest.c RTFSProPlus circular file regression test suite.

rtfspackages\apps\prlinexttest.c RTFSProPlus test of file cluster manipulation

routines.

rtfspackages\apps\prtranstest.c RTFSProPlus transaction file regression test

suite

rtfscommon\apps\appcmdshrd.c Interactive command shell for common Rtfs

subroutines.

rtfscommon\apps\appcmdshwr.c Interactive command shell for common Rtfs

subroutines.

rtfscommon\apps\appcmdfs.c Interactive command shell for common Failsafe

routines

rtfspackages\apps\efishellrd.c Interactive command shell for RtfsProPlus

subroutines

rtfspackages\apps\efishellwr.c Interactive command shell for RtfsProPlus

subroutines

This application note describes:

 The automated tests that are performed on Rtfs before it is released.

 The procedures that perform the tests.

 The procedures in command shells that are used in the testing and

development.

 This application notes may be used in conjunction with the source code

described to find sample code that will do almost anything you can imagine

doing with Rtfs.

The content of this document is derived from the source code. Each section lists the

name of a source file and the tests that are performed by it. Within each section a

description is presented of the tests that are performed.

The sections describing application shells are different. They provide the function

entry point and a brief description of many of the commands that are provided by

the command shells. These descritptions may be used to help select example code

from the source code and to derive test scenarios for your application using the

command shell.

Application Notes

29

Regression Test for features common to all Rtfs releases

Test File: rtfscommon/source/apiregress.c

o Procedure:BOOLEAN pc_regression_test()

o Description: Rtfs baseline feature set regression test suite.

o This subroutine calls all or most of the API routines while stress

testing the system for driver bugs, memory leaks and freespace leaks.

o The routine may be inoked by typing REGRESS D: from the command

shell

 Procedure: Basic File Regression Test pseudo-code

o Check Disk Freespace

o Make the test directory

o loop

o Step into the test directory

o Make another subdiretory

o loop

o Make N deep subdirectories

 Change into each

 compare what we know is in the directory with

 what pc_get_cwd returns.

o End loop

o In the lowest level directory perform file tests (explained below)

 test long file names

 test large files (4 Gig)

 test file write with append mode

o loop

 create a file

 open it with multiple file descriptors

 loop

 write to it on multiple FDs

 loop

 seek and read on multiple FDs, while testing values

 flush

 truncate

 close

o end loop

o loop

 rename file

o delete file

o end loop

o either

 loop N times

 change to parent directory

 delete subdirectory

 end loop

o or

 deltree the test directory

o Check Disk Freespace again and compare with original

30

o Procedure: Long file name test

o Verify proper operation of file create, reopen and delete on files with

name lengths that vary between 32 and 255 characters.

o Verify attempting to create filename with a length greater that 255

characters fails.

o Procedure: Additional long file name tests

o Verify proper alias name creation.

o Verify proper handling of file names with all illegal characters.

o Verify proper handling of all reserved names (null, con etc).

o Verify reserved names with extensions. (null.xxx, con.xxx etc).

o Verify proper handling of leading 0xE5 character in JIS file names.

o Verify proper handling of 2 byte JIS characters at the beginning,

middle and end of file names and file extensions.

o The test performs the following operations.

 The source code contains a table of long file names in both

ASCII Jis and Unicode, and the alias name that should result

when the long file name is created.

 If the long name is illegal the associated alias name in the

table also is.

 If file creation using the long name fails and the alias is NON-

NULL then it is an error

 If file creation using the long name succeeds and the alias is

NULL then it is an error

 If file creation succeed then the alias name and the long name

are written to the file.

 The file is re-opened by it’s long name and long file name and

alias names are read in and compared to the table.

 The file is re-opened by it’s alias name and long file name and

alias names are read in and compared to the table.

 The file is re-opened by it’s Unicode long name and long file

name and alias names are read in and compared to the table.

 The file name is searched for by it’s long name with

pc_gfirst() and the named are read using and long file name

and alias names are read using pc_gread() and compared to

the table.

 The file name is searched for by it’s alias with pc_gfirst() and

the named are read using and long file name and alias names

are read using pc_gread() and compared to the table.

 The file name is searched for by it’s Unicode name with

pc_gfirst() and the named are read using and long file name

and alias names are read using pc_gread() and compared to

the table.

 This process is repeated several times and in the process.

 The file is created using it’s long name and it’s Unicode

name.

 All illegal sequences and reserved names are tested for

JIS/ASCII and Unicode.

 Files are reopened using long name, alias and Unicode

names.

 Files are deleted using long name, alias and Unicode

names.

Application Notes

31

 Files are scanned using pc_gfirst() using long name,

alias and Unicode names.

o Note: The table contains approximately 250 file names and their

aliases. Please consult the source code in

rtfscommon\source\apiregrs.c for the subroutine

do_more_long_file_tests() to view the table.

o Procedure: Test correct operation of append

o Verify that po_open() with append mode, correctly appends to the

end of the file.

o Verify imediately after a file is reopened.

o Verify after the file pointer has been moved.

o Procedure: Test correct operation of po_lseek()

o Verify that po_lseek() works correctly with negative and positive

offsets.

o Verify that po_lseek() processes error file pointer truncation

correctly.

o Verify that seek operations perform according to the following table:

Verify return values for various seek scenarios.

Seeks are performed on a file that is 16 bytes long.

Test with origin PSEEK_CUR start with the file

pointer positioned midway through the file at offset

8.

Seek

origin

Seek

offset

Expected

return

value

expected

errno

PSEEK_SET

0 0 0

-1 -1 PEINVALIDPARMS

8 8 0

16 16 0

17 16 0

PSEK_CUR

(from origin

== 8)

0 8 0

-9 0 0

-8 0 0

8 16 0

9 16 0

PSEEK_END

0 16 0

1 -1 PEINVALIDPARMS

-9 9 0

-16 0 0

-17 0 0

o Procedure: Verify proper operation of files opened with buffering.

o Open the same file twice, simultaneously in buffered mode.

o Verify that the file buffer remains coherent when reads, writes and

seeks are are performed on the two file descriptors.

32

o Procedure: Verify proper operation of the pc_gread() API function.

o Write data to a file and verify that the data can be accessed during a

directory enumeration using the pc_gread() API call.

o Procedure: Test correct behavior with large (4 Gig) files.

o Verify proper operation of a 32 bit files when it is almost full (4

Gigabytes).

o Verify that file writes and file extends behave appropriately when the

maximum file size is reached.

o Verify that file read behaves appropriately when the maximum file

size is reached.

o Verify that file seek behaves appropriately over the range including

when the maximum file size is reached.

o Procedure: Test file behavior when handles are opened multiple times.

o Test file create, reopen, close, flush and delete operations files.

o Verify proper operation of exclusive and shared open modes.

o Verify proper operation when a file is opened multiple times

simulteously.

o Verify proper operation of functions (delete, chsize) that require

exclusive access to a file.

o Procedure: Test correct errno setting.

o Every API call that is made by the basic regression test is followed by a

check of the errno setting.

o Verify that errno is cleared when there is no error.

o Verify that errno contains the correct value when API calls return an error

status.

o Procedure: Test correct operation of the check disk utility.

o Create lost cluster chains and verify that checkdisk can find and

remove the lost chains.

o Procedure:Cluster conversion test.

o Verify proper operation of cluster to sector and sector to cluster

conversion routines: pc_diskio_info, pc_cluster_to_sector and

pc_sector_to_cluster.

Regression Tests for RtfsProPlus features

Test File: rtfspackages/apps/preftest.c

o Procedure: pc_efilio_test(void)

o RTFSProPlus extended file and FAT64 regression test suite.

o Test suite performs tests to verify the correct operation of features

provided with RTFSProPlus.

o Procedure: pc_efilio_test - Extended IO regression test entry point

o This routine calls subroutines that test RTFSProPlus subsystems for

proper operations. Where appropriate tests are executed on both

FAT64 files and normal files.

o The following subroutines execute to test subsystems:

Application Notes

33

o test_efile_open_options - Test extended file open options.

o test_efile_data_tracking- Test extended file data operations.

o test_asynchronous_api - Test asynchronous operations

o test_fat64_aware_api - Verify correct FAT64 file awareness in the

traditional RTFS FAT file system API.

o Test correct operation of read write and seek and flush operatins on

files opened using PCE_LOAD_AS_NEEDED option.

o Test recovery modes when ProPlus runs out of regions structures

during mount.

o Test recovery modes when ProPlus runs out of regions structures with

a mounted volume.

o Test assigning specific clusters to files using pc_efilio_setalloc and

pc_diskio_free_lis.

o Verify placement using pc_get_file_extents().

o Test option PCE_FORCE_FIRST for 32 and 64 bit file.

o Test option PCE_FORCE_CONTIGUOUS for 32 and 64 bit file.

o Test option PCE_KEEP_PREALLOC for 32 and 64 bit file.

o Procedure: test_efile_data_tracking - Verify extended read,write,seek

operations on 32 bit and 64 bit files

o Fill a file with a pattern and then perform tests to verify that:

o The pattern can be read back

o File reads stop at end of file

o The pattern can be read back after the file is closed and reopened.

o File pattern reads are succesful after seeks to the the following

boundaries:

 Beginning of file

 End of file

 2 gigabyte segment boundaries in FAT64 files

o Verify that file pattern reads are succesful after random seeks to

offsets within the file.

o Verify that all seek methods work, method rotates through:

PSEEK_SET,PSEEK_CUR,PSEEK_CUR_NEG, and PSEEK_END.

o Procedure: test_fat64_aware_api - Verify ERTFS API is FAT64 file

aware.

o Verify that the following ERTFS API calls correctly identify files as

FAT64 files and perform appropriate FAT64 algorithms

 pc_stat

 pc_gfirst

 pc_mv

 pc_unlink

o Procedure: test chsize

o Test proper operation of pc_efilio_chsize() on 32 and 64 bit files

Regression Test for Failsafe features

o Test File: rtfspackages/apps/prfstest.c

o Procedure: pc_failsafe_test(void)

o Description: Test suite performs tests to verify the correct operation

of features provided with RTFSProPlusFailsafe.

34

o The following basic tests ares performed by source code in the file

named prfstest.c:

 Tests that Journaling works correctly when a Journal file wrap

occurs. When volume synchronize and Journal flush steps are

done seperately, the Journal file will wrap and the session start

location will be offset when the current frame record reaches

the end of the Journal and the frame record at the beginning of

the file has been synchronized. This is an unusual event so this

test verifies that the wrap algorithm is working correctly.

 Tests the use of fs_api_cb_journal_fixed places the Journal

at a fixed place and size. This test creates a contiguous file on

a volume and then sets the fixed Journal placement callback

coordinates to the file's extents. It then starts Journaling and

verifies the correct size and location of the Journal.

 Tests correct behavior on disk full conditions - Two seperate

tests verify that when Failsafe is Journaling to free space it

properly resizes the Journal file when the disk becomes full.

 Verify that the initial jounal size is reduced when Journaling is

started on a nearly full disk.

 Verify that the active Journal size is reduced when a disk

becomes nearly full while Journaling

 The tests are perfromed with and without using the memory

based free manager

 Tests Journal full condition. Verifies correct operation and

proper error handling when all records in the Journal file are

consumed.

 Tests Journal file error conditions. Correct operation and

proper error handling are tested for several simulated error

conditions.

 Out of date - Volume is changed with Journaling disabled and

flushed records in the file.

 Bad master record - Fields in the master record are manually

corrupted and error handling is verified.

 Bad frame record - Fields in frame records are manually

corrupted and error handling is verified.

 Tests other operating conditions

 No flush - Verifies that changes that are not flushed are lost

 Restore from disk - Verifies that flushed but unsynchronized

volume changes can be restored

 Synchronize from active session - Verifies that flushed volume

changes can be synchronized

 Restore after aborted synchronize - Verifies that aborted

synchronizes may be completed by restore

 Simultaneous Journal and syncronize - Verifies that volume

changes can be Journaled to one segment while another

segment is being synchronized.

o The following Failsafe tests are also available but they are performed

by source code in the file named prasytest.c

 Test that interrupting after Journal flush leaves the disk

undamaged and unchanged and that the Journaled changes

are be restored to the volume by a restore.

 Simulate a write IO error during the asynchronous first Journal

Application Notes

35

flush of session.

 Then check Journal file status. The Journal file should be not

valid or restore should be not required or recommend.

 Simulate write IO error during asynchronous Journal commit.

Then check disk and look for lost chains or some other error.

 Check Journal status and verify restore is required. Now

restore disk from Journal and verfiy lost chains or other errors

are clear.

 Or invoke the "fs test" command from the RTFSProPlus

command shell.

o Procedure: Perform random_test_asynchronous_api().

 Description: This test verifies that Failsafe behave properly

when IO errors are simulated on every block that is read or

written during a sequence of operations.

 Uses block access statistics to capture all block IO activity and

set of becnchmarks that log the state of the volume

 Calibrates itself by creating subdirectories and populating files,

and issuing Journal flush and synchronize requests while

gathering block access statistics and capturing a set of volume

state bechmarks.

 It then performs the same set of operations in a repetative

loop and simulates an IO error for every block read and write

request. For each simulated error it verifies that Failsafe

performs correctly, either leaving the volume unchanged if no

flushes occured before the error, or restoring the volume to

state recorded after the last succesful synchronize operation.

o Procedure: Test shrink of Journal file due to disk filling

o Enable failsafe

o Create a directory

o Check the size of failsafe reserved clusters

o Allocate all free blocks from the memory manager

o Check that failsafe reserved clusters are still reported as available

o Create another directory

o Make sure Failsafe file size was reduced by half and that free cluster

counts are correct

o Flush the Journal and abort

o Verify that the first directory is on the volume, because of

synchronization that occured during resize

o Restore

o Verify that the second directory is on the volume, because of restore

o Verify that free cluster counts are correct in all steps

o Release blocks from the memory manager

o Test with free manager enabled and with it disabled

o Procedure: Test initial reduction of Journal file due to disk filling

o Fill the disk with all but a few cluster

o Start Journaling and verify that a reduced journal file is produced

o Test with free manager enabled and with it disabled

36

Regression Test for asynchronous features

Test File: rtfspackages/apps/prasyest.c

o Description: RTFSProPlus asynchronous feature set regression test suite.

o Test suite performs tests to verify the correct operation of asynchronous

features.

o Test suite performs tests to verify the correct operation Failsafe features.

o Procedure: test_asynchronous api

o Verifies proper operation of asynchronous API

o Verify proper operation of asynchronous volume mount and freespace

scan.

o Verify proper operation of signaling mechanism that an asynchronous

mount requires.

o Verify proper operation of asynchronous file open.

o Verify proper operation of asynchronous file delete.

o Verify proper operation of asynchronous file flush.

o Verify proper operation of asynchronous disk flush.

o Verify proper error handling and errno generation when drive API calls

are made while an asynchronous mount is in progress

Additional Failsafe Regression Testing

Test File: rtfspackages/apps/prasyest.c

o Procedure: Failsafe restore coverage test - This test verifies proper operation

of failsafe during every possible block IO operation.

o Test the operation of Failsafe using compiled in DEBUG diagnostics

that simulate disk read and write errors.

o Provide a realistic simulation, simulated write errors overwrite the

block they are writing to with nonsense data.

o Enable Failsafe.

o Perform a series of operations like mkdir, open, write and close to

populate a subdirectory of a volume.

o Use internal diagnostics to record the block number and directions of

all blocks transfered to or from the disk.

o Use internal diagnostics to store watchpoints of the sate of the

volume after API calls.

o Remove the subdirectory.

o Perform the same series of operations but simulate read and write

errors and use Failsafe to restore the volume.

o Use internal diagnostics to simulate an IO error when a specific block

number, block count, and direction is specified.

o Verify that when errors are simulated after a Journal flush, the

volume is restorable.

o Verify that the restored state matches the proper calibrated

watchpoint.

o Verify that when errors are simulated before a Journal flush, the

session is not restorable.

o Verify that when errors are simulated before a Journal flush, the

volume is un-changed.

Application Notes

37

o Repeat this loop for every block number and direction that was

recorded during the calibration phase

o Prodedure: Test that interrupting after Journal flush leaves the disk

undamaged and unchanged and that the recorded Journal changes are

restored to the volume by a restore.

o Simulate a write IO error during the first asynchronous Journal flush

of session.

o Check Journal file status. The Journal file should be not valid or

restore should be not required or recommend.

o Simulate write IO error during asynchronous journal commit.

o Check disk and look for lost chains or some other error.

o Check Journal status and verify restore is required.

o Restore disk from Journal.

o Verify lost chains or other errors are clear.

o Procedure: random_test_asynchronous_api().

o Description: This test verifies that Failsafe behave properly when IO

errors are simulated on every block that is read or written during a

sequence of operations.

o Use block access statistics to capture all block IO activity and set of

becnchmarks that log the state of the volume.

o Calibrates itself by creating subdirectories and populating files, and

issuing Journal flush and synchronize requests.

o While gathering block access statistics and capturing a set of volume

state bechmarks. It then performs the same set of operations in a

repetative loop and simulates an IO error for every block read and

write request. For each simulated error it verifies that Failsafe

performs correctly, either leaving the volume unchanged if no flushes

occured before the error, or restoring the volume to state recorded

after the last succesful synchronize operation.

Regression Tests for Direct cluster Manipulation Routines

Test File: rtfspackages/apps/prlinexttest.c

o Procedure: test_efilio_extract(void)

o Description: Tests pc_efilio_swap(), pc_efilio_extract(), and

pc_efilio_remove() file cluster manipulation routines.

o Test suite performs tests to verify the correct operation of

pc_efilio_swap(), pc_efilio_extract(), and pc_efilio_remove()

on 32 and 64 bit files.

o Files are created and filled with data that identifies each file's cluster.

o Segments of files are moved and removed using the

pc_efilio_swap(), pc_efilio_extract(), and pc_efilio_remove()

API calls.

o File chains and data are check to verify proper operation

 Insert clusters 0-99 of a 100 cluster file in the front of a 10

cluster file

 Insert clusters 0-99 of a 100 cluster file in the front of a 10

cluster file

38

 Insert clusters 0-99 of a 100 cluster file at the end of a 10

cluster file

 Insert clusters 0-9 of a 100 cluster file in the front of a 10

cluster file

 Insert clusters 1-10 of a 100 cluster file in the middle of a 10

cluster file

 Insert clusters 1-10 of a 100 cluster file at the end of a 10

cluster file

 Test some combinations of 64 bit files

 Insert clusters 0-99 of a of a 4 gig + 100 cluster file in front of

a 10 cluster file

 Insert clusters 0-99 of a of a 4 gig + 100 cluster file at the end

of a 10 cluster file

 Insert clusters 0-9 of a 4 gig + 100 cluster file in the front of a

10 cluster file

 Insert clusters 0-9 of a 4 gig + 100 cluster file in the front of a

10 cluster file

 Insert 2 gig-8 clusters of a gig + 100 cluster file to cluster 4 of

a 2 gig-1 file

 Insert (no swap) 2 gig-8 clusters of a 4 gig + 100 to cluster 4

of a two_gig-8 cluster file

 Insert & swap 2 clusters from cluster (two_gig-1) of a 4 gig +

100 to cluster (two_gig-1) of a 4 gig + 100 file spans FAT64

segment break

 Insert & swap 1 clusters from cluster (two_gig -1) of a 4 gig +

100 to cluster (two_gig -1) of a 4 gig + 100 file at FAT64

segment 1 end

 Insert & swap 1 clusters from cluster (two_gig) of a 4 gig +

100 to cluster (two_gig) of a 4 gig + 100 file at FAT64

segment 2 start

 Insert & swap 100 clusters from cluster (two_gig-10) of a 4 gig

+ 100 to cluster (two_gig) of a 4 gig + 100 file insert 100

clusters at FAT64 segment 2 start

Regression Tests for circular file routines

Test File: rtfspackages/apps/prcftest.c

o Procedure: pc_cfilio_test(void)

o Description: RTFSProPlus circular file regression test suite. Test suite

performs tests to verify the correct operation of circular file features.

o Verify proper operation of circular file API calls.

o Verfiy proper operation of circular file extract API calls.

o May be invoked from the "test" command of the RTFSProPlus command

shell.

o The following subroutines executed to test subsystems:

o options_circular_file_efio_test - Verify proper argument handling.

o circular_file_test - Test proper functioning of circular file read, write

and seek operations.

o circular_file_extract_test - Test proper functioning of circular file

extract

Application Notes

39

o Procedure:Test pc_cfilio_open()

o Pass invalid arguments (wrap point equals zero),

o Verify that the open fails and errno is PEINVALIDPARMS.

o Description: Test proper functioning of circular file read, write and seek

operations

o Use both normal files and FAT64 files.

o Use both circular file open modes:

 PCE_CIRCULAR_BUFFER - Write always succeeds.

 PCE_CIRCULAR_FILE - Write truncates if it overtakes the

read pointer.

o Test both seek modes:

 pc_cstreamio_lseek - Read and write pointers are 64 bit

quantities that never reset. Offset zero is the first byte written

to and the offset of EOF is the last byte written to the file.

Valid offsets are the range: (last byte written - cirular file size)

to (last byte written).

 pc_cfilio_lseek - Read and write pointers are 64 bit

quantities that reset when they reach the circular file wrap

point. Offset zero is zero in the file and the offset of EOF is the

cirular file size.

o Verify that seek past EOF stops at EOF when EOF is not yet at the file

wrap point.

o Verify that PSEEK_END stops at EOF when EOF is not yet at the file

wrap point.

o Verify that PSEEK_END stops at beginning of file if offset is greater

than current length of file, when EOF is not yet at the file wrap point.

o Verify that seek past EOF stops at EOF when EOF is at the file wrap

point.

o Verify that seek past EOF using PSEEK_CUR stops at EOF when EOF

is at the file wrap point.

o Verify that read past EOF stops at EOF when EOF is at the file wrap

point.

o Verify that PSEEK_END stops at beginning of file if offset is greater

than current length of file, when EOF is at the file wrap point.

o Verify that seek past end stops at the correct logical EOF when the file

has wrapped.

o Verify that read stops at the correct logical EOF when the file has

wrapped.

o Verify that PSEEK_END starts at the correct logical EOF and

truncates to the correct start of file when the file has wrapped.

o Verify that PSEEK_CUR_NEG starts at the correct location and

truncates to the correct start of file when the file has wrapped.

o Verify that PSEEK_CUR starts at the correct location and truncates to

the correct end of file when the file has wrapped.

o Verify that stream mode seeks of to the start of the current data

window if the poposed new logical file pointer is to the left of the data

window.

o Verify that stream mode seeks to the end of the current data window

if the poposed new logical file pointer is to the right of the data

window.

40

o Verify read and write tracking by verifying that reads from offsets in

the file return the data put there by writes to the same offset

o Verify behavior when write pointer catches read pointer in

PCE_CIRCULAR_BUFFER mode.

o Verify that the write pointer continues past the read pointer.

o Verify that after being overtaken, reads, return 0 bytes

o Verify that after being overtaken, seek places the read pointer at the

oldest data in the file.

o Verify behavior when write pointer catches read pointer in

PCE_CIRCULAR_FILE mode.

o Verify that writes stop when the write pointer stops reaches the read

pointer.

o Verify that after reading some bytes that writes continue and then

stop again when the write pointer reaches the new read pointer.

o Verify behavior of read and write when the file is wrapped by verifying

that data that was written is read back appropriately.

o Verify that the read pointer stops when it reaches the write pointer

when the file wrap pointer has been passed multiple times.

o Procedure: circular_file_extract_test()

o Description: Test proper functioning of circular file extract using both

normal files and FAT64 files perform the following tests.

o Procedure One:

 Fill a circular file with a known pattern.

 Select a random offset and extract range within the file.

 Extract the data to a linear file.

 Compare the contents of the linear file and the region of the

circular file it was extracted from. They should match.

o Procedure Two:

 Fill a circular file with a known pattern.

 Select 10 random offsets and extract ranges within the file.

 Note: all or portions of the extract regions may overlap.

 Extract these extract regions to 10 linear files. Compare the

contents of the linear files and the region of the circular file

they were extracted from. They should match.

Regression Tests for transaction file overwrite routines

Test File: prtranstest.c

o Procedure: test_efilio_transactions()

o Description: Regression test for RTFS transaction file operations on 32

bit and 64 bit files.

o Test reading, writing and overwriting of file data with the file opened

in PCE_TRANSACTION_FILE mode.

o Simulate power interrupts by aborting disk mount sessions.

o Verify that aborted transaction file overwrites are completed properly

during system restore.

o Perform the test using random file pointer offsets and random file

write sizes.

o Test transaction overwrites at various boundary conditions including:

Application Notes

41

 Beginning of file

 End of file

o Test argument handling for pc_efilio_open with transaction support

for 32 bit and 64 bit files.

o With Failsafe disabled.

o With no transaction buffer but legal size.

o With transaction buffer but illegal size.

o Everything legal but buffered.

o Test illegal options for transaction files.

o PCE_KEEP_PREALLOC

o PCE_CIRCULAR_FILE

o PCE_CIRCULAR_BUFFER

o PCE_REMAP_FILE

o PCE_TEMP_FILE

o Open twice: once transactional, once not.

Command Shell for Common Rtfs functions

Test File: rtfscommon/apps/appcmdshrd.c

o Procedure: _tst_shell()

o Description: Interactive command commands that call common Rtfs

subroutines.

o Procedure: pc_shell_show_stats()

o Displays the disk access statistics and time required to execute the previous

command.

o Procedure: doeject() - Call a device driver to report device removal.

o Invoke by typing "EJECT" in the extended command shell.

o Procedure: dounicode() - Force the command shell to convert names to

Unicode and call unicode versions of functions.

o Invoke by typing "UNICODE" in the extended command shell.

o Procedure: dols() - Perform a directory enumeration and display file

information.

o Invoke by typing "DIR" in the command shell.

o Procedure: doenum() - Perform a recursive directory enumeration using

pc_enumerate() and display file information.

o Invoke by typing "ENUM" in the command shell.

o Procedure: docat() - Display the contents of a named file.

o Invoke by typing "CAT" in the command shell.

o Procedure: dodiff() - Compare the contents of named files.

o Invoke by typing "DIFF" in the command shell.

42

o Procedure: dostat() - Call pc_stat() and display information about a

named file.

o Invoke by typing "STAT" in the command shell.

o Procedure: do_show_file_blocks() - Call pc_get_file_extents() and

display the cluster chain of a named named file.

o Invoke by typing “SHOWFILEEXTENTS” in the command shell.

o Procedure: dodiskclose() - Call pc_diskclose() to abort a mount.

o Invoke by typing “DSKCLOSE” in the command shell.

o Procedure: doreset() - Call pc_ertfs_shutdown() to shut down and reset

Rtfs.

o Invoke by typing “RESET” in the command shell.

o Procedure: do_show_disk_stats() - Call pc_diskio_info() to retrieve

and display extended information about the current volume.

o Invoke by typing “SHOWDISKSTATS” in the command shell.

o Test File: rtfscommon/apps/appcmdshwr.c.

o Procedure: domkdir() - Call pc_mkdir() to create a directory.

o Invoke by typing "MKDIR" in the command shell.

o Procedure: dormdir() - Call pc_rmdir() to delete a directory.

o Invoke by typing "RMDIR" in the command shell.

o Procedure: dodeltree() - Call pc_dodeltree() to recursively delete a

directory.

o Invoke by typing "DELTREE" in the command shell.

o Procedure: dorm() - Call pc_rm() to delete a file. Use enumeration to

delete multiple files using wildcard patterns.

o Invoke by typing "DELETE" in the command shell.

o Procedure: domv() - Call pc_mv() to move or rename a file.

o Invoke by typing "RENAME" in the command shell.

o Procedure: dochkdsk() - Call pc_check_disk() to check a disk's format.

o Invoke by typing "CHKDSK" in the command shell.

o Procedure: dochsize() - Call po_chsize() to truncate or grow a file.

o Invoke by typing "CHSIZE" in the command shell.

o Procedure: docopy() - Copy one named file to another.

o Invoke by typing "COPY" in the command shell.

o Procedure: dofillfile() - Create a file and fill it with a pattern. Useful for

debugging, the file can later be read, copied, moved deleted etc.

o Invoke by typing "FILLFILE" in the command shell.

o Procedure: doformat() - Manage disk partitions and format volumes.

o Invoke by typing "FORMAT" in the command shell.

Application Notes

43

o Procedure: do_show_disk_free() - Call pc_diskio_free_list() to

retrieve and display information about the freespace on current volume.

o Invoke by typing "SHOWDISKFREE" in the command shell.

o Procedure: dotestopenspeed(int agc, byte **agv)

o Description: Creates or re-opens up to 1000 files in a subdirectory.

o Reports total elapse time and average time per file.

o Invoked by typing "OPENSPEED" in the command shell.

Command Shell for Controlling Failsafe

Test File: rtfscommon/apps/appcmdshfs.c

o Description: Interactive commands that call Rtfs ProPlus failsafe subroutines.

o Procedure: do_efile_failsafe()

o Description: Manually perform Failsafe commands

o Invoke by typing "fs" in the extended command shell or "FS" in the

basic command shell with the following options

 abort - Abort the current mount without flushing

 exit - Flush journal file and FAT stop journalling

 enter - Begin Journalling

 jcommit - Flush journal file but not FAT. Stops journalling

and aborts, leaves a restorable Journal

 jflush - Flush journal file but not FAT and continue

journalling

 commit - Flush journal file and synchronize FAT volume

 info - Display information about current Failsafe Session

 clear - Reset Journal IO statistics

 restore - Restore the volume from current Journal File

Command Shell for extended Rtfs functions

Test File: rtfspackages/apps/efishellrd.c

o Procedure: efio_shell()

o Description: Interactive command shell with commands that call Rtfs ProPlus

extended API subroutines.

o Procedure: do_efile_open()

o Description: open or re-open a file using pc_efilio_open().

o All extended options are supported.

o Invoke by typing "open" in the extended command shell.

o Procedure: do_efile_read()

o Description: Read from a file

44

o Invoke by typing "read" in the extended command shell with the following

options:

o fileindex - The file index printed by the "open" or "copen" command.

o resetfp - 'y' or 'Y' to seek to the beginning of the file before.

o xferdata - 'y' or 'Y' to transfer data or 'n' to skip data transfer

portion.

o totalsize - Total number of bytes to read from the file, can be a 64 bit

value.

o readsize - Number of bytes to read per read call.

o Procedure: do_efile_seek()

o Description: Seek within a file.

o Invoke by typing "seek" in the extended command shell with the following

options:

o fileindex - The file index printed by the "open" or "copen" command

o nseeks - Number of seeks to perform on the file (for viewing

perfromance).

o doread - 'y' To perform a one block read operation after every seek

(forces a file read).

o doxfer - If 'Y' and doread is true instructs the command read a

block and force a disk seek.

o Procedure: do_efile_close()

o Description: Close a file.

o Invoke by typing "close" in the extended command shell with the following

options:

o fileindex - The file index printed by the "open" or "copen" command.

o Completes asynchronously if the command shell is in asynchronous

completion mode.

o Procedure: do_efile_stat()

o Description: Performs a call to pc_efilio_fstat() and display information

about the file.

o Procedure: async_continue_proc()

o Description: A background thread that completes asynchronous process by

calling pc_async_continue().

o Used when the command shell is in asynchronous completion mode.

o Procedure: do_efile_remount()

o Description: Flushes, closes and remounts a volume.

o Completes asynchronously if the command shell is in asynchronous

completion mode.

o Invoke by typing "remount" in the extended command shell.

o Procedure: do_efile_set_buff()

o Description: Changes the size of RtfsProPlus's user buffer.

o Helps in measuring the performance of Rtfs as a function of user buffer size.

o Invoke by typing "setbuff" in the extended command shell.

o Procedure: do_efile_configure()

o Description: Reconfigures a drive by calling pc_diskio_configure().

Application Notes

45

o Supports all configuration options.

o Invoke by typing "config" in the extended command shell.

o Procedure: do_efile_async()

o Description: Enable or disable asynchronous completion modes.

o If asynchronous mode is enable then shell commands use asynchronous

methods if applicable.

o Invoke by typing "async" in the extended command shell.

o Supports "inline" completion in which the shell commands step the async

engine until the command is completed.

o Supports "manual" completion in which the shell command "complete" must

be called to step the async engine.

o Supports "background" completion where a thread perfroms completion

(requires porting to most targets).

o Procedure: do_efile_async_complete()

o Description: Steps the async engine until all outstanding operations are

completed.

o Invoke by typing "complete" in the extended command shell.

o Procedure: demonstrate_dma_to_efile()

o Description: This code fragment demonstrates the basic methods needed to

use RtfsProPlus to write files using direct memory access.

o Procedure: demonstrate_dma_from_efile()

o Description: This code fragment demonstrates the basic methods needed to

use RtfsProPlus to read files using direct memory access.

Test File: rtfspackages/apps/efishellwr.c

o Procedure: efio_shell()

o Description: Interactive commands that call RtfsProPlus extended API

subroutines.

o Procedure: do_efile_setallocation_hint()

o Description: Calls pc_efilio_setalloc() to assign specific clusters to an open

file.

o Invoke by typing "sethint" in the extended command shell.

o Procedure: do_efile_writefile()

o Description: Write to a file.

o Invoke by typing "write" in the extended command shell with the following

options:

o fileindex - The file index printed by the "open" or "copen" command.

o resetfp - 'y' or 'Y' to seek to the beginning of the file before.

o xferdata - 'y' or 'Y' to transfer from an uninitialized data buffer or 'n'

to skip data transfer portion.

o totalsize - Total number of bytes to read from the file, can be a 64 bit

value.

o writesize - Number of bytes to write per write call.

o Procedure: do_efile_chsize()

o Description: Calls pc_efilio_chsize() to shrink or grow a 32 or 64 bit file.

o Invoke by typing "chsize" in the extended command shell.

46

o Procedure: do_efile_settime()

o Description: Calls pc_get_dirent_info() and pc_set_dirent_info() to

change the time field of a directory entry.

o Invoke by typing "settime" in the extended command shell.

o Procedure: do_efile_setsize()

o Description: Calls pc_get_dirent_info() and pc_set_dirent_info() to

change the size field of a directory entry.

o Invoke by typing "setsize" in the extended command shell.

o Procedure: do_efile_setcluster()

o Description: Calls pc_get_dirent_info() and pc_set_dirent_info() to

change the cluster field of a directory entry.

o Invoke by typing "setcluster" in the extended command shell.

o Procedure: do_efile_flush()

o Description: Flush a file.

o Invoke by typing "flush" in the extended command shell with the following

options:

o fileindex - The file index printed by the "open" or "copen" command.

o Completes asynchronously if the command shell is in asynchronous

completion mode.

o Procedure: do_efile_delete()

o Description: Delete a 32 bit or 64 bit file.

o Invoke by typing "delete" in the extended command shell.

o Completes asynchronously if the command shell is in asynchronous

completion mode.

o Procedure: do_efile_tests()

o Description: Invoke an rtfs Pro Plus regression test.

o Invoke by typing "test testname driveid" in the extended command shell

o Testname may be:

o efile - Test Extendeded File API.

o extract - Test pc_efext_extract, swap and remove.

o cfile - Test Circular files.

o async - Test Asycnhronous operation and Failsafe.

o transaction - Test transaction files.

o failsafe - Test Failsafe.

o Completes asynchronously if the command shell is in asynchronous

completion mode.

o Procedure: do_cfile_open()

o Description: Open or re-open a circular file using pc_cfilio_open().

o All extended options are supported.

o Invoke by typing "copen" in the extended command shell.

o Procedure: do_cfile_extract()

o Description: Use pc_cfilio_extract() to extract a portion of a circular file

into a linear extract file.

o Invoke by typing "extract" in the extended command shell.

