
Rtfs API Reference Guide

1�1§

Rtfs with exFAT

API Reference Guide
©2011 EBS, Inc

Revised January 2011

For on-line viewing navigate using the Adobe Acrobat’s Bookmarks tab or use
hyperlinks in the table of contents.

http://www.ebsembeddedsoftware.com

http://www.ebsembeddedsoftware.com/

2�2§

TABLE OF CONTENTS

All Rtfs packages - Initialize and shutdown ___________________ 8

pc_ertfs_init __ 8

rtfs_init_configuration___ 9

pc_ertfs_shutdown __ 13

All Rtfs packages – Media driver interface ___________________ 14

pc_rtfs_media_insert __ 14

device_io – media driver callback _______________________________ 16

device_erase – media driver callback ____________________________ 17

device_ioctl – media driver callback _____________________________ 18

device_configure_media – media driver callback ___________________ 19

device_configure_volume – media driver callback __________________ 21

pc_rtfs_media_alert ___ 24

All Rtfs packages – Application callbacks ____________________ 25

rtfs_sys_callback ___ 25

rtfs_app_callback ___ 28

rtfs_diag_callback ___ 30

rtfs_failsafe_callback __ 31

All Rtfs packages - Basic API _____________________________ 32

pc_diskclose ___ 32

pc_diskflush ___ 33

pc_set_cwd __ 34

pc_set_cwd_uc ___ 34

pc_set_default_drive __ 36

pc_get_default_drive __ 37

pc_get_default_drive_uc _____________________________________ 37

pc_drno_to_drname ___ 38

pc_drno_to_drname_uc ______________________________________ 38

pc_drname_to_drno ___ 39

pc_diskio_info __ 40

get_errno ___ 42

get_errno_location __ 43

pc_glast __ 44

pc_glast_uc __ 44

pc_gprev __ 45

pc_gprev_uc ___ 45

pc_gread __ 47

pc_get_attributes ___ 49

pc_get_attributes_uc __ 49

pc_set_attributes ___ 50

pc_set_attributes_uc __ 50

pc_isdir ___ 51

pc_isdir_uc __ 51

pc_isvol ___ 52

pc_isvol_uc __ 52

pc_stat ___ 53

pc_stat_uc __ 53

pc_blocks_free ___ 55

pc_mkdir __ 56

pc_mkdir_uc ___ 56

pc_rmdir __ 57

pc_rmdir_uc ___ 57

pc_mv __ 58

pc_mv_uc ___ 58

pc_unlink ___ 59

pc_unlink_uc ___ 59

All Rtfs packages - Basic File IO API _______________________ 60

po_open __ 60

po_open_uc ___ 60

po_close __ 62

po_read ___ 63

po_write __ 64

po_lseek64 __ 65

po_ulseek ___ 66

po_chsize ___ 67

po_flush __ 68

pc_fstat ___ 69

All Rtfs packages - Format and partition management API ______ 71

pc_get_media_parms __ 71

pc_get_media_parms_uc _____________________________________ 71

pc_partition_media __ 73

pc_partition_media_uc _______________________________________ 73

pc_format_media ___ 75

pc_format_media_uc __ 75

pc_format_volume __ 76

pc_format_volume_uc _______________________________________ 76

pc_format_volume_ex _______________________________________ 77

pc_format_volume_ex_uc ____________________________________ 77

pcexfat_format_volume ______________________________________ 79

All Rtfs packages - Utility API _____________________________ 80

pc_deltree ___ 80

pc_deltree_uc __ 80

pc_enumerate __ 81

pc_enumerate_uc ___ 81

pc_check_disk __ 83

All Rtfs packages - Miscellaneous functions __________________ 85

tst_shell __ 85

pc_free_user ___ 86

Sixty four bit math package ______________________________ 87

Mixed 64 bit 32 bit operators __________________________________ 87

64 bit arithmetic operators ____________________________________ 87

64 bit logical operators _______________________________________ 87

RtfsProPlus - Real time and direct disk management API _______ 88

pc_diskio_runtime_stats ______________________________________ 88

pc_diskio_free_list __ 91

pc_efilio_setalloc ___ 93

pc_efilio_get_file_extents _____________________________________ 94

pc_get_dirent_info __ 96

pc_set_dirent_info __ 97

pc_efilio_fpos_sector __ 99

pc_fd_to_driveid ___ 101

pc_cluster_to_sector _______________________________________ 102

pc_sector_to_cluster _______________________________________ 103

pc_raw_write ___ 105

pc_bytes_to_clusters _______________________________________ 106

pc_clusters_to_bytes _______________________________________ 107

pc_subtract_64 __ 108

pc_add_64 ___ 109

RtfsProPlus - Extended file IO API ________________________ 110

pc_efilio_open ___ 110

pc_efilio_open_uc __ 110

pc_efilio_close___ 115

pc_efilio_read ___ 116

pc_efilio_write ___ 117

pc_efilio_lseek __ 119

pc_efilio_chsize __ 121

pc_efilio_extract ___ 122

pc_efilio_swap __ 124

pc_efilio_remove ___ 125

pc_efilio_flush ___ 126

pc_efilio_fstat ___ 127

RtfsProPlus - Asynchronous operations API _________________ 130

pc_async_continue ___ 130

pc_diskio_async_flush_start _________________________________ 135

pc_diskio_async_mount_start ________________________________ 137

pc_efilio_async_open_start __________________________________ 139

pc_efilio_async_open_start_uc ________________________________ 139

pc_efilio_async_close_start __________________________________ 140

pc_efilio_async_flush_start __________________________________ 142

pc_efilio_async_unlink_start _________________________________ 144

pc_efilio_async_unlink_start_uc _______________________________ 144

RtfsProPlusDVR - Circular File IO API _____________________ 146

pc_cfilio_open ___ 148

pc_cfilio_open_uc __ 148

pc_cfilio_setalloc ___ 152

pc_cfilio_close ___ 153

pc_cfilio_read ___ 154

pc_cfilio_write ___ 155

pc_cfilio_lseek ___ 157

pc_cstreamio_lseek __ 159

pc_cfilio_extract ___ 162

All Rtfs packages - Initialize and shutdown

pc_ertfs_init
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

pc_ertfs_init() must be called by the application before it calls any Rtfs API

functions. pc_ertfs_init() in turn calls an application specific callback subroutine

named rtfs_init_configuration() configure Rtfs and acquire operating memory.

SUMMARY

BOOLEAN pc_ertfs_init (void)

DESCRIPTION

 This function works in conjunction with an application supplied callback subroutine
named rtfs_init_configuration() to configure and initialize Rtfs memory. It then

allocates memory dynamically, if so instructed, and allocates necessary semaphores

for the operating system porting guide.

NOTE: Please consult the manual page for rtfs_init_configuration() for detailed

instructions on what this function must provide to Rtfs.

RETURNS

TRUE All memory and system resource initialization

succeeded and Rtfs is usable

FALSE Memory and system resource initialization failed and

Rtfs is not usable

This function does not set errno.

SEE ALSO

rtfs_init_configuration()

rtfs_init_configuration
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Set system wide operating parameters. This is a callback subroutine that must be

provided by the application layer to configure Rtfs and provides operating
memory.

SUMMARY

void rtfs_init_configuration (preply)

struct rtfs_init_resource_reply *preply Contains operating parameters for

Rtfs .

DESCRIPTION

rtfs_init_configuration() configures the global operating parameters and

buffering that Rtfs will use. It is called by pc_ertfs_init() when Rtfs is first

initialized.

A reference version of this function is provided in the file named rtfsconfig.c in
the subdirectory rtfsprojects\msvc.net\source. These files and rtfscallbacks.c

should be copied to your project file and reconfigured to suit your application's
needs.

The reference version of rtfs_init_configuration() is controlled by the
following compile time constants defined in rtfsconfig.h.

RTFS_CFG_SINGLE_THREADED
RTFS_CFG_INIT_DYNAMIC_ALLOCATION
RTFS_CFG_MAX_DRIVES

RTFS_CFG_MAX_FILES
RTFS_CFG_MAX_SCRATCH_BUFFERS
RTFS_CFG_MAX_SCRATCH_DIRS

RTFS_CFG_MAX_USER_CONTEXTS
RTFS_CFG_MAX_REGION_BUFFERS
RTFS_CFG_SINGLE_THREADED_USER_BUFFER_SIZE

RTFS_CFG_SINGLE_THREADED_FAILSAFE_BUFFER_SIZE
RTFS_CFG_DIRS_PER_DRIVE
RTFS_CFG_DIRS_PER_USER_CONTEXT

rtfs_init_configuration() must initialize an rtfs_init_resource_reply.

struct rtfs_init_resource_reply {

int max_drives

int max_scratch_buffers

int max_file

int max_user_contexts

int max_region_buffers

int spare_user_directory_objects

int spare_drive_directory_objects

int use_dynamic_allocation

int run_single_threaded

dword single_thread_buffer_size

dword single_thread_fsbuffer_size

void * single_thread_buffer

void * single_thread_fsbuffer

void * mem_drive_pool

void * mem_mediaparms_pool

void * mem_block_pool

void * mem_block_data

void * mem_file_pool

void * mem_finode_pool

void * mem_finodeex_pool

void * mem_drobj_pool;

void * mem_region_pool;

void * mem_user_pool;

void * mem_user_cwd_pool

};

struct rtfs_init_resource_reply – This table describes the fields that must be

initialized to configure Rtfs. A sample version of rtfs_init_configuration() is

provided in rtfsconfig.c. It may be modified for your application’s requirements.

Field name Meaning

max_drives

The maximum number of drives that may be
mounted at one time. The maximum value is 26.

max_files The maximum number of files that may be opened
at one time.

max_scratch_buffers The number of blocks in the scratch buffer pool.
These are used by Rtfs as scratch memory buffers

when performing certain operations. Each scratch
buffer consumes approximately 536 bytes. The
default value is 32 but it may be reduced to as low

as 8 in most applications.

spare_drive_directory_objects
spare_user_directory_objects

These constants controls allocation of extra “dirent”
objects for use in certain non-file operations like

pc_enumerate() and pc_getcwd() that consume
dirent structures as they execute. The default
values are 16 and 4 respectively. They should not

be changed lightly, but if ram is a precious resource
you may wish to reduce them and then verify that

your application still runs correctly.

max_region_buffers The number of 12 byte REGION_FRAGMENT
structures dedicated to run length encoding of
cluster fragments in open files and free space.

The default setting is 5000, this consumes 60 K
and provides enough buffering for 5000 fragments

in free-space and in open files.

Increase this value if your application can spare the

memory.

If not enough fragment buffers are available Rtfs

resorts to much slower disk based FAT scans when
allocating clusters. If not enough buffers are
available for open files then file IO operations will

fail.

max_user_contexts The number of separate threads that will have their

own separate current working directory, and errno
contexts.

run_single_threaded Set to one to force Rtfs to run in single threaded

mode. In single threaded mode all drive accesses
use the same semaphore and thus execute

sequentially. This eliminates the need for individual
user buffers and failsafe restore buffers per drive,
resulting in reduced memory consumption, with

marginal to no performance degradation in most
systems.

The following fields, single_thread_buffer_size and

single_thread_fsbuffer_size, should be set only if run_single_threaded is true.
If run_single_threaded is not true, buffers must be provided for each mounted
drive.

These buffers are used for certain bulk fat table access operations and for Failsafe
journaling respectively. They are specified in bytes and since they are shared among

all drives they must be large enough to accommodate all media types, for optimal
performance with NAND flash they should be the size of an erase block. For large
rotating media, buffers sized 32 K or 64 K provide performance improvements.

single_thread_buffer_size Set to zero if run_single_threaded is zero.

single_thread_fsbuffer_size Set to zero if run_single_threaded is zero or if

you are not using Failsafe.

use_dynamic_allocation Set to 1 to instruct Rtfs to dynamically allocate

system wide resources.

Set to 0 to instruct Rtfs that system wide resources

are provided.

If use_dynamic_allocation is set to zero, the following fields must be initialized

with pointers to enough space for the objects being configured. The sample code
provided in rtfsconfig.c, does this for you and it is unlikely that you will need to
modify it.

void *single_thread_buffer; void *mem_finode_pool;

void *single_thread_fsbuffer; void *mem_finodeex_pool;

void *mem_drive_pool; void *mem_drobj_pool;

void *mem_mediaparms_pool; void *mem_region_pool;

void *mem_block_pool; void *mem_user_pool;

void *mem_block_data; void *mem_user_cwd_pool;

void *mem_file_pool;

RETURNS

Nothing

If an error occurred: errno is set to one of the following:

Errno is not set

pc_ertfs_shutdown
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

void pc_ertfs_shutdown (void)

SUMMARY

Shut down Rtfs.

DESCRIPTION

pc_ertfs_shutdown() puts Rtfs in an un-initialized state releasing all allocated

memory and system resources. Rtfs may be restarted by calling pc_ertfs_init().

RETURNS

Nothing

If an error occurred: errno is set to one of the following:

Errno is not set

All Rtfs packages – Media driver interface

pc_rtfs_media_insert
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

This function must be called by the device driver when media is inserted or the
device powered up. It sets operating parameters for the media.

SUMMARY

int pc_rtfs_media_insert(struct rtfs_media_insert_args *pmedia_parms)

struct rtfs_media_insert_args

*pmedia_parms

Operating parameters for Rtfs to

use when accessing this device.

See below for a complete

description of pmedia_parms.

DESCRIPTION

pc_rtfs_media_insert() alerts Rtfs that new media is available and provides it

with operating parameters and buffering that Rtfs stores internally and uses when

accessing this device.

The device driver must pass the address of an initialized rtfs_media_insert_args

structure to pc_rtfs_media_insert() . Configuration parameters are copied to

internal structures, so the configuration structure itself may reside on the stack.

struct rtfs_media_insert_args {

void * devhandle

int device_type

int unit_number

int write_protect

dword media_size_sectors

dword numheads

dword numcyl

dword Secptrk

dword sector_size_bytes

dword eraseblock_size_sectors

int (*device_io) ()

int (*device_erase) ()

int (*device_ioctl) ()

int (*device_configure_media)()

int (*device_configure_volume)()

};

struct rtfs_media_insert_args

devhandle Rtfs will pass this handle as one of the

arguments to certain device driver callback

functions. The device layer uses this to identify

the device and retrieve system specific

information.

Rtfs does not interpret devhandle, but it must be

a unique non-zero value.

device_type Rtfs will pass this device_type as one of the

arguments to certain driver callback functions.

The device layer uses this to identify the device

type when providing configuration information.

Rtfs does not interpret device_type.

unit_number Rtfs will pass unit_number as one of the

arguments to certain driver callback functions.

The device layer uses this to identify the device

type when providing configuration information.

Rtfs does not interpret device_type.

write_protect Initial write protect state of the device. Rtfs will

not write to the media if this is non-zero. The

driver can change the write protect state later

by calling pc_rtfs_media_alert().

media_size_sectors Total number of addressable sectors on the

media.

eraseblock_size_sectors Sectors per erase block for NAND devices.

Must be set to zero for media without erase

blocks

Numheads, numcyls and secptrk must be valid HCN values, they are placed

into the FAT boot structures where needed but they are otherwise not used.

HCN values should be calculated and then clipped to fit within the legal

values.

numheads Must be <= 255

numcyl Must be <= 1023

Secptrk Must be <= 63

sector_size_bytes 512, 124, 2048 etc.

(*device_io) () Device sector IO function

(*device_erase) () Device erase block erase function

(*device_ioctl) () Device IO control function

(*device_configure_medi

a)()

Device media Configuration function

(*device_configure_volu

me)()

Device volume mount Configuration function

};

device_io – media driver callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

This is a callback function that must be implemented for the target device. This

function is called by Rtfs and should not be called externally.

SUMMARY

int (*device_io)(void *devhandle, void *pdrive, dword sector, void

*buffer, dword count, int reading)

DESCRIPTION

This function is called when Rtfs wants to perform sector reads or writes to media

that was attached by pc_rtfs_media_insert() .

devhandle Handle passed to pc_rtfs_media_insert() when the device

was inserted. (*device_io) may use this to locate media

properties and state.

pdrive Void pointer to the Rtfs drive structure. Advanced device

drivers may caste this with (DDRIVE *) to access the drive

structure.

sector Starting sector number to read or write
buffer Buffer to read to write from

count Number of sectors to transfer
reading True for a read, False for a write request

RETURNS

0 Returned if IO failed.

1 Returned if IO successful

device_erase – media driver callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

This is a callback function that must be implemented for the target device. This

function is called by Rtfs and should not be called externally.

SUMMARY

int (*device_erase)(

void *devhandle, void *pdrive, dword start_sector, dword

nsectors)

DESCRIPTION

This function is called when Rtfs wants to erase sectors on media that was attached

by pc_rtfs_media_insert().

Note: This function will only be called if the value of eraseblock_size_sectors passed

to pc_rtfs_media_insert() is non zero.

NOTE: The region spanned by start_sector and nsectors is not always guaranteed to

be on erase block boundaries ! If the volume was formatted by Rtfs with enforced

erase block alignment the span will be erase block bound, but if the media was not

formatted this way the span could possibly not lie on erase block boundaries. If the

span is not erase block bound the device driver should return success without

erasing the sectors.

devhandle Handle passed to pc_rtfs_media_insert() when the device

was inserted. (*device_erase) may use this to locate media

properties and state.

pdrive Void pointer to the Rtfs drive structure. Advanced device

drivers may caste this with (DDRIVE *) to access the drive

structure.

sector Starting sector number to erase

nsectors Number of sectors to erase

RETURNS

0 Returned if erase failed.

1 Returned if erase was successful

device_ioctl – media driver callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

This is a callback function that must be implemented for the target device. This

function is called by Rtfs and should not be called externally.

SUMMARY

int (*device_ioctl)(void *devhandle, void *pdrive, int opcode, int iArgs,

void *vargs)

DESCRIPTION

This function is called when Rtfs wants to perform an ioctl subroutine call directly to

the device driver. Most devices can simply return 0 whenever this function is called.

See the opcode descriptions below for more information.

devhandle Handle passed to pc_rtfs_media_insert() when the device

was inserted. (*device_ioctl) may use this to locate media

properties and state.

pdrive Void pointer to the Rtfs drive structure. Advanced device

drivers may caste this with (DDRIVE *) to access the drive

structure.

opcode Ioctl opcode to perform.
iArgs Integer argument for ioctl.

vArgs Pointer argument for ioctl.

OPCODE Description

RTFS_IOCTL_FORMAT

Format the media if that is a supported operation.

Flash media drivers may erase all blocks on the media.

Most other media type don’t require formatting. These

devices should return 0 when asked to format.

RTFS_IOCTL_INITCACHE

Advanced feature. Devices should return 0 when

passed this argument.

RTFS_IOCTL_FLUSHCACHE Advanced feature. Devices should return 0 when

passed this argument.

RETURNS

-1 If the command failed.

0 If the command was successful

device_configure_media – media driver callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

This is a callback function that must be implemented for the target device. This

function is called by Rtfs and should not be called externally.

SUMMARY

int (*device_configure_media)(

struct rtfs_media_insert_args *pmedia_parms,

struct rtfs_media_resource_reply *pmedia_config_block ,

int sector_buffer_required)

DESCRIPTION

This function is called by Rtfs while it is executing pc_rtfs_media_insert() on

behalf of the device driver. pc_rtfs_media_insert() passes a

rtfs_media_insert_args structure containing information about the device. This

function must fill in the rtfs_media_resource_reply structure with configuration

and buffering information.

See the manual page for pc_rtfs_media_insert() for a descriptions of the

rtfs_media_insert_args structure.

struct rtfs_media_resource_reply {

int use_dynamic_allocation

int requested_driveid

int requested_max_partitions

int use_fixed_drive_id

dword device_sector_buffer_size_bytes

byte *device_sector_buffer_base

void *device_sector_bffer_data

};

struct rtfs_media_resource_reply

use_dynamic_allocation Set to 1 to instruct Rtfs to dynamically

allocate media buffers.

Set to 0 to instruct Rtfs that media buffers

are provided.

requested_driveid Drive Id (0 – 25) to assign to the media if

not partitioned or to the first partition on the

media if it is.

requested_max_partitions Maximum number of volumes to mount on

this media.

Note: device_configure_volume() must

be prepared to configure this many

partitions.

use_fixed_drive_id Must be set to 1.

device_sector_buffer_size_b

ytes

This buffer is used for certain bulk FAT table

access operations. It is specified in bytes, for

optimal performance with NAND flash it

should be the size of an erase block. For

large rotating media, buffers sized 32 K or

64 K provide performance improvements.

Note: If rtfs_init_configuration() was

configured for run_single_threaded, then

device_sector_buffer_size_bytes should be

set to zero.

*device_sector_buffer_data If use_dynamic_allocation is zero, this

must be initialized to point to an area of ram

device_sector_buffer_size_bytes wide. If

use_dynamic_allocation is one, leave this

field blank, Rtfs will allocate the necessary

memory.

*device_sector_buffer_base Internal, do not set.

RETURNS

0 Return if successful

-1 Return if an unsupported device type was encountered

-2 Returned if out of resources

device_configure_volume – media driver callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

This is a callback function that must be implemented for the target device. This

function is called by Rtfs and should not be called externally.

SUMMARY
Int (*device_configure_volume)(

struct rtfs_volume_resource_request *prequest_block,

struct rtfs_volume_resource_reply *pvolume_config_block)

DESCRIPTION
This function is called when the volume on a device must be configured. This

function is passed in an rtfs_volume_resource_request structure containing

information about the volume. The configuration of the volume is passed back in

the pvolume_config_block. The purpose of this function is to fill in the values of

the rtfs_volume_resource_reply structure. Below are description of the

rtfs_volume_resource_request structure and the rtfs_volume_resource_reply

structure.

Note: If an exFAT volume is being mounted some additional resources are required. These resources
must be provided though the callback layer. For more information see the manual page for:

rtfs_sys_callback(RTFS_CBS_GETEXFATBUFFERS).

struct rtfs_volume_resource_request {

void *devhandle

int device_type

int unit_number

int driveid

int partition_number

dword volume_size_sectors

dword sector_size_bytes

dword eraseblock_size_sectors

int buffer_sharing_enabled

int failsafe_available

};

struct rtfs_volume_resource_request

*devhandle Device driver access Handle

device_type Device type returned by

device_configure_media()

unit_number Unit number type returned by

device_configure_media()

Driveid Drive letter (0-25).

partition_number Which partition it is.

volume_size_sectors Total number of addressable sectors on the

partition or media containing the volume

sector_size_bytes Sector size in bytes: 512, 2048, etc…

eraseblock_size_sectors Sectors per erase block. Zero for media

without erase blocks

buffer_sharing_enabled If 1, Rtfs is configured to share restore

buffers.

failsafe_available If 1, failsafe is available and operating policy

and failsafe buffering may select failsafe.

struct rtfs_volume_resource_reply {

int use_dynamic_allocation

dword drive_operating_policy

dword n_sector_buffers

dword n_fat_buffers

dword fat_buffer_page_size_sectors

dword n_file_buffers

dword file_buffer_size_sectors

dword fsrestore_buffer_size_sectors

dword fsjournal_n_blockmaps

void *blkbuff_memory

void *fatbuff_memory

void *filebuff_memory

void *fsfailsafe_context_memory

void *fsjournal_blockmap_memory

byte *sector_buffer_base

byte *file_buffer_base

byte *fat_buffer_base

byte *failsafe_buffer_base

byte *failsafe_indexbuffer_base

void *sector_buffer_memory

void *file_buffer_memory

void *fat_buffer_memory

void *failsafe_buffer_memory

void *failsafe_indexbuffer_memory

};

struct rtfs_volume_resource_reply

use_dynamic_allocation Set to one to request Rtfs to allocate structures and

buffers dynamically.

drive_operating_policy Drive operating policy, defaults to zero, See app

notes.

n_sector_buffers Total number of sector sized directory buffers.

n_fat_buffers Total number of FAT table buffers.

fat_buffer_page_size_sector

s

Number of sectors per FAT table buffer.

Required for NAND Flash. Otherwise use defaults.

n_file_buffers Total number of file buffers.

file_buffer_size_sectors File buffer size in sectors.

Required for Failsafe. Otherwise use defaults.

fsrestore_buffer_size_sector

s

Failsafe restore buffer size in sectors.

fsjournal_n_blockmaps Number of Failsafe sector remap records provided.

Determine the number of outstanding remapped

sectors permitted.

The rest of the fields may be left blank if use_dynamic_allocation is selected.

If dynamic allocation is not selected please populate the following fields according to

the descriptions.

*blkbuff_memory Must point to n_sector_buffers *

sizeof(BLKBUFF) bytes (sizeof(BLKBUFF) is around

40 bytes)

*fatbuff_memory Must point to n_fat_buffers * sizeof(FATBUFF)

bytes. sizeof(FATBUFF) is around 40 bytes)

Required for NAND Flash. Otherwise use defaults.

*filebuff_memory Must point to n_file_buffers * sizeof(BLKBUFF)

bytes. sizeof(BLKBUFF) is around 40 bytes)

Required for Failsafe. Otherwise use defaults

*fsfailsafe_context_memory Must point to sizeof(FAILSAFECONTEXT) bytes.

sizeof(FAILSAFECONTEXT) is around 300 bytes)

*fsjournal_blockmap_memo

ry

Must point to fsjournal_n_blockmaps *

sizeof(FSBLOCKMAP) bytes. sizeof(FBBLOCKMAP)

equals 16

These pointers contain arrays do require IO address alignment if that is a system

requirement

*sector_buffer_memory Must point to sector_size * n_sector_buffers

bytes.

*fat_buffer_memory Must point to sector_size * n_fat_buffers *

fat_buffer_page_size_sectors bytes.

Required for NAND Flash. Otherwise use defaults.

*file_buffer_memory Must point to

sector_size*n_file_buffers*file_buffer_size_sect

ors bytes.

Required for Failsafe. Otherwise use defaults

*failsafe_buffer_memory Must point to sector_size *

fsrestore_buffer_size_sectors bytes.

*failsafe_indexbuffer_mem

ory

Must point to sector_size bytes.

These fields are used internally, do not change them.

*sector_buffer_base *failsafe_buffer_memory;

*file_buffer_base *failsafe_indexbuffer_memory

*fat_buffer_base

RETURNS

0 Return if successful

-1 Return if an unsupported device type was encountered

-2 Returned if out of resources

pc_rtfs_media_alert
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

This function must be called from the device driver when the write protect status

changes or the device is ejected.

SUMMARY

int pc_rtfs_media_alert(void *devhandle, int alertcode, void *vargs)

DESCRIPTION

This function takes as arguments, the devhandle that was passed to

pc_rtfs_media_insert() when the device was inserted and an alert code.

devhandle The same handle that was passed to pc_rtfs_media_insert

when the device was inserted.

alertcode The alert that the driver is passing to Rtfs.

vargs Unused.

 Alert Codes Behavior

RTFS_ALERT_EJECT All drive identifiers, mount structures, control

structure, semaphores and buffers associated with the

device are released.

RTFS_ALERT_WPSET Sets the internal write protect status for the media.

Rtfs will not write to the media unless the status is

cleared.

RTFS_ALERT_WPCLEAR Clear the internal write protect status for the media.

Rtfs will write to the media.

RETURNS

Nothing

If an error occurred: errno is set to one of the following:

Errno is not set

All Rtfs packages – Application callbacks

rtfs_sys_callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

System service callback function.

SUMMARY

int rtfs_sys_callback(int cb_code, void *pvargs)

DESCRIPTION

This call back provides the system services. Rtfs calls this function for certain

system functions. The cb_codes are described in the table below. Sample source for

this function is located in rtfscallbacks.c.

 cb_code Required Functionality

RTFS_CBS_INIT This callback is made by pc_ertfs_init

before any other callbacks are made or any

operating system porting layer functions are

called. System initializations like opening the

terminal window may be performed by the

handler.

RTFS_CBS_PUTS Print the string pointed to by (char*)pvargs

to the console.

RTFS_CBS_GETS Retrieve a string from the console and store

in (char*)pvargs.

RTFS_CBS_GETDATE Retrieve the system date and store in

(char*)pvargs. Modify the function named

pc_get_system_date() in rtfscallbacks.c to

interface with your system’s calendar

function.

RTFS_CBS_ 10MSINCREMENT exFat only - Retrieve the one byte 10

millisecond precision component for the

previous RTFS_CBS_GETDATE call. (0-199 for

up to 1990 milliseconds).

RTFS_CBS_UTCOFFSET exFat only - Retrieve the one byte value to

place in the offset from UTC field. The default

is 0xf0, Eastern time zone US.

RTFS_CBS_POLL_DEVICE_READY Poll for device changes if your system cannot

provide insert/remove interrupts.

RTFS_CBS_GETEXFATBUFFERS This callback is made by Rtfs when it detects

insertion of an exFat volume. The callback

layer is passed a structure of type

EXFATMOUNTPARMS which contains

informational fields suggesting what the

callback should provide. The callback layer

must provide the necessary buffering.

Note: If the callback can’t provide the

memory it should set all return values to 0.

See the table below describing the fields.

RTFS_CBS_RELEASEEXFATBUFFER

S

This callback is made by Rtfs when it detects

removal of an exFat volume. The callback

layer is passed a structure of type

EXFATMOUNTPARMS which contains

informational fields plus values that were

allocated by

RTFS_CBS_GETEXFATBUFFERS. The

callback should free the memory. If staic
pools are in use driveID my be used to identify the

pool.

EXFATMOUNTPARMS Field descriptions. (see RTFS_CBS_GETEXFATBUFFERS)

These values are passed in.

driveID

integer 0-25 == A:-Z: - Informational but you may use it as a

handle to help keep track of static buffer pools if you are not

using dynamic allocation.

pdr Informational void pointer, you may caste this to access the drive

structure directly from the callback routine.

SectorSizeBytes Sector size – You will need this to allocate buffers.

BitMapSizeSectors

This value contains the size of the volume’s free space bitmap

(BAM). If you allocate enough mempry to buffer the whole

BAM then no page swapping of the BAM is required. Otherwise

if less than the optimal value is allocated Rtfs will swap the BAM

sectors to disk as required.

Note: exFAT requires one bit in the BAM per cluster. (one sector

per 4096 clusters). The BAM of a 512 GIG drive is approximately

450 sectors (225k). Assuming memory starved systems the

example provided arbitrarily limits the size of the BAM cache to

64 sectors (32 K), but this can be removed.

UpcaseSizeBytes Size to allocate for the Upcase table cache. If the volume has a

standard upcase table Rtfs will uses a precompiled standard table

and this value will be zero, because. Otherwise this value will be

128K.

If the value is 0 you need not provide any memory.

If the value is 128K you may either provide 128 K of memory

for full upcase support or you may allocate no memory and Rtfs

will use the internal table to upcase only the lower 128 characters.

These values are returned.

BitMapBufferSizeSectors

Return the number of sectors allocated for the bit map cache up to

BitMapSizeSectors.

BitMapBufferPageSizeSectors You should always return 1.

BitMapBufferCore

A memory array of size (BitMapBufferSizeSectors *

SectorSizeBytes). Up to (BitMapSizeSectors * SectorSizeBytes)

BitMapBufferControlCore

Must return a memory array of size:

sizeof(FATBUFF) *

(BitMapSizeSectors/ BitMapBufferPageSizeSectors)

 (not BitMapBufferSizeSectors)

sizeof(FATBUFF) is approximately 50 bytes so in the 512 GIG

example above we would return (450*50) or approximately 22K.

The memory consumption may be reduced by setting
BitMapBufferPageSizeSectors to a larger value, but this is not

recommended unless memory is very tight.

UpCaseBufferCore

Return 0 or a pointer to UpcaseSizeBytes bytes (128K).

RETURNS

Nothing

If an error occurred: errno is set to one of the following:

Errno is not set

rtfs_app_callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Application callback function.

SUMMARY

int rtfs_app_callback(int cb_code, int iarg0, int iargs1, void *pvargs)

DESCRIPTION

This function provides the callback for the application layer. The cb_codes and

necessary parameters are described in the table below. Sample source for this

function is located in rtfscallbacks.c.

 cb_code Required Functionality

Informational codes, no response is required

RTFS_CBA_INFO_MOUNT_

STARTED

Called when a mount has been started. iarg0

contains the drive number.

RTFS_CBA_INFO_MOUNT_

FAILED

Called when a mount has failed. iarg0 contains the

drive number.

RTFS_CBA_INFO_MOUNT_

SUCCEEDED

Called when a mount has succeeded iarg0 contains

the drive number.

Rtfs ProPlus informational and response codes. These codes may be used to in certain

application settings.

RTFS_CBA_ASYNC_MOUNT

_CHECK

Check if the current mount should proceed or if it

should fail and request an asynchronous mount.

iarg0 contains the drive number.

Return 0 to proceed with the mount.

Return 1 to abort the mount and request an

asynchronous mount.

Note: The API call that initiated the mount will fail
with errno set to PENOTMOUNTED.

RTFS_CBA_ASYNC_MOUNT

_START

Start an asynchronous mount.

This will be called if

RTFS_CBA_ASYNC_MOUNT_CHECK returned 1.

This callback should signal the application to call

pc_diskio_async_mount_start() to start an

asynchronous mount on the drive number contained

in iarg0.

Note: A foreground or background task must execute

pc_async_continue to complete the mount.
RTFS_CBA_ASYNC_DRIVE_

COMPLETE

An asynchronous drive operation has completed.

 iarg0 contains the drive number.

iarg1 contains the id of the completed operation.

iarg2 contains the completion status.

See the RtfsProPlus - Asynchronous operations API
manual section for more information.

 An asynchronous file operation has completed.

RTFS_CBA_ASYNC_FILE_C

OMPLETE

 iarg0 contains the file descriptor.

iarg1 contains the completion status.

See the RtfsProPlus - Asynchronous operations API
manual section for more information.

RTFS_CBA_DVR_EXTRACT_

RELEASE

A DVR extract file has been released from sharing

sectors with the circular buffer and may be closed.

iarg0 contains the file descriptor.

 iarg1 contains the status.

See the RtfsProPlusDVR - Circular File IO API
manual section for more information.

RETURNS

0 Rtfs proceeds with default behavior.

1 For non-informational callbacks returning 1 alters

behavior.

If an error occurred: errno is set to one of the following:

Errno is not set

rtfs_diag_callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Diagnostic callback function.

SUMMARY

void rtfs_diag_callback(int cb_code, int iarg0)

DESCRIPTION

Provides an interface for fielding Rtfs asserts and for monitoring Rtfs errnos and to

detect when device IO errors occur. Sample source for this function is located in

rtfscallbacks.c.

 cb_code Required Functionality

RTFS_CBD_ASSERT Monitor for when Rtfs detects an unexpected internal

state.

RTFS_CBD_ASSERT_TEST Monitor for when an Rtfs regression test fails

RTFS_CBD_IOERROR Monitor for IO errors. iarg0 contains the drive

number.

RTFS_CBD_SETERRNO Inspect Rtfs errno values and monitor for system

errors.

 iarg0 contains the error value.

rtfscallbacks.c. provide an example of rtfs_diag_callback with a switch table that

may be populated to monitor for the following error conditions.
Normal application errors Device level failures Resource errors

PEACCES PEDEVICEFAILURE PERESOURCEBLOCK

PEBADF PEDEVICENOMEDIA PERESOURCEFATBLOCK

PEEXIST PEDEVICEUNKNOWNMEDIA PERESOURCEREGION

PENOENT PEDEVICEWRITEPROTECTED PERESOURCEFINODE

PENOSPC PEDEVICEADDRESSERROR PERESOURCEDROBJ

PESHARE PEINVALIDBPB PERESOURCEDRIVE

PEINVALIDPARMS PEIOERRORREAD PERESOURCEFINODEEX

PEINVAL PEIOERRORWRITE PERESOURCEFINODEEX64

PEINVALIDPATH PEIOERRORREADMBR PERESOURCESCRATCHBLOCK

PEINVALIDDRIVEID PEIOERRORREADBPB PERESOURCEFILES

PECLOSED PEIOERRORREADINFO32 PECFIONOMAPREGIONS

PETOOLARGE PEIOERRORREADBLOCK PERESOURCEHEAP

Other application errors PEIOERRORREADFAT PERESOURCESEMAPHORE

PENOEMPTYERASEBLOCKS PEIOERRORWRITEBLOCK PENOINIT

PEEINPROGRESS PEIOERRORWRITEFAT PEDYNAMIC

PENOTMOUNTED PEIOERRORWRITEINFO32 PERESOURCEEXFAT

PEEFIOILLEGALFD Corrupted volume errors

PE64NOT64BITFILE PEINVALIDCLUSTER

 PEINVALIDDIR

 PEINTERNAL

RETURNS

Nothing

rtfs_failsafe_callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Failsafe run time configuration callback function.

SUMMARY

void rtfs_failsafe_callback(int cb_code, int driveno, int iarg0, void *pvargs,

 void *pvargs1)

DESCRIPTION

This callback provides the functionality previously provided by multiple callback

functions that were recompiled along with the Failsafe source code. This callback

interface provides the same functionality as the previous interface and defaults to

the same configuration. Listed below are the cb_codes available for this function.

Sample source for this function is located in rtfscallbacks.c.

RTFS_CB_FS_RETRIEVE_FIXED_JOURNAL_LOCATION

RTFS_CB_FS_FAIL_ON_JOURNAL_FULL

RTFS_CB_FS_FAIL_ON_JOURNAL_RESIZE

RTFS_CB_FS_RETRIEVE_JOURNAL_SIZE

RTFS_CB_FS_RETRIEVE_RESOTRE_STATEGY

RTFS_CB_FS_FAIL_ON_JOURNAL_CHANGED

RTFS_CB_FS_CHECK_JOURNAL_BEGIN_NOT

RTFS_CB_FS_RETRIEVE_FLUSH_STRATEGY

Note: For more information on the cb_codes and operations see the

FailsafeTechnicalReferenceManual under Callback API

All Rtfs packages - Basic API

pc_diskclose
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Unconditionally dismount a volume without flushing and optionally clear values and

buffers established by device_configure_volume.

Note: You must call pc_diskflush() before calling pc_diskclose() if you wish to

flush the disk before closing,

SUMMARY

#include <rtfs.h>

BOOLEAN pc_diskclose(byte *driveid, BOOLEAN clear_init)

Driveid Name of the volume “A:” “B:” etc.

clear_init If clear_init is TRUE, all buffers and configuration

values provided by device_configure_volume are released.

DESCRIPTION

This routine unconditionally dismounts a volume if it is currently mounted. There is

no flushing of FAT buffers, file buffers, block buffers or of Failsafe.

Note: To flush the disk before closing, call pc_diskflush() before you call

pc_diskclose().

If clear_init is TRUE, the configuration is cleared. This releases all buffers that were

assigned to the drive by device_configure_volume. The next time the drive is

accessed device_configure_volume will be called.

Note: This function is used mainly for testing, a better way to dismount a

drive is to flush it and then call pc_rtfs_media_alert.

RETURNS

TRUE Success

FALSE Invalid drive specified in an argument

Application Level Error Return Codes

PEINVALIDDRIVEID Invalid drive specified in an argument

pc_diskflush
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Flush the FAT and all files to a disk

SUMMARY

BOOLEAN pc_diskflush (byte *drive_name)

DESCRIPTION

Given a valid drive specifier (A:, B:, C:…) in drive_name, flush the file allocation

table and all changed files to the disk. After this call returns, the disk image is

synchronized with the Rtfs internal view of the volume.

RETURNS

TRUE The disk flush succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

if (!pc_diskflush(“A:”))

printf(“Flush operation failed \n”);

 pc_async_flush_start() is also available

 fs_api_commit() is also available

pc_set_cwd

pc_set_cwd_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Set current working directory.

SUMMARY

BOOLEAN pc_set_cwd (byte *path)

DESCRIPTION

Make path the current working directory for this task. If path contains a drive

component, the current working directory is changed for that drive; otherwise the

current working directory is changed for the default drive.

RETURNS

TRUE The current working directory was changed

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDPATH Path specified badly formed

PENOENT Path not found

PEACCESS Not a directory

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

if(!pc_set_cwd(“D:\\USR\\DATA\\FINANCE”))

 printf(“Can’t change working directory\n”);

pc_get_cwd
pc_get_cwd_uc

Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return the current working directory.

SUMMARY

BOOLEAN pc_get_cwd (byte *drive, byte *return_buffer)

DESCRIPTION

Fill return_buffer with the full path name of the current working directory for the

current task for the drive specified in drive. If drive is a NULL pointer or a pointer to

an empty string (“”) or is an invalid drive specifier, the current working directory for

the default drive is returned. In a multitasking system Rtfs maintains a current

working directory for each task.

Note: Rtfs must be configured correctly in order for each task to have its own current

working directory. Please see the documentation of the routine pc_ertfs_config()

for a complete explanation of this requirement.

Note: return_buffer must point to enough space to hold the full path without

overriding user data. The worst case possible is 260 bytes.

RETURNS

TRUE A valid path was returned in return_buffer

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

if (pc_get_cwd(“A:”, pwd))

 printf (“Working dir is %s\n”, pwd);

else

 printf (“Can’t find working dir for A:\n”);

pc_set_default_drive
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Set the default drive.

SUMMARY

BOOLEAN pc_set_default_drive (byte *drive)

DESCRIPTION

Use this function to set the current default drive that will be used when a path

specifier does not contain a drive specifier.

Note: pc_set_default_drive() does not try to access the drive, it will succeed as

long as the specified drive id is between “A:” and “Z:”. If the drive is not mounted

the first API call to it will try to mount it. To test if a drive is present after calling

pc_set_default_drive() you must call other APIs. pc_set_cwd() and

pc_get_cwd() are convenient for this purpose.

RETURNS

TRUE The default drive id was set successfully.

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Driveno is incorrect

EXAMPLE

#include <rtfs.h>

if(!pc_set_default_drive(“C:”))

 printf(“Can’t change working drive\n”);

pc_get_default_drive

pc_get_default_drive_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Get the default drive name and drive number.

SUMMARY

int pc_get_default_drive (byte *drive_name)

DESCRIPTION

This function returns the default drive. The default drive name, (A:, B:, C: etc) is

returned in the drive_name buffer that is passed in.

The default drive number (0, 1, 2 ,3) is the return value of the functions.

Note: A NULL pointer may me passed in as the drive_name argument.

RETURNS

driveno The drive number of the default drive id

errno is not set

EXAMPLE

 int drive_no;

byte drive_name[8];

drive_no = pc_get_default_drive (drive_name);

printf(“Drive name == %s, drive number == %d\n”, drive_name, drive_no);

pc_drno_to_drname

pc_drno_to_drname_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Get the drive name associated with a drive number.

SUMMARY

void pc_drno_to_drname (int driveno, byte* pdrive_name)

DESCRIPTION

Use this function to get the drive name associated with the supplied drive number.

This function populates the buffer pointed to by pdrive_name (A:, B:, C:.. Z:) with

the drive identifier for the drive number passed in driveno (0,1,2..25).

Note: The buffer pointed to by pdrive_name must be large enough to contain the

NULL terminated drive identifier. This is 3 bytes in ASCII, 6 bytes in UNICODE.

RETURNS

Nothing

EXAMPLE

#include <rtfs.h>

 byte drive_name[6];

pc_drno_to_drname (3, drive_name);

 printf(“Drive name == %s\n”, drive_name); /* “C:” */

pc_drno_to_drname (25, drive_name);

printf(“Drive name == %s\n”, drive_name); /* “C:” */

pc_drname_to_drno
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Get the drive number associated with a drive name.

SUMMARY

int pc_drname_to_drno (byte* pdrive_name)

DESCRIPTION

Use this function to get the drive number associated with the supplied drive name.

This function interprets the buffer pointed to by pdrive_name (A:, B:, C:.. Z:) and

returns a drive number (0,1,2..25).

RETURNS

driveno The drive number for driveid

This function does not set errno.

EXAMPLE

#include <rtfs.h>

int driveno;

driveno = pc_drname_to_drno(“C:”);

printf(“Drive number== %d\n”, driveno); /* 2 */

driveno = pc_drname_to_drno(“Z:”);

printf(“Drive number== %d\n”, driveno); /* 25 */

pc_diskio_info
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return useful information about the specified drive.

SUMMARY

BOOLEAN pc_diskio_info (driveid, pinfo, extended)

byte *driveid Name of a mounted volume “A,”

“B,” etc.

DRIVE_INFO *pinfo Drive information is placed into this

structure.

BOOLEAN extended If this argument is TRUE additional

statistics are provided. The

additional statistics are listed in the

table below under the heading

extended statistics. If this argument

is FALSE the extended statistics are

all set to zero.

Note: Extended statistics are

calculated and thus may require

additional processing time.

DESCRIPTION

The drive capacity information provided by pc_diskio_info() is useful for

developing certain applications and for monitoring device utilization.

Detailed description of the info structure fields.

All fields are of type dword unless the type is specifically mentioned.

Volume and device information.

The sector size, cluster size total clusters and FAT type (12, 16 or 32) are useful

things to know so they are provided.

sector_size The sector size in bytes (normally 512)

cluster_size The cluster size in blocks

total_clusters The total number of clusters in the volume

free_clusters The current number of free clusters left in the volume.

fat_entry_size 12, 16 or 32

is_exfat TRUE if an exFAT volume. fat_entry_size is 32.

drive_operating_policy Drive operating policy bits may be set to control certain

aspects of drive operating policy. For most applications

there is no need to change them. (For more information

see device_configure_volume in the media driver

callback section of the API manua).

drive_opencounter Number of times the drive has been mounted. This

value is incremented every time the device is mounted.

It will increment when a device change event is

detected and the device is remounted.

Region buffer usage statistics. Rtfs relies on region buffers extensively. The

number of region buffers required at any one time can rely on several factors such

as the degree of fragmentation of the disk and the number of open files. These

statistics are system wide, not drive specific, but they are provided here to allow you

to determine if your region buffer configuration is correct

Free_manager_enabled

BOOLEAN

This field indicates if the region manager is currently

enabled.

 Note: free_manager_enabled will be FALSE only when

the free manager is purposely disabled or Rtfs exhausts

its region buffers and recovers by disabling the region

manager.

region_buffers_total This field will always contain the number of region

buffers that were provided in apicnfig.c. It will always

be equal to NREGIONS.

region_buffers_free This field contains the number of region buffers that are

not currently being used.

region_buffers_low_water This field contains the count of free region buffers at the

point when the most region buffers were being used by

the application.

Note: Some API functions will fail and set errno to

PERESOURCEREGION if they run out of region buffers,

so it is a good idea to make sure you have enough of

them. You should inspect region_buffers_low_water

after running your application at steady state or worst

case conditions to determine if NREGIONS is correct.

The elements that follow are provided only if the extended argument is TRUE, if the

extended argument is FALSE they will be zero.

free_fragments The free clusters are in this many fragments that are

separated by allocated space.

Note: free_fragments is calculated and thus require

some additional processing time. If a memory based

free manager is operational the free_fragments

calculation is ram based only and will complete quickly.

If the free manager is disabled as indicated by

free_manager_enabled is FALSE, the disk will be

scanned for free fragment, which will take significantly

longer.

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEINVALIDPARMS Missing or invalid parameters

PEINVALIDDRIVEID Invalid drive specified in an argument

An Rtfs system error See Appendix for a description

get_errno
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Get the last Rtfs assigned errno value for the calling task

SUMMARY

int get_errno (void)

DESCRIPTION

This function retrieves the last ERRNO value set by Ertfs for this task.

EXAMPLE

If (!pc_mkdir(“Test”))

 printf(“mk_dir failed: ERRNO == %d\n”, get_errno());

get_errno_location
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Get the current errno value and the source filename and source line number that last

set the errno value for the calling task.

SUMMARY

int get_errno_location (char **filename, long *linenumber)

DESCRIPTION

If INCLUDE_DEBUG_VERBOSE_ERRNO is enabled rtfs_set_errno() prints the

file name and line number that called it through the user supplied terminal IO output

handler.

get_errno_location () may be called to retrieve the last filename and line number

that were printed along with the last errno value. The application may retrieve these

values even when the target system does not have console IO support.

This function retrieves the last ERRNO value set by Rtfs for this task and the source

file name and line number that set errno.

If INCLUDE_DEBUG_VERBOSE_ERRNO is not enabled

*filename and *linenumber are not set.

If INCLUDE_DEBUG_VERBOSE_ERRNO is enabled and the current errno is non-

zero

*filename points to the read-only file name that last called rtfs_set_errno.

*linenumber contains the line number that last called rtfs_set_errno.

If INCLUDE_DEBUG_VERBOSE_ERRNO is enabled and the current errno is zero

*filename and *linenumber are not set.

EXAMPLE

If (!pc_mkdir(“Test”))

{

long linenumber = 0;

char *filename = “unknown”;

int errno;

 errno = get_errno_location (&filename, &linenumber);

 printf(“mk_dir failed: ERRNO == %d, FILE == %s, LINE = %d\n”,

 errno, filename, linenumber);

}

pc_glast

pc_glast_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return the last entry in a directory.

SUMMARY

BOOLEAN pc_glast (DSTAT *statobj, byte *pattern)

DESCRIPTION

Pc_glast behaves similarly to pc_gfirst except it finds the last entry in a directory to

match a pattern. Given a pattern which contains both a path specifier and a search

pattern, fill in the structure at statobj with information about the file and set up

internal parts of statobj to supply appropriate information for calls to pc_prev().

Examples of patterns are:

“D:\USR\RELEASE\NETWORK*.C”

“BIN\UU*.*”

“MEMO_?.*”

“*.*”

Note: If pc_glast() succeeds you may call pc_gprev() to get the next directory

entry that matches the criteria. When you are done you must call pc_gdone() to

free internal resources. If pc_glast() does not succeed it is not necessary to call

pc_gdone().

RETURNS

TRUE The operation was a success and a match was found

FALSE Operation failed or no match found. consult errno

errno is set to one of the following:

 0 No error

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPATH Path specified badly formed

PENOENT Not found, no match

An Rtfs system error See Appendix for a description of system errors

SEE ALSO:

pc_gprev(), pc_gdone(), and pc_seedir() in appcmdsh.c

pc_gprev

pc_gprev_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return previous entry in a directory.

SUMMARY

BOOLEAN pc_gprev (DSTAT *statobj)

DESCRIPTION

Continue with the directory scan started by a call to pc_glast().

RETURNS

TRUE The operation was a success and a match was found

FALSE The operation failed or no match found. consult

errno

errno is set to one of the following:

0 No error

PEINVALIDPARMS statobj argument is not valid

PENOENT Not found, no match (normal termination of scan)

PEINVALIDDRIVEID Drive was removed or closed since pc_gfirst() call.

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

if (pc_glast(&statobj,”A:\\dev*.c”))

{

do

{

/* print file name, extension and size */

printf(“%-8s.%-3s %7ld \n”,statobj.fname,

statobj.fext,statobj.fsize);

}

while (pc_gprev(&statobj));

/* Call gdone to free up internal resources */

pc_gdone(&statobj);
}

pc_gdone
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Free directory scan resources originally allocated by pc_first() or pc_gprev().

SUMMARY

void pc_gdone (DSTAT *statobj)

DESCRIPTION

Given a pointer to a DSTAT structure that was set up by a call to pc_gfirst() free

internal elements used by statobj.

Note: You must call this function after you have finished calling pc_gfirst() and

pc_gnext() or calling pc_gprev() and pc_gprev() or a memory leak will
occur.

RETURNS

Nothing

Does not set errno.

EXAMPLE

See pc_gnext()

pc_gread
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Read data from a directory scan result.

SUMMARY

BOOLEAN pc_gread (DSTAT *statobj,

int blocks_to_read,

byte *buffer,

 int *blocks_read)

DESCRIPTION

Read data from the DSTAT structure returned from a successful call to pc_gfirst()

or pc_gnext(). This function can be used to implement efficient file enumeration

procedures for media player devices by eliminating the need to open files to read

header information.

Note: This function is intended for reading file header information but the ability to

read blocks from a subdirectory is also provided.

Note: This function is block oriented and ignores the directory entry’s file size

attribute, so if (blocks_to_read*512) is larger than the file’s size, it will read up to

the last cluster boundary.

statobj DSTAT structure previously filled by pc_gfirst() or

pc_gnext()

blocks_to_read The number of blocks you would like to read from

the beginning of the file or subdirectory.

buffer Buffer that pc_gread should read data to.

Note: buffer must be at least large enough to hold

blocks_to_read sectors.This is typically 512 *

blocks_to_read bytes, but the buffer must be larger

if the media has a larger sector size.

blocks_read Pointer to an integer that returns the number of

blocks that were successfully transferred to the

buffer.

Note: If the file or subdirectory contains less than to

blocks_to_read blocks, data will be read up to the

boundary of the last cluster in the file.

RETURNS

TRUE The operation was a success. Blocks_read contains

the number of blocks transferred to buffer.

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive was removed or closed since pc_gfirst() call

PEINVALIDPARMS Invalid arguments

An Rtfs system error See Appendix for a description of system errors

pc_get_attributes

pc_get_attributes_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Get File Attributes of the named file

SUMMARY

BOOLEAN pc_get_attributes(byte *path, byte *p_return);

DESCRIPTION

Given a file or directory name, return the directory entry attributes associated with

the entry. One or more of the following values will be or’ed together:

BIT Mnemonic

0 ARDONLY

1 AHIDDEN

2 ASYSTEM

3 AVOLUME

4 ADIRENT

5 ARCHIV

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PENOENT Path not found

An Rtfs system error See Appendix for a description of system

errors

pc_set_attributes

pc_set_attributes_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Set File Attributes

SUMMARY

BOOLEAN pc_set_attributes (byte *path, byte attributes)

DESCRIPTION

Given a file or directory name set the directory entry attributes associated with the

entry. One or more of the following values may be or’ed together.

BIT Mnemonic

0 ARDONLY

1 AHIDDEN

2 ASYSTEM

3 ARCHIVE

4 ADIRENT

5 ARCHIVE

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDPARMS Attribute argument is invalid

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPATH Path specified badly formed

PENOENT Path not found

PEACCESS Object is read only

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

byte attribs;

if (pc_get_attributes(“A:\\COMMAND.COM”, &attribs)

{

attribs |= ARDONLY|AHIDDEN

pc_set_attributes(“A:\\COMMAND.COM”, attribs);

}

pc_isdir

pc_isdir_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Test if a path is a directory.

SUMMARY

BOOLEAN pc_isdir (byte *path)

DESCRIPTION

This is a simple routine that opens a path and checks if it is a directory, then

closes the path. The same functionality can be had by calling pc_gfirst() and
testing the DSTAT structure.

RETURNS

TRUE The operation was a success and it is a directory

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PENOENT Path not found

An Rtfs system error See Appendix for a description of system

errors

pc_isvol

pc_isvol_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Test if a path name is a volume label.

SUMMARY

BOOLEAN pc_isvol(byte *path)

DESCRIPTION

Tests to see if a path specification is a volume label specifier.

RETURNS

TRUE The operation was a success and it is a volume

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PENOENT Path not found

An Rtfs system error See Appendix for a description of system

errors

pc_stat

pc_stat_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return properties of a named file or directory.

SUMMARY

int pc_stat (byte *name,ERTFS_STAT *pstat)

DESCRIPTION

This routine searches for the file or directory provided in the first argument. If found,

it fills in the stat structure as described here:

The ERTFS_STAT structure:

st_dev the entry’s drive number

st_mode Contains one or more of the following bits:

S_IFMT - type of file mask

S_IFCHR - char special (unused)

S_IFDIR - directory

S_IFBLK - block special (unused)

S_IFREG - regular (a “file”)

S_IWRITE - Write permitted

S_IREAD - Read permitted

st_rdev the entry’s drive number

st_size file size

st_atime Last modified date in DATESTR format

st_mtime Last modified date in DATESTR format

st_ctime Last modified date in DATESTR format

t_blksize optimal blocksize for I/O (cluster size)

t_blocks blocks allocated for file

The following fields are extensions to the standard stat structure

fattributes The DOS attributes. This is non-standard but supplied if you

wish to look at them.

st_size_hi If the file is an exFAT file, the high 32 bits of the file size

NOTE: ERTFS_STAT structure is equivalent to the STAT structure available with most posix like

run time environments. Unfortunately certain run time environments like uITRON also use a
structure named STAT so in order to avoid namespace collisions Rtfs uses the proprietary
name ERTFS_STAT. If you are porting an application that uses STAT you may put the following
preprocessor macro in rtfs.H just below the declaration of ERTFS_STAT: #define STAT
ERTFS_STAT

RETURNS

0 The operation was a success

-1 The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PENOENT File or directory not found

An Rtfs system error See Appendix for a description

EXAMPLE

#include <rtfs.h>

struct ERTFS_stat st;

 if (pc_stat(“A:\\MYFILE.TXT”, &st)==0)

{

printf(“DRIVENO: %d\n”, st.st_dev);

printf(“SIZE: %d\n” st.st_size); /* in bytes */

printf(“Month: %d\n”, (st.st_atime.date >> 5) & 0xf,);

printf(“Day: %d\n”, (st.st_atime.date) & 0x1f,);

printf(“Year: %d\n”, (st.st_atime.date >> 9) & 0xf,);

printf(“Hour: %d\n”, (st.st_atime.time >> 11) & 0x1f);

printf(“Minute: %d\n”, (st.st_atime.time >> 5) & 0x3f);

printf(“OPT BLOCK SIZE:%d\n”,

 st.st_blksize,st.st_blocks);

printf(“FILE size (BLOCKS): %d\n”, st.st_blocks);

printf(“MODE BITS :”);

if (st.st_mode&S_IFDIR)

 printf(“S_IFDIR|”);

if (st.st_mode&S_IFREG)

printf(“S_IFREG|”);

if (st.st_mode&S_IWRITE)

printf(“S_IWRITE|”);

if (st.st_mode&S_IREAD)

printf(“S_IREAD\n”);
printf(“\n”);

pc_blocks_free
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return disk free space statistics

SUMMARY

BOOLEAN pc_block_free (byte *drive,

dword *total blocks,

dword *free blocks);

DESCRIPTION

Given a drive ID, return the total number of blocks on the drive in the dword pointed

to by total_blocks, return the number of blocks free in the dword pointed to by

free_blocks.

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Driveno is incorrect

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

If (pc_blocks_free (“A:”, & total_blocks, & free_blocks))

 printf (“%d blocks free out of %d blocks total \n:”,

 free_blocks, total_blocks);

pc_mkdir

pc_mkdir_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Create a subdirectory.

SUMMARY

BOOLEAN pc_mkdir (byte *path)

DESCRIPTION

Create a subdirectory in the path specified by path. Fails if a file or directory of the

same name already exists or if the directory component (if there is one) of path is

not found.

RETURNS

TRUE The subdirectory was created

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPATH Path specified badly formed.

PENOENT Path to new directory not found

PEEXIST File or directory of this name already exists

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

pc_mkdir(“\\USR\\LIB\\HEADER\\SYS”);

pc_rmdir

pc_rmdir_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Delete a directory

SUMMARY

BOOLEAN pc_rmdir (byte *path)

DESCRIPTION

Delete the directory specified in path. Fails if path is not a directory, is read only or is

not empty.

RETURNS

TRUE The directory was successfully removed.

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPATH Path specified badly formed.

PENOENT Directory not found

PEACCESS Directory is in use or is read only

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

if (!pc_rmdir(“D:\\USR\\TEMP”)

 printf(“Can’t delete directory\n”);

pc_mv

pc_mv_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Rename files and directories

SUMMARY

BOOLEAN pc_mv (char *oldpath, char *newpath)

DESCRIPTION

Moves the file or subdirectory named oldpath to the new name specified in newpath.

oldpath and newpath must be on the same drive but they may be in different sub-

directories. Both names must be fully qualified (see examples). Fails if newpath is

invalid or already exists or if oldpath is not found.

RETURNS

TRUE The file or subdirectory was moved

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid or they are not the same

PEINVALIDPATH Path specified by old_name or new_name is badly

formed.

PEACCESS File or directory in use, or old_name is read only

PEEXIST new_name already exists

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

if (!pc_mv(“\\USR\\TXT\\LETTER.TXT”, “LETTER.OLD”))

 printf(“Can’t move the file\n”);

if (!pc_mv(“\\employeefolders\\joe”, “\\ex-employeefolders\\joe”)

printf(“Can’t move the subdirectory \n”);

pc_unlink

pc_unlink_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Delete a file.

SUMMARY

BOOLEAN pc_unlink (byte *path)

DESCRIPTION

Delete the filename pointed to by path. Fail if it is not a simple file, if it is open, if it

does not exist, or it is read only.

RETURNS

TRUE It successfully deleted the file.

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPATH Path specified badly formed.

PENOENT Can’t find file to delete

PEACCESS File in use, is read only or is not a simple file.

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

if (!pc_unlink(“B:\\USR\\TEMP\\TMP001.PRN”))

printf(“Can’t delete file \n”)

pc_async_unlink_start() is also available

All Rtfs packages - Basic File IO API

po_open

po_open_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Open a file.

SUMMARY

int po_open (byte *path, word flag, word mode)

DESCRIPTION

Open the file for access as specified in flag. If creating use mode to set the access

permissions.

Flag values are:

PO_APPEND All writes will be appended to the file

PO_BINARY Ignored

PO_TEXT Ignored

PO_RDONLY Open for read only

PO_RDWR Read/write access allowed

PO_WRONLY Open for write only

PO_CREAT Create the file if it does not exist

PO_EXCL If flag has (PO_CREAT|PO_EXCL) and the file

already exists, fail and set errno to EEXIST

PO_TRUNC Truncate the file if it already exists

PO_BUFFERED If this is set, reads and writes of less than 512

bytes and operations that do not start or end on

block boundaries are buffered. The buffer is

flushed when po_close() is called, when

po_flush() is called or if a buffered IO request is

made to a different block number. Using the

PO_BUFFERED flag increases performance of

applications performing reads and writes of small

or un aligned data buffers.

PO_AFLUSH Enable auto flush mode. The file is flushed

automatically by po_write() whenever the file

length changes.

PO_NOSHAREANY Fail if already open, fail if another open is tried

PO_NOSHAREWRITE Fail if already open for write and fail if another

open for write is tried

Mode values are:

PS_IWRITE Write permitted

PS_IREAD Read permitted (Always true anyway)

RETURNS

>= 0 to be used as a file descriptor for calling po_read(),

po_write(), po_lseek(), po_flush(),

po_truncate(), and po_close()

-1 The operation failed consult errno

errno is set to one of the following:

0 No error

PENOENT Not creating a file and file not found

PEMFILE Out of file descriptors

PEINVALIDPATH Invalid pathname

PENOSPC No space left on disk to create the file

PEACCES Is a directory or opening a read only file for write

PESHARE Sharing violation on file opened in exclusive mode

PEEXIST Opening for exclusive create but file already exists

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

int fd;

if(fd=po_open(“\\USR\\MYFILE”,(PO_CREAT|PO_EXCL|PO_WRONLY)

,P S_IWRITE)<0))

printf(“Can’t create file error:%i\n” ,get_errno())

pc_efilio_open is also available

po_close
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Close a file that was opened with po_open

SUMMARY

int po_close (int fd)

DESCRIPTION

Close the file and update the disk by flushing the directory entry and file allocation

table. Free all core associated with fd.

RETURNS

0 The operation was a success

-1 The operation failed consult errno

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume.

po_close() must be called to clear this condition.

An Rtfs system error See Appendix for a description of system errors

SEE ALSO

po_flush

EXAMPLE

#include <rtfs.h>

if (po_close(fd) < 0)

 printf(“Error closing file:%i\n”,rtfs_get_errno());

pc_efilio_close is also available

po_read
Basic x ProPlus X

Pro x ProPlus DVR X

FUNCTION

Read from a file.

SUMMARY

int po_read (int fd, byte *buf, int count)

DESCRIPTION

Attempt to read count bytes from the current file pointer of file at fd and place the

data in buf. The file pointer is updated.

Note: If buf is 0 (the null pointer) then the operation is performed identically to a

normal read except no data transfers are performed. This may be used to quickly

advance the file pointer.

RETURNS

>= 0 The actual number of bytes

-1 The operation failed consult errno

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume. po_close

must be called to clear this condition.

PEIOERRORREAD Read error

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

int fd;

int fd2;

fd = po_open(“FROM.FIL”,PO_RDONLY,0);

fd2 =po_open(“TO.FIL”,PO_CREAT|PO_WRONLY,PS_IWRITE)

if (fd >= 0 && fd2 >= 0)

while (po_read(fd, buff, 512) ==512)

po_write(fd2, buff, 512);

pc_efilio_read is also available

po_write
Basic x ProPlus X

Pro x ProPlus DVR X

FUNCTION

Write to a file.

SUMMARY

int po_write (int fd, byte *buf, int count)

DESCRIPTION

Attempt to write count bytes from buf to the current file pointer of file at fd. The file

pointer is updated.

Note: If buf is 0 (the null pointer) then the operation is performed identically to a

normal write, the file pointer is moved and as the file cluster chain is extended if

needed but no data is transferred. This may be used to quickly expand a file or to

move the file pointer.

RETURNS

>= 0 The actual number of bytes written

-1 The operation failed consult errno

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume. po_close

must be called to clear this condition.

PEACCES File is read only

PEIOERRORWRITE Error performing write

PEIOERRORREAD Error reading block for merge and write

PENOSPC Disk full

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

int fd, fd2;

fd = po_open(“FROM.FIL”,PO_RDONLY,0);

fd2 =po_open(“TO.FIL”,PO_CREAT|PO_WRONLY,PS_IWRITE)

if (fd >= 0 && fd2 >= 0)

while (po_read(fd, buff, 512) ==512)

 po_write(fd2, buff, 512);

pc_efilio_write is also available

po_lseek64
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

64 bit move file pointer

SUMMARY

ddword po_lseek64 (int fd, ddword offset, int origin)

DESCRIPTION

Move the file pointer offset bytes from the origin described by origin. Origin may

have the following values:

PSEEK_SET Seek from beginning of file

PSEEK_CUR Seek from the current file pointer

PSEEK_CUR_NEG Seek backward from the current file pointer

PSEEK_END Seek from end of file

Attempting to seek beyond end of file puts the file pointer one byte past end of file.

Seeking zero bytes from origin PSEEK_END returns the file length.

Note: for exFAT true 64 bit seeks are supported. For FAT, po_lseek64() operates on

the lower 32 bits but still reports error as (0xffffffffffffffff).

RETURNS

M64SET32(0xffffffff,

0xffffffff) or

(0xffffffffffffffff)

The operation failed consult errno.

(!0xffffffffffffffff) The new offset

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume.

po_close() must be called to clear this condition.

PEINVALIDPARMS Attempt to seek past EOF or to a negative offset

PEINVALIDCLUSTER Files contains a bad cluster chain

An Rtfs system error See Appendix for a description of system errors

po_ulseek
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Move file pointer, unsigned

SUMMARY

BOOLEAN po_ulseek (int fd, unsigned long offset,

 unsigned long *pnew_offset, int origin)

DESCRIPTION

Move the file pointer offset bytes from the origin described by origin. origin may have

the following values:

PSEEK_SET Seek from beginning of file

PSEEK_CUR Seek from the current file pointer

PSEEK_CUR_NEG Seek backward from the current file pointer

PSEEK_END Seek from end of file

The new file pointer is returned in *pnew_offset

Attempting to seek beyond end of file puts the file pointer one byte past end of file.

Seeking zero bytes from PSEEK_END returns the file length.

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume.

po_close() must be called to clear this condition.

PEINVALIDPARMS Attempt to seek past EOF or to a negative offset

PEINVALIDCLUSTER Files contains a bad cluster chain

An Rtfs system error See Appendix for a description of system errors

pc_efilio_lseek is also available

po_chsize
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Truncate or extend an open file.

SUMMARY

int po_chsize (int fd, unsigned long newfilesize)

DESCRIPTION

Given a file handle and a new file size, either extend the file or truncate it. If the

current file pointer is still within the range of the file, it is not moved, otherwise it is

moved to the end of file. This function uses other API calls and does not set errno

itself.

RETURNS

0 The operation succeeded

-1 The operation failed consult errno

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume.

po_close() must be called to clear this condition.

PEACCES File is read only

PEINVALIDPARMS Invalid or inconsistent arguments

An Rtfs system error See Appendix for a description of system errors

pc_efilio_chsize() is also available

po_flush
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Flush a file to disk.

SUMMARY

BOOLEAN po_flush (int fd)

DESCRIPTION

Flush file buffers, flush directory entry changes to disk, and flush the FAT. After this

call completes, the on disk view of the file is completely consistent with the in

memory view. It is a good idea to call this function periodically if a file is being

extended. If failsafe is not running and a file is not flushed or closed when a power

down occurs, the file size will be wrong on disk and the FAT chains will be lost.

RETURNS

TRUE The flush was successful

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume.

po_close() must be called to clear this condition.

PEACCES File is read only

An Rtfs system error See Appendix for a description of system errors

Directory is in use or is read only

SEE ALSO

pc_dskflush()

EXAMPLE

#include <rtfs.h>

if (po_flush(fd) < 0)

 printf(“Error flushing file:%i\n”,rtfs_get_errno());

pc_efilio_chsize is also available

pc_fstat
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return properties of a file associated with a file descriptor.

SUMMARY

int pc_fstat (int file_descriptor, ERTFS_STAT *pstat)

DESCRIPTION

For the provided file descriptor this routine fills in the stat structure as described

here:

The ERTFS_STAT structure:

st_dev the entry’s drive number

st_mode Contains one or more of the following bits:

S_IFMT - type of file mask

S_IFCHR - char special (unused)

S_IFDIR - directory

S_IFBLK - block special (unused)

S_IFREG - regular (a “file”)

S_IWRITE - Write permitted

S_IREAD - Read permitted

st_rdev the entry’s drive number

st_size file size

st_atime Last modified date in DATESTR format

st_mtime Last modified date in DATESTR format

st_ctime Last modified date in DATESTR format

t_blksize optimal blocksize for I/O (cluster size)

t_blocks blocks allocated for file

The following fields are extensions to the standard stat structure

fattributes The DOS attributes. This is non-standard but supplied if you

wish to look at them.

st_size_hi If the file is an exFAT file, the high 32 bits of the file size

NOTE: ERTFS_STAT structure is equivalent to the STAT structure available with most

posix like run time environments. Certain run time environments like uITRON also

use a structure named STAT so to avoid namespace collisions Rtfs uses the

proprietary name ERTFS_STAT

RETURNS

0 The operation succeeded

-1 The operation failed consult errno

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume.

po_close() must be called to clear this condition.

EXAMPLE

#include <rtfs.h>

struct ERTFS_stat st;

int fd;

fd = po_open(“A:\\MYFILE.TXT”,(PO_BINARY|PO_RDONLY),0);

if (pc_fstat(fd, &st)==0)

{

{

printf(“DRIVENO: %d\n”, st.st_dev);

printf(“SIZE: %d\n” st.st_size); /* in bytes */

printf(“Month: %d\n”, (st.st_atime.date >> 5) & 0xf,);

printf(“Day: %d\n”, (st.st_atime.date) & 0x1f,);

printf(“Year: %d\n”, (st.st_atime.date >> 9) & 0xf,);

printf(“Hour: %d\n”, (st.st_atime.time >> 11) & 0x1f);

printf(“Minute: %d\n”, (st.st_atime.time >> 5) & 0x3f);

printf(“OPT BLOCK SIZE:%d\n”,

 st.st_blksize,st.st_blocks);

printf(“FILE size (BLOCKS): %d\n”, st.st_blocks);

printf(“MODE BITS :”);

if (st.st_mode&S_IFDIR)

printf(“S_IFDIR|”);

if (st.st_mode&S_IFREG)

printf(“S_IFREG|”);

if (st.st_mode&S_IWRITE)

printf(“S_IWRITE|”);

if (st.st_mode&S_IREAD)

printf(“S_IREAD\n”);

printf(“\n”);

}

}

pc_efilio_fstat() is also available

All Rtfs packages - Format and partition

management API

pc_get_media_parms

pc_get_media_parms_uc

Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Get device geometry for a named device.

SUMMARY

BOOLEAN pc_get_media_parms (

 byte *path,

 PDEV_GEOMETRY pgeometry)

DESCRIPTION

Query the drive’s associated device driver for a description of the installed media.

This information is used by the command shell when performing the FDISK command

to prompt the user for the sizes required for each partition.

pc_partition_media() and pc_format_volume() require geometry information

but they call the device driver themselves to retrieve it.

Note: The floppy device driver uses a “back door” to communicate with the format

routine through the geometry structure. This allows us to not have floppy specific

code in the format routine but still use the exact format parameters that DOS uses

when it formats a floppy.

See the following definition of the geometry structure:

typedef struct dev_geometry {

int bytespsector; - 0 or 512 for 512 byte sectors, 1024, 2048, 4096

int dev_geometry_heads; - Must be < 256

int dev_geometry_cylinders; - Must be < 1024

int dev_geometry_secptrack; - Must be < 64

dword dev_geometry_lbas; - For oversized media that

supports logical block ad dressing. If this is non-zero

dev_geometry_cylinders

is ignored but dev_geometry_heads and

dev_geometry_secptrack must still be valid.

BOOLEAN fmt_parms_valid; - If the device I/O control call

 sets this TRUE, then it tells the

 applications layer that these

format parameters should be used. This is a way to

format floppy disks exactly as they are

formatted by DOS.

FMTPARMS fmt;
} DEV_GEOMETRY;

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEDEVICEFAILURE Device driver get device geometry request failed

PEINVALIDPARMS Device driver returned bad values

SEE ALSO

pc_format_media(), pc_partition_media(),

pc_format_volume()

EXAMPLE

Note: This routine is designed to work in a specific context. See the source code of

appcmdsh.c and the documentation for pc_format_volume() for example usage.

pc_partition_media

pc_partition_media_uc

Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Partition a disk

SUMMARY

BOOLEAN pc_partition_media (byte *path, struct mbr_specification *pmbrspec)

DESCRIPTION

Write a partition table onto the disk at path, according to the specification provided

in pmbrspec.

Note: If the underlying device driver is dynamic, it will provide dynamic partitioning

instructions and 0 may be passed for pmbrspec, since it is ignored.

Note: If extended partitions are desired then one additional mbr_specification

structure is required per virtual volume in the extended partition. The specifications

must be provided in a contiguous array pointed to by pmbrspec.

The MBR specification structure

Typically one specification structure is provided. This is used to initialize the primary

boot record.

struct mbr_specification {

 int device_mbr_count;

 dword mbr_sector_location;

 struct mbr_entry_specification entry_specifications[4];

};

device_mbr_count Only used in the first specification. This

must contain 1 if there is only one

partition table. If extended partitions are

required this must be 1 plus the

number of EBR (extended boot record)

specifications to follow.

mbr_sector_location Location of this primary or extended boot

record. Will contain 0 for the primary

MBR. For extended boot records this will

contain the absolute sector address

where the record will reside.

entry_specifications[4] Contains four partition table entries. If an

entry is not used it should be zero filled.

struct mbr_entry_specification {

 dword partition_start;

 dword partition_size;

 byte partition_type;

 byte partition_boot

};

partition_start Sector number where the volume BPB

resides.

partition_size Number of sectors in the partition.

partition_type 0x0c; - Fat 32

0x06; - Huge Fat 16

0x04; - Fat 16

0x01; - Fat 12

partition_boot use 0x80 for bootable, 0x00 otherwise

(ignored by Rtfs)

 If the device driver is dynamically providing the specifications, it will be called

once for each specification it needs, passing the index number as an argument.

Note: The source of appcmdshformat.c contains source code with example usage,

including how to create extended partitions. appcmdshformat.c is intentionally

partitioned to be easy to cut and paste sections, excluding user interface code into

your own project.

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPARMS Inconsistent or missing parameters

PEIOERRORWRITE Error writing partition table

An Rtfs system error See Appendix for a description of system errors

SEE ALSO

pc_get_media_parms(), pc_format_media(), pc_format_volume()

pc_format_media

pc_format_media_uc

Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Perform a device level format

Note: The source of appcmdshformat.c contains source code with example usage.

appcmdshformat.c is intentionally partitioned to be easy to cut and paste sections,

excluding user interface code into your own project.

Note: Format media requests are passed to the device driver which to format the device. Most devices
do not require formatting. If the devices supported by your application never require formatting you

may omit this call. Alternatively you may call pc_format_media which will have no effect. Devices for
which device format may be necessary are floppy disks, and some flash drivers that may wish to erase

sectors and possibly internal formatting hidden FTL control block.

SUMMARY

BOOLEAN pc_format_media (byte *path)

path is the device’s drive id (A:, B: etc).

DESCRIPTION

This routine performs a device level format on the specified device.

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEDEVICEFAILURE Device driver format request failed

PEDYNAMIC A dynamic device driver is present but it returned

invalid parameters

SEE ALSO

pc_get_media_parms(), pc_partition_media(), pc_format_volume()

pc_format_volume

pc_format_volume_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Perform a volume format

SUMMARY

BOOLEAN pc_format_volume (byte *path)

DESCRIPTION

This routine formats the volume referred to by drive letter. If the device is

partitioned, the partition table is read and the volume within the partition is

formatted. If it is a non-partitioned device, the device is formatted according to the

geometry parameters returned by the device driver

Note: The source of appcmdshformat.c contains source code with example usage.

appcmdshformat.c is intentionally partitioned to be easy to cut and paste sections,

excluding user interface code into your own project.

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEIOERRORREADMBR Partitioned device. I/O error reading

PEINVALIDMBR Partitioned device has no master boot record

PEINVALIDMBROFFSET Requested partition has no entry in master boot

record

PEINVALIDPARMS Inconsistent or missing parameters

PEIOERRORWRITE Error writing during format

PEDYNAMIC A dynamic device driver is present but it returned

invlid parameters

An Rtfs system error See Appendix for a description of system errors

SEE ALSO

pc_get_media_parms(), pc_partition_media(), pc_format_media()

EXAMPLE

See the routine doformat() in appcmdshformat.c.

pc_format_volume_ex

pc_format_volume_ex_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Perform a volume format

SUMMARY

BOOLEAN pc_format_volume_ex (byte *path, struct rtfsfmtparmsex *pfmtparms)

DESCRIPTION

This routine formats the volume referred to by drive letter. If the device is

partitioned, the partition table is read and the volume within the partition is

formatted. If it is a non-partitioned device, the device is formatted according to the

geometry parameters returned by the device driver

struct rtfsfmtparmsex {

BOOLEAN scrub_volume

unsigned char bits_per_cluster

unsigned short numroot

unsigned char numfats

unsigned char secpalloc

unsigned short secreserved

};

struct rtfsfmtparmsex

scrub_volume If TRUE erase the section of media

containing the volume. For NAND the device

driver erase routine will be called, for other

devices all sectors will be written with

zeroes.

bits_per_cluster Select file system type, 12, 16, 32 for FAT12,

FAT16, FAT32 respectively

numroot Number of root directory entries to reserve.

Normally 512 for FAT12 and FAT16, must be

0 for FAT32.

numfats Number of FATS on the disk, Must be 2 if

using Failsafe

secpalloc Sectors per cluster

secreserved Number of reserved sectors. usually 32 for

FAT32, 1 for not FAT32

Note: The source of appcmdshformat.c contains source code with example usage.

appcmdshformat.c is intentionally partitioned to be easy to cut and paste sections,

excluding user interface code into your own project.

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPARMS Inconsistent or missing parameters

PEIOERRORWRITE Error writing during format

An Rtfs system error See Appendix for a description of system errors

SEE ALSO

pc_get_media_parms(), pc_partition_media(), pc_format_media()

EXAMPLE

See the routine doformat() in appcmdshformat.c.

pcexfat_format_volume
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Perform an exFAT volume format

SUMMARY

BOOLEAN pcexfat_format_volume (byte *path)

DESCRIPTION

This routine partitions and formats the drive referred to by drive letter. The device is

partitioned and formatted according to rules in the SD card association exFAT file

specification.

Note: The source of appcmdshformat.c contains source code with example usage.

appcmdshformat.c is intentionally partitioned to be easy to cut and paste sections,

excluding user interface code into your own project.

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEIOERRORREADMBR Partitioned device. I/O error reading

PEINVALIDMBR Partitioned device has no master boot record

PEINVALIDMBROFFSET Requested partition has no entry in master boot

record

PEINVALIDPARMS Inconsistent or missing parameters

PEIOERRORWRITE Error writing during format

PEDYNAMIC A dynamic device driver is present but it returned

invlid parameters

An Rtfs system error See Appendix for a description of system errors

SEE ALSO

pc_ format_volume()

EXAMPLE

See the routine doexfatformat() in appcmdshformat.c.

All Rtfs packages - Utility API

pc_deltree

pc_deltree_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Delete a directory tree

SUMMARY

BOOLEAN pc_deltree (byte *directory_name)

DESCRIPTION

Delete the directory specified in directory_name, deletes all subdirectories of that

directory, and all files contained therein. Fail if directory_name is not a directory, is

read only or is currently in use.

Note: If a portion of the tree being deleted is in use, either with an open file or

directory traversal, then the deltree algorithm will abort leaving the tree partially

removed.

RETURNS

TRUE The directory was successfully removed

FALSE consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive name is invalid

PEINVALIDPATH Path specified by name is badly formed.

PENOENT Can’t find path specified by name.

PEACCES Directory or one of its subdirectories is read only or

in use.

An Rtfs system error See Appendix for a description of System Errors

pc_enumerate

pc_enumerate_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Recursively process all directory entries that match a pattern.

SUMMARY

int pc_enumerate(

byte * from_path_buffer

- pointer to a scratch buffer of size EMAXPATH

byte * from_pattern_buffer

- pointer to a scratch buffer of size EMAXPATH

byte * spath_buffer

- pointer to a scratch buffer of size EMAXPATH

byte * dpath_buffer

- pointer to a scratch buffer of size EMAXPATH

byte * root_search

- Root of the search IE C:\ or C:\USR etc.

word match_flags

- Selection flags (see below)

byte match_pattern

- Match pattern (see below)

int maxdepth

 - Maximum depth of the traversal.

PENUMCALLBACK pcallback

- User callback function (see below).

)

DESCRIPTION

This routine traverses a subdirectory tree and tests each directory entry to see if it

matches user supplied selection criteria. If it does match the criteria, a user supplied

callback function is called with the full path name of the directory entry and a pointer

to a DSTAT structure that contains detailed information about the directory entry

(see the pc_gfirst() manual page for a detailed description of the DSTAT structure).

Selection criteria: Two arguments are used to determine the selection criteria. One

is a flags word that specifies attributes; the other is a pattern that specifies a wild

card pattern.

The flags argument specifies what types of directory entries will be considered a

match if the wildcard match succeeds. It must contain a bitwise oring together of one

or more of the following:

MATCH_DIR Select directory entries

MATCH_VOL Select volume labels

MATCH_FILES Select files

MATCH_DOT Select ‘.’ entry MACTH_DIR must be true too

MATCH_DOTDOT Select ‘..’ entry MATCH_DIR must be true too

The selection pattern is a standard wildcard pattern such as *, ‘*.*’ or *.txt

Note: pc_enumerate() requires a fair amount of buffer space to function. Instead

of allocating the space internally, we require the application to pass three buffers of

size EMAXPATH in to the function. See below.

Note: to scan only one level set maxdepth to 1. For all levels set it to 99.

RETURNS

Returns 0 unless the callback function returns a non-zero value at any point. If the

callback returns a non-zero value, the scan terminates immediately and returns the

returned value to the application.

This function does not set errno.

About the callback:

The callback function returns an integer and is passed the fully qualified path to the

current directory entry and a DSTAT structure. The callback function must return 0 if

it wishes the scan to continue or any other integer value to stop the scan and return

the callback’s return value to the application layer.

EXAMPLE 1 - Print the name of every file and directory on a disk

byte buf0[EMAXPATH], buf1[EMAXPATH], buf2[EMAXPATH], buf3[EMAXPATH];

int rdir_callback(byte *path, DSTAT *d) {printf(“%s\n”, path);return(0);}

print_all()

{

pc_enumerate(buf0,buf1,buf2,buf3,”\\”,(MATCH_DIR|MATCH_FILES),

“*”,99,rdir_callback);

}

EXAMPLE 2 -Delete every file on a disk

int delfile_callback(byte *path, DSTAT *d) {pc_unlink(path); return(0);}

delete_all()

{

pc_enumerate(buf0,buf1,buf2,buf3,”\\”,(MATCH_DIR|MATCH_FILES),

“*”,99, delfile_callback);

}

Note appcmdsh.c provides source code for an example command “ENUMDIR” which

uses pc_enumerate().

pc_check_disk
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Check a volume’s integrity

SUMMARY

BOOLEAN pc_check_disk (byte *drive_id, CHKDISK_STATS *pstat, int verbose, int

fix_problems, int write_chains)

DESCRIPTION

This routine scans the disk searching for lost chains and crossed files and returns

information about the scan in the structure at pstat. If fix_problems is non-zero it

corrects file sizes if necessary. If fix_problems is non-zero and if write_chains is zero,

it frees lost cluster chains; if write_chains is non-zero, it writes lost chains to files

names FILE???.CHK in the root directory. If fix_problems is zero the write_chains

argument is ignored.

pstat - a pointer to a structure of type CHKDISK_STATS. pc_check_disk() returns

information about the disk in this structure.

typedef struct typedef struct chkdisk_stats {

dword n_user_files

dword n_hidden_files;

dword n_user_directories;

dword n_free_clusters;

dword n_bad_clusters; /* # clusters marked bad */

dword n_file_clusters; /* Clusters in non hidden files */

dword n_hidden_clusters; /* Clusters in hidden files */

dword n_dir_clusters; /* Clusters in directories */

dword n_crossed_points; /* Number of crossed chains. */

dword n_lost_chains; /* # lost chains */

dword n_lost_clusters; /* # lost clusters */

dword n_bad_lfns; /* # corrupt/disjoint lfns */

} CHKDISK_STATS;

} CHKDISK_STA

verbose - If this parameter is 1 pc_check_disk() prints status information as it

runs. If it is 0 pc_check_disk() runs silently.

fix_problems - If this parameter is 1 pc_check_disk() will make repairs to the

volume, if it is zero, problems are reported but not fixed.

write_chains - If this parameter is 1 pc_check_disk() creates files from lost

chains. If write_chains is 0 lost chains are automatically discarded and freed for re-

use. If fix_problems is 0 then write_chains has no affect.

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

pc_check_disk() does not set errno.

EXAMPLE

CHKDISK_STATS chkstat;

pc_check_disk(“A:”, &chkstat, 1, 1, 0);

/* Check disk, be verbose, fix problems, free lost chains */

pc_check_disk(“A:”, &chkstat, 1, 1, 1);

/* Check disk, run quietly, fix problems, convert lost chains to files */

return(0);

Note:

Failsafe users should never require pc_check_disk()

All Rtfs packages - Miscellaneous functions

tst_shell
Basic X ProPlus x

Pro x ProPlus DVR x

FUNCTION

Interactive command Shell

SUMMARY

pc_tstsh(void)

DESCRIPTION

This subroutine provides an interactive command shell for controlling Rtfs. It

provides a handy method for testing and exercising your port of Rtfs and it may be

used to maintain the file system on your target system.

The test shell contains most basic file system maintenance commands like “mkdir”,

“rmdir” etc.

A command shell reference guide is included in the application notes.

Note: The source code for the command shell is provided in several files contained in

rtfscommom/apps and rtfsproplus/apps this source code contains many examples of

calling and using the Rtfs API.

EXAMPLE

main()

{

pc_ertfs_run(); /* Don’t forget to call the initialization code */

pc_tstsh(); /* Call the test shell. It will execute until

 the user types QUIT */

exit(0);

}

pc_free_user
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Release this task’s Rtfs user context block

SUMMARY

#include <rtfs.h>

void pc_free_user()

pc_tstsh

DESCRIPTION

NOTE: This routine should be called by all tasks that have used Rtfs before they exit.

When a task first uses the Rtfs API, a user context block is automatically created

specifically for that task. Before the task exits it must release its context block,

otherwise Rtfs will run out of context blocks and all new tasks will have to share the

same context block.

Typical places to call to pc_free_user() are just prior to a task returning or exiting

or your RTOS’s task exit callback routine or in an “onexit” processing subroutine.

Please see the explanation for RTFS_CFG_NUM_USERS in the Configuration Guide

for more information about this function.

RETURNS

Nothing

EXAMPLE

void my_ftp_server_task()

{

do_server_session(); /* Call the ftp server function here */

pc_free_user(); /* Free Rtfs resources for this thread */

exit(0); /* Terminate the thread */

}

Sixty four bit math package

Basic ProPlus X

Pro ProPlus DVR x

A macro package is available to perform 64 bit arithmetic. This macro package works

on processors with 64 bit native integer support and on processors that provide only

32 bit integers.

This macro package is useful for application programming with 64 bit files.

A synopsis of the available macros is provided here. Many sample uses of these

macros may also be found in the source code for the test suite in the subdirectory

rtfspackages/apps.

Mixed 64 bit 32 bit operators

dword M64HIGHDW(ddword A) - Returns the high 32 bits of a 64 bit int.

dword M64LOWDW(ddword A) - Returns the low 32 bits of a 64 bit int.

ddword M64SET32(dword HI, dword LO) - Create a 64 bit int from 2 32 bit ints.

ddword M64PLUS32(ddword A, dword B) - Add a 32 bit int to a 64 bit int.

ddword M64MINUS32(ddword A, dword B) - Subtract a 32 bit int from a 64 bit int.

64 bit arithmetic operators

ddword M64PLUS(ddword A, ddword B) - Add 2 64 bit ints.

ddword M64MINUS(ddword A, ddword B) - Subtract a 64 bit int from a 64 bit int.

ddword M64LSHIFT(ddword A, int B) - Left shift a 64 bit int by B.

ddword M64RSHIFT(ddword A,int B) - Right shift a 64 bit int by B.

64 bit logical operators

BOOLEAN M64IS64(ddword A) - TRUE if A > than the largest 32 bit int

BOOLEAN M64EQ(ddword A, ddword B) - TRUE if A equals B

BOOLEAN M64LT(ddword A, ddword B) - TRUE if A less than B

BOOLEAN M64LTEQ(ddword A, ddword B) - TRUE if A less than or equal B

BOOLEAN M64GT(ddword A, ddword B)) - TRUE if A greater than B

BOOLEAN M64GTEQ(ddword A, ddword B) - TRUE if A greater than or equal to B

BOOLEAN M64NOTZERO(ddword A) - TRUE if A is not zero.

BOOLEAN M64ISZERO(ddword A) - TRUE if A is equal to zero.

RtfsProPlus - Real time and direct disk

management API

pc_diskio_runtime_stats
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Return buffering and block transfer usage patterns for a drive.

SUMMARY

BOOLEAN pc_diskio_runtime_stats (driveid, pstats, clear)

byte *driveid Name of a mounted volume “A,”

“B,” etc.

DRIVE_RUNTIME_STATS *pstats Usage statistics are placed into this

structure.

BOOLEAN clear If this argument is TRUE the

internal statistics are all set to zero

after they are copied to the pstats

buffer.

This option is useful if you wish to

monitor the usage patterns of a

single operation or a group of

operations. You can clear the

statistics, then perform your

operations and then retrieve the

statistics. The statistics will contain

only the accesses made while

performing the operations under

investigation.

DESCRIPTION

Note: pc_diskio_runtime_stats() returns usage statistics that are acquired while

Rtfs is running. To use this feature the Rtfs library must be compiled with the

INCLUDE_DEBUG_RUNTIME_STATS define set to one (rtfsconf.h). If it is not

enabled the function will zero fill the DRIVE_RUNTIME_STATS structure and

return.

These statistics are a tool for determining if you have optimally configured Rtfs
for your application and how efficiently your application is using the library.
Please see the description of the pstats structure below to learn how to interpret

these statistics.

Detailed description of the stats structure fields.
All fields are of type dword.

Asynchronous statistics

async_steps Total number of steps made to complete async

operations

Fat table access statistics for the buffered region used for directory clusters.

Note that the ratio of fat_blocks_read to fat_reads and fat_blocks_written to

fat_writes gives an indication of how successfully the fat buffer paging algorithm and

multiblock FAT access code is performing.

fat_reads Number of reads made to the FAT region of the disk.

fat_blocks_read Total number of FAT blocks read.

fat_writes Number of writes made to the FAT region of the disk.

fat_blocks_written Total number of blocks written.

fat_buffer_swaps Number of FAT buffer pool misses that required flushing

of a FAT buffer block.

Subdirectory block buffer pool access statistics.

These fields indicate how many cache hits, reads and writes have occurred. The

number of hits is not a huge factor in performance. This is because Rtfs uses large

multi-block reads whenever possible to quickly scan directory blocks

dir_buff_hits Number of directory block read accesses that were

fulfilled by data cached from previous reads or buffer

initializations.

dir_buff_reads Number of directory block read accesses that required

reading from the disk.

dir_buff_writes Number of buffered directory block writes.

Subdirectory block direct access statistics.

Rtfs scans subdirectories using multi-block transfers whenever possible. The ratio of

dir_direct_blocks_read to dir_direct_reads gives an indication of the amount this is

occurring.

dir_direct_reads Number of un-buffered directory block read calls.

dir_direct_blocks_read Number of un-buffered directory blocks read.

dir_direct_writes Number of un-buffered directory block write calls.

dir_direct_blocks_written Number of un-buffered directory blocks written.

File access statistics.

Application controlled read, write, and seek patterns can have a large impact on

system performance. For optimal performance, applications should read and write

data in chunks that are as large as possible and are always aligned on 512 byte file

pointer boundaries. If this is not your application’s access pattern then some degree

of data copying and additional disk reads will occur.

If the values file_buff_reads or file_buff_writes are large, the application is not

behaving optimally and an attempt should be made to align the file data. If this is

not possible then the file, or files, with unaligned accesses should be opened in

buffered mode. When files are opened in buffered mode the values of both

file_buff_reads and file_buff_writes should decrease and you should see and

increase in the value of file_buff_hits.

file_buff_hits Number of unaligned file block read accesses that were

fulfilled by data cached from previous unaligned reads.

file_buff_reads Number of unaligned file block read accesses that

required reading from the disk.

file_buff_writes Number of unaligned file block writes to the disk.

file_direct_reads Number of block read calls of file data directly to the

application buffer.

file_direct_blocks_read Number of blocks of file data read directly to the

application buffer.

file_direct_writes Number of block write calls of file data directly from the

application buffer.

file_direct_blocks_written Number of blocks of file data written directly from the

application buffer.

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEINVALIDPARMS Missing or invalid parameters

PEINVALIDDRIVEID Invalid drive specified in an argument

An Rtfs system error See Appendix for a description

 pc_diskio_free_list
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Query free cluster segments on the drive.

SUMMARY

#include <rtfs.h>

BOOLEAN pc_diskio_free_list(byte *driveid, int listsize, FREELISTINFO *plist,

dword startcluster, dword endcluster, dword threshhold)

driveid Name of the volume “A:” “B:” etc.

listsize Must contain the number of FREELISTINFO elements in the

array provided in plist.

plist Must contain the address of an array of listsize FREELISTINFO

elements

The FREELISTINFO structure is defined as follows:

typedef struct freelistinfo {

 dword cluster; Cluster where free region starts

 dword nclusters; Number of free clusters

 } FREELISTINFO;

startcluster Must contain the start of the cluster range to scan for free

clusters.

If startcluster is zero it scans from the beginning of the FAT

endcluster Must contain the end of the cluster range to scan for free

clusters.

If endcluster is zero it scans to the end of the FAT

threshold Selects the minimum sized contiguous free region to report.

This argument allows the caller to exclude free chains that are

less than a certain number of contiguous clusters.

Set threshhold to one to report every free cluster segment in

the range.

Set threshhold to a larger value to filter out free fragments

that are less than some minimum size.

Note: The value of threshold must be at least 1.

DESCRIPTION

This routine returns a list of currently free cluster segments and places the results in

the FREELISTINFO structure array.

The results may be used to analyze disk fragmentation patterns and for allocating

specific clusters to individual files using pc_efilio_setalloc() and

pc_cflio_setalloc().

Note: If there are more free cluster extents than will fit in plist, as indicated by

listsize, then the list is not updated beyond listsize elements. However, the count is

updated and returned, so the list size may be adjusted and the routine may be called

again.

Note: When INCLUDE_RTFS_FREEMANAGER is enabled this function executes

quickly, accessing only ram based structure. When

INCLUDE_RTFS_FREEMANAGER is disabled the function scans the disk based FAT

table, taking a longer time to complete.

RETURNS

>= 0 Returns the number of free extents in the file or -1

on error

-1 The operation failed consult errno

Application Level Error Return Codes

PEINVALIDPARMS Missing or invalid parameters

PEINVALIDDRIVEID Invalid drive specified in an argument

An Rtfs system error See Appendix for a description

pc_efilio_setalloc
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Specify and optionally reserve clusters for a file.

SUMMARY

BOOLEAN pc_efilio_setalloc(int fd, dword cluster, dword ntoreserve)

int fd A file descriptor that was returned from a successful call to

pc_efilio_open.

dword cluster Hint for the next cluster to allocate, or start of clusters to

reserve

dword ntoreserve

If ntoreserve is non-zero then clusters in the range cluster to

cluster + ntoreserve -1 are removed from free space and

added to the file's reserved cluster list. When the file is

expanded, these clusters are used. When the file is closed,

any unused clusters in the reserve list are released. If all of

the specified clusters are not currently free then

pc_efilio_setalloc() fails and sets errno to

PEINVALIDPARMS.

If ntoreserve is zero, the clusters are not pre-allocated but

when the file is next expanded, Rtfs tries to allocate clusters

starting at cluster. If cluster is already in use, it allocates

starting at the next free cluser beyond cluster.

DESCRIPTION

pc_efilio_setalloc() allows the programmer to either specify a hint where the next

cluster should be allocated from or to specify a group of clusters to be pre-allocated

to this file for its exclusive use.

Note: pc_diskio_free_list() may be used in conjunction with

pc_efilio_setalloc() to retrieve a free cluster map and assign specific clusters

from that map to files.

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEBADF Invalid file descriptor

PECLOSED File is no longer available. Call pc_efilio_close().

PEEFIOILLEGALFD The file not open in extended IO mode

PEINVALIDPARMS Missing or invalid parameters

PEEINPROGRESS Asynchronous operation already in progress

An Rtfs system error See Appendix for a description

pc_efilio_get_file_extents
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Get the list of segments that make up a file.

SUMMARY

int pc_efilio_get_file_extents(int fd, int infolistsize,

 FILESEGINFO *plist, BOOLEAN report_clusters, BOOLEAN raw)

int fd A file descriptor returned from po_open() or

pc_efilio_open()

infolistsize The number of elements in the storage pointed to by plist.

plist A pointer to a buffer or array of FILESEGINFO structures. The

buffer must contain space for at least infolistsize FILESEGINFO

structures

The FILESEGINFO structure is defined as follows:

typedef struct fileseginfo {

 dword block; Block or cluster number of the extent

 dword nblocks; Number of blocks or clusters in the extent

} FILESEGINFO;

report_clusters

If report_clusters is TRUE the file segments in plist are

reported in clusters.

If report_clusters is FALSE the file segments in plist are

reported in blocks.

raw If report_clusters is TRUE this argument is ignored.

If report_clusters is FALSE this argument does the following:

If raw is FALSE blocks are reported as block offsets from the

start of the partition.

If raw is TRUE blocks are reported as block offsets from the

start of the device.

Note: Set raw to TRUE if you will be using the resultant list to

set up DMA transfers to or from the disk.

DESCRIPTION

This routine traverses the cluster chain of the open file, fd, and logs into the list at

plist the block location and length in blocks of each segment of the file. The block

numbers and block length information can then be used to read and write the file

directly using pc_raw_read() and pc_raw_write() or the information may be

used to set up DMA transfers to or from the raw block locations. If the file contains

more extents than will fit in plist as indicated by infolistsize then the list is not

updated beyond infolistsize elements but the count is updated and returned so the

list size may be adjusted and the routine may be called again.

Note: Rtfs provides an alternative way to inspect an open file’s cluster chain. Please

See pc_efilio_fstat().

RETURNS

>= 0 The operation was a success. The return value is the

number of extents in the file.

-1 The operation failed consult errno

Application Level Error Return Codes

PEINVALIDPARMS Missing or invalid parameters

PEBADF Invalid file descriptor

An Rtfs system error See Appendix for a description

pc_get_dirent_info
Basic ProPlus X

Pro ProPlus DVR X

FUNCTION

Retrieve low level directory entry information.

SUMMARY

BOOLEAN pc_get_dirent_info(path, pinfo)

byte *path File or directory name

DIRENT_INFO *pinfo Retrieves the following information:

typedef struct dirent_info {

 byte fattribute;

 dword fcluster;

 word ftime;

 word fdate;

 dword fsize;

 dword my_block;

 int my_index;

} DIRENT_INFO;

Note: my_block and my_index are the block

number and directory entry index within the

block (0 to 16 with 512 byte sectors). They

cannot be changed. The other elements may

be changed and passed to pc_set_dirent_info.

DESCRIPTION

Given a file or directory name and a dirent_info buffer fill the buffer with low level

directory entry information. This structure can be examined and it can be modified

and passed to pc_set_dirent_info() to change the entry.

RETURNS

TRUE If no errors were encountered.

FALSE An error occurred

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PENOENT File or directory not found

An Rtfs system error See Appendix for a description

pc_set_dirent_info
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Change low level directory entry information.

SUMMARY

BOOLEAN pc_set_dirent_info(path, pinfo)

byte *path File or directory name

DIRENT_INFO *pinfo An info structure returned from

pc_get_dirent_info.

typedef struct dirent_info {

 byte fattribute;

 dword fcluster;

 word ftime;

 word fdate;

 dword fsize;

 dword my_block;

 int my_index;

} DIRENT_INFO;

The entries in the dirent_info structure that

may be changed by pc_set_dirent_info are:

 fattribute,fcluster,ftime, fsize and fdate

DESCRIPTION

To use this function you should first call pc_get_dirent_info() to retrieve low level

directory entry information and then change the fields you wish to modify and then

call the function to apply the changes.

Note: This is a very low level function that could cause serious problems if used

incorrectly.

For example, to move the contents from "File A" to "File B" you could perform the

following.

 DIRENT_INFO fileainfo, filebinfo;

 pc_get_dirent_info("File A", &fileainfo);

 pc_get_dirent_info("File B", &filebinfo);

 filebinfo.fcluster = fileainfo.fcluster;

 filebinfo.fsize = fileainfo.fcfsize;

 fileainfo.fcluster = 0;

 fileainfo.fsize = 0;

 pc_set_dirent_info("File A", &fileainfo);

 pc_set_dirent_info("File B", &filebinfo);

RETURNS

TRUE If no errors were encountered.

FALSE An error occurred

If an error occurred: errno is set to one of the following:

Application Level Error Return Codes

0 No error

PEINVALIDDRIVEID Drive component is invalid

PENOENT File or directory not found

An Rtfs system error See Appendix for a description

pc_efilio_fpos_sector
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Retrieve the sector number and count of contiguous sectors at the current file

pointer

SUMMARY

BOOLEAN pc_efilio_fpos_sector(int fd, BOOLEAN isreadfp, BOOLEAN raw,

 dword *psectorno, dword *psectorcount)

int fd A file descriptor that was returned from a successful call

to pc_efilio_open or pc_cfilio_open

BOOLEAN isreadfp Set this to TRUE if the intention is to read the sectors

from the disk. Set it to FALSE if the intention is to write.

Proper use of this argument is important for the

following reasons:

1. If fd is a circular file the isreadfd argument is

used to select which file pointer (read or write) to

use when calculating *psectorno.

2. If isreadfp is TRUE, *psectorcount will contain

the number of contiguous sectors starting at the

file pointer up to the file size. Sectors from pre-

allocated clusters that are not yet accounted for

in the file’s size will not be included.

3. If isreadfp is FALSE, *psectorcount will return the

number of contiguous sectors starting at the file

pointer and include sectors from pre-allocated

clusters that are not yet accounted for in the file’s

size.

BOOLEAN raw If raw is TRUE, the returned sector number will be the

actual sector number on the device. If raw is FALSE, the

returned sector number will be the sector number offset

within the partition

For DMA enabling raw should always be set to TRUE.

dword *psectorno The current sector number is returned through this

pointer.

dword

*psectorcount

The number of contiguous sectors starting at this

location is returned through this pointer.

This value may be zero if this is a read request and you

are at end of file or if it is a write request on a circular

file opened in PCE_CIRCULAR_FILE mode and the

write pointer has caught the read pointer.

DESCRIPTION

This function may be used to enable your application to DMA data directly to and

from files. Special programming techniques allow DMA reading and writing disk

sectors that already exist in the file as well as extents that are to be appended to

the file.

Please study the application notes for an in-depth discussion on how to use this

function along with other Rtfs functions to achieve these results.

RETURNS

TRUE If no errors were encountered.

*psectorno is set to the sector number at the file

pointer.

*psectorcount is set to the number of contiguous

sectors at the file pointer.

FALSE An error occurred

If an error occurred: errno is set to one of the following:

PEBADF Invalid file descriptor

PECLOSED File is no longer available. Call close.

An Rtfs system error See Appendix for a description

pc_fd_to_driveid
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Get the drive identifier associated with an open file.

SUMMARY

#include <rtfs.h>

int pc_fd_to_driveid (int fd, byte* pdrive_name)

DESCRIPTION

Use this function to get the drive number and drive name of the disk that the file

associated with fd resides on.

This function populates the argument pdrive_name with the drive name and returns

the drive number.

Note: It is legal to pass a NULL pointer instead of a pointer for the pdrive_name

argument but if pdrive_name is non-NULL the buffer pointed to it must be large

enough to contain the NULL terminated drive identifier. This is 3 bytes in ASCII or

JIS, 6 bytes in UNICODE.

Note: The file descriptor may be a file descriptor that was returned by po_open(),

pc_efilio_open(), pc_cfilio_open() or pc_async_unlink_start().

RETURNS

>= 0 Drive number

-1 The file descriptor is invalid consult errno

pc_cluster_to_sector
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Convert a cluster number to a sector number.

SUMMARY

dword pc_cluster_to_sector (driveno, cluster, raw)

int driveno The drive number where the cluster resides

dword cluster Cluster number to map to a sector number

BOOLEAN raw If raw is TRUE then the return value will be the offset

from the beginning of the physical device.

If raw is FALSE then the return value will be the offset

from the beginning of the partition.

DESCRIPTION

pc_cluster_to_sector() takes a cluster number and converts it to a sector

number. This can be a useful informational tool and may be used in conjunction with

other functions to implement specific block placement and DMA schemes.

RETURNS

>0 The sector number of the cluster.

0 An error occurred

If an error occurred: errno is set to one of the following:

PEINVALIDDRIVEID Driveno is incorrect

PEINVALIDPARMS Invalid arguments

An Rtfs system error See Appendix for a description

 pc_sector_to_cluster
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Convert a sector number to a cluster number.

SUMMARY

dword pc_sector_to_cluster (driveno, sector, raw)

int driveno The drive number

dword sector Sector number to map to a cluster value

BOOLEAN raw If raw is TRUE then sector must be the offset from the

beginning of the physical device.

If raw is FALSE then sector must be the offset from the

beginning of the partition.

DESCRIPTION

pc_sector_to_cluster() Takes a sector number and converts it to a cluster

number. This can be a useful informational tool and it may be used in conjunction

with other functions to implement specific block placement and DMA schemes

RETURNS

>0 The cluster number of the sector.

0 An error occurred

If an error occurred: errno is set to one of the following:

PEINVALIDDRIVEID Driveno is incorrect

PEINVALIDPARMS Invalid arguments

An Rtfs system error See Appendix for a description

pc_raw_read
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Perform direct block read

SUMMARY

BOOLEAN pc_raw_read (driveno, buf, blockno, nblocks, raw)

int driveno The drive number to read from

byte *buf Buffer where data is to be read

dword blockno Sector number to read

dword nblocks Number of sectors to read

BOOLEAN raw If raw is TRUE then blockno is the offset from the

beginning of the physical device.

If raw is FALSE then blockno is the offset from the

beginning of the partition.

If raw is FALSE and the drive volume is not currently

mounted Rtfs will attempt to mount the device.

If raw is TRUE the device may be accessed even if the

volume is not currently mounted.

DESCRIPTION

pc_raw_read() bypasses normal file IO and reads block oriented data directly

from the disk.

RETURNS

TRUE If no errors were encountered

FALSE An error occurred

If an error occurred: errno is set to one of the following:

PEINVALIDDRIVEID Driveno is incorrect

PEINVALIDPARMS Invalid arguments

PEIOERRORREAD Error performing read

An Rtfs system error See Appendix for a description

pc_raw_write
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Perform direct block write

SUMMARY

BOOLEAN pc_raw_write(driveno, buf, blockno, nblocks, raw)

int driveno The drive number to write to

byte *buf Buffer where data is to be written from

dword blockno Sector number to write

dword nblocks Number of sectors to write

BOOLEAN raw If raw is TRUE then blockno is the offset from the

beginning of the physical device.

If raw is FALSE then blockno is the offset from the

beginning of the partition.

If raw is FALSE and the drive volume is not currently

mounted Rtfs will attempt to mount the device.

If raw is TRUE the device may be accessed even if the

volume is not currently mounted.

DESCRIPTION

pc_raw_write() bypasses normal file IO and writes block oriented data directly to

the disk.

RETURNS

TRUE If no errors were encountered

FALSE An error occurred

If an error occurred: errno is set to one of the following:

PEINVALIDDRIVEID Driveno is incorrect

PEINVALIDPARMS Invalid arguments

PEIOERRORWRITE Error performing write

An Rtfs system error See Appendix for a description

pc_bytes_to_clusters
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Calculate the minimum number of clusters to contain the number of bytes.

SUMMARY

BOOLEAN pc_bytes_to_clusters (driveno, bytes_hi, bytes_lo, *presult)

int driveno The drive number

dword bytes_hi High 32 bits of 64 bit byte count. (0 for a 32 bit byte

count)

dword bytes_lo 32 bit byte count or low 32 bits of 64 bit byte count.

dword *presult Returns the minimum number of clusters to contain the

byte count.

DESCRIPTION

pc_bytes_to_clusters() takes a byte count and calculates the minimum number

of clusters required to contain the number of bytes

RETURNS

TRUE Success

FALSE An error occurred

If an error occurred: errno is set to one of the following:

PEINVALIDDRIVEID Driveno is incorrect

PEINVALIDPARMS Invalid arguments

An Rtfs system error See Appendix for a description

pc_clusters_to_bytes
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Calculate the number of bytes contained in the number of clusters.

SUMMARY

BOOLEAN pc_clusters_to_bytes (driveno, n_clusters, *pbytes_hi, *pbytes_lo)

int driveno The drive number

dword n_clusters The number of clusters to convert

dword *pbytes_hi High 32 bits of 64 bit result.

dword *pbytes_lo 32 bit result or low 32 bits of 64 bit result.

DESCRIPTION

pc_clusters_to_bytes() Calculates the number of bytes in n_clusters.

RETURNS

TRUE Success

FALSE An error occurred

If an error occurred: errno is set to one of the following:

PEINVALIDDRIVEID Driveno is incorrect

PEINVALIDPARMS Invalid arguments

An Rtfs system error See Appendix for a description

pc_subtract_64
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Subtract two sixty four bit numbers using hi, lo 32 bit format.

SUMMARY

void pc_subtract_64 (hi_1, lo_1, hi_0, lo_0, *pres_hi, *pres_lo)

dword hi_1 High 32 bits of first number.

dword lo_1 Low 32 bits of first number.

dword hi_0 High 32 bits of second number.

dword lo_0 Low 32 bits of second number

dword *pres_hi High 32 bits of result

dword *pres_lo Low 32 bits of result

DESCRIPTION

With this subroutine you can subtract two 64 bit numbers that are already

represented in 32 bit hi:lo format. This is the format that is used by seek and

extract API routines.

The routine performs the following operation:

(*pres_hi:*pres_lo) = (hi_1:lo_1) – (hi_0:lo_0);

RETURNS

Nothing

pc_add_64
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Add two sixty four bit numbers using hi, lo 32 bit format.

SUMMARY

void pc_add_64 (hi_1, lo_1, hi_0, lo_0, *pres_hi, *pres_lo)

dword hi_1 High 32 bits of first number.

dword lo_1 Low 32 bits of first number.

dword hi_0 High 32 bits of second number.

dword lo_0 Low 32 bits of second number

dword *pres_hi High 32 bits of result

dword *pres_lo Low 32 bits of result

DESCRIPTION

With this subroutine you can add two 64 bit numbers that are already represented

in 32 bit hi:lo format. This is the format that is used by seek and extract API

routines.

The routine performs the following operation:

(*pres_hi:*pres_lo) = (hi_1:lo_1) + (hi_0:lo_0);

RETURNS

Nothing

RtfsProPlus - Extended file IO API

pc_efilio_open

pc_efilio_open_uc
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Open a file for extended IO operations.

Note: pc_efilio_open() is highly configurable. This manual section provides a

comprehensive reference for the function but you may also wish to visit the

rtfsproplus/apps subdirectory and view the source code, which makes multiple calls

to pc_efilio_open().

SUMMARY

int pc_efilio_open (name, flag, mode, poptions)

byte *name File name

word flag Flag values

word mode Mode values

EFILEOPTIONS *poptions Extended options, if NULL no extended options

are used.

DESCRIPTION

Open the file for access as specified in flag with additional options specified in the

poptions structure.

Flag values are:

PO_BINARY Ignored. All file access is binary

PO_TEXT Ignored

PO_RDONLY Open for read only

PO_RDWR Read/write access allowed

PO_WRONLY Open for write only

PO_CREAT Create the file if it does not exist. Use mode to

specify the permission on the file

PO_EXCL If flag contains (PO_CREAT | PO_EXCL) and the

file already exists fail and set errno to PEEXIST

PO_TRUNC Truncate the file if it already exists

PO_NOSHAREANY Fail if the file is already open. If the open succeeds,

no other opens will succeed until it is closed

PO_NOSHAREWRITE Fail if the file is already open for write. If the open

succeeds no other opens for write will succeed until it

is closed

PO_AFLUSH Flush the file after each write

PO_APPEND Always seek to the end of the file before writing

PO_BUFFERED Use persistent buffers to improve performance of

non-block aligned reads and writes

Mode values are:

PS_IWRITE Write permitted

PS_IREAD Read permitted. (Always true anyway)

Extended Options

If the options argument is zero no extended options are used, otherwise the options

structure must be zeroed and its fields must be initialized properly before they are

passed.

The options structure is:

typedef struct efileoptions {

dword allocation_policy;

dword min_clusters_per_allocation;

dword allocation_hint;

byte *transaction_buffer;

dword transaction_buffer_size;

dword circular_file_size_hi;

dword circular_file_size_lo;

int n_remap_records;

REMAP_RECORD *remap_records;

} EFILEOPTIONS;

 EFILEOPTIONS:

Allocation_policy – This field contains bit flags that may be set by the user to

modify the behavior of the extended file IO routines. See the Allocation policy

reference section below for options.

min_clusters_per_allocation Set this value to a value greater than one to force

pc_efilio_write() to allocate a minimum number

of clusters each time it needs to extend the file.

When the file closes any clusters that were pre-

allocated but not used return to the disk’s free

space. (This behavior may be overridden by using

the option PCE_KEEP_PREALLOC).

Cluster pre-allocation is useful for minimizing disk

fragmentation and for creating files that are

contiguous.

Note: min_clusters_per_allocation plays a key

role in DMA enabling applications. Please consult

application notes for more

information.

Note: Cluster pre-allocation features are only

available it the memory based free space

manager is active.

For example, a high-speed video capture and playback application requires file

extents to be contiguous in order to play back the video in real time. If the worst-

case file size is, 1000 clusters then set min_clusters_per_allocation to 1000. The

first byte that is written will cause the file to be extended by 1000 clusters (if

PCE_FORCE_CONTIGOUS is set then these clusters will all be contiguous). Then

up to 1000 clusters of data may be written to the file without incurring additional

overhead. When the file is closed, those clusters that were not consumed are

returned to free space.

allocation_hint Set this value to a specific cluster number if you

would like pc_efilio_write() to first attempt to

allocate file extents from this cluster. This option

can be useful if you would like to precisely control

the locations on the disk where files data will be

placed. This option may be used in conjunction

with pre-allocation methods for example to open

a file and then pre-allocate some number of

clusters to it at a fixed location.

Note: The allocation hint may be changed

explicitly once the file is opened by calling

pc_efilio_setalloc() or pc_cfilio_setalloc().

The following options are reserved for calls to pc_cfilio_open() and they

must be set to zero when calling pc_efilio_open().

circular_file_size_hi Set this value to zero

circular_file_size_lo Set this value to zero

n_remap_records Set this value to zero

remap_records Set this value to zero

The following fields must be initialized if the PCE_TRANSACTION_FILE

option is selected:

transaction_buffer This field must contain the address of a memory

buffer that is large enough to hold one cluster of data

transaction_buffer_size This field must contain the size of the

transaction_buffer in blocks. It must be greater than

or equal to the volume’s cluster size

Allocation Policy Reference:

PCE_LOAD_AS_NEEDED - Select this option to disable loading all file cluster

chains when the file is opened, and instead, load them as they are needed. File re-

opens complete faster with this option enabled, but some small delays are

introduced when reads and seeks are performed.

PCE_TEMP_FILE - Select this option to force Rtfs to consider this to be a

termporary file and release the directory entry and free all clusters when the file is

closed. If the file already exists the open will fail and errno will be set to PEEXIST.

Note: Since the cluster chains of files opened with the PCE_TEMP_FILE option are

never actually commited to the disk based FAT table, opening with the

PCE_TEMP_FILE option is more efficient than creating a normal file and deleting it

after it is closed.

PCE_REMAP_FILE- Select this option if the file is to be used as a linear extract file

and an argument to pc_cfilio_extract(). Data in the file may be read or over-

written, but it can’t be extended by writing past EOF. Only pc_cfilio_extract() may

assign file extents to file.

PCE_64BIT_META_FILE - Open the file as a 64-bit metafile. If this option is true

and the file already exists as either a 32 bit or 64 bit file, re-open in the correct

mode. If the file does not already exist, a 64-bit metafile will be created.

(PCE_64BIT_META_FILE is available for ProPlus64 and ProPlusDvr only)

PCE_FIRST_FIT - Select this option to give precedence to allocating file extent

from the beginning of the file area. Otherwise, the default behavior allocates space

near the file’s currently allocated extents.

Note: The meaning of the PCE_FIRST_FIT is different when using a dynamic device

driver with erase block support (NAND for example). Normally, precedence is given

to allocating clusters from empty erase block, but the PCE_FIRST_FIT option may

be used to change the precedence so clusters are allocated from partially full erase

blocks instead. This provides a garbage collection method in which certain files with

lower performance requirements can scavange free clusters in partially filled erase

blocks

PCE_FORCE_FIRST - Select this option to give precedence to allocating the first

free clusters in the range that fulfills the request. If PCE_FORCE_FIRST is not

enabled, precedence goes to allocating the first contiguous group of free clusters in

the range that can fulfill the request. If that fails then the same algorithm as

PCE_FORCE_FIRST is used.

Note: If you set both PCE_FIRST_FIT and PCE_FORCE_FIRST then free clusters

are allocated sequentially from the beginning of the FAT. Using this option will help

reduce disk fragmentation if it is used on transient files, small files and other files

for which a higher amount of fragmentation is acceptable.

PCE_FORCE_CONTIGUOUS - Select this option to force write calls to fail if the

whole request can not be fulfilled in one contiguous extent.

PCE_KEEP_PREALLOC - Select this option to force excess pre-allocated clusters

(see: min_clusters_per_allocation) to be incorporated into the file when it is closed.

If this option is not selected, then excess pre-allocated clusters are returned to free

space when the file is closed.

PCE_ASYNC_OPEN - Perform an asynchronous open of the file. If PCE_ASYNC_

OPEN is enabled pc_efilio_open() returns quickly after it has determined that the

arguments are valid and it has created the directory entry on a file create or for a

file re-open, after it has loaded the directory entry contents. If this option is not

enabled then pc_efilio_open() will make the necessary disk accesses required to

load the file’s FAT based extent maps. On small files and even files up to several

megabytes in size this will not be noticeable, but on very large files this may

introduce a perceptible delay. The application must call pc_async_continue() to

complete the open operation so the file descriptor may be used by the API.

PCE_TRANSACTION_FILE - Open the file in transaction mode. In transaction

mode, when Rtfs returns from pc_efilio_write(), it guarantees that the data is

written to the volume and will survive power loss. If power is interrupted before

pc_efilio_write() returns then it is guaranteed that the file is unchanged.

If the write operation overwrites an existing region, Rtfs insures that the overwrite

may be rewound if a power outage occurs before it completes. If the data is cluster

aligned this is done with no copying, and Rtfs achieves similar overwrite

performance in transactional mode as it does in normal mode. When the data is not

cluster aligned, Rtfs still performs similarly by doing minimal copying (one cluster or

less) and using a special buffering scheme.

In transaction mode, Rtfs automatically flushes Failsafe buffers to disk before

pc_efilio_write() returns. This additional step adds typically one or two additional

block writes per write call. This reduces performance somewhat over non

transactional files but still provides reasonably high performance.

Notes: Failsafe must be enabled to use this option. To use this option the fields in

the options structure named transaction_buffer and transaction_buffer_size must

also be intialized.

RETURNS

> = 0 The operation was a success the return value is a valid file descriptor

- 1 The operation failed consult errrno

Application Level Error Return Codes:

PEACCES Deleting an in-use object or writing to read only object

PEEXIST Creating an object that already exists

PENOENT File or directory not found

PENOSPC Out of space to perform the operation

PESHARE Sharing violation

PEINVALIDPARMS Missing or invalid parameters

PEINVALIDPATH Invalid path name used as an argument

PEEINPROGRESS Asynchronous operation already in progress

PEEFIOILLEGALFD File already opened in non extended mode

PE64NOT64BITFILE Attempt to open a sub-directory with 64 bit file API

An Rtfs system error See Appendix for a description

pc_efilio_close
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Close an extended 32-bit file or 64-bit metafile.

SUMMARY

BOOLEAN pc_efilio_close (int fd)

int fd A file descriptor that was returned from a

successful call to pc_efilio_open()

NOTE: An asynchronous file close routine is also available, see

pc_efilio_async_close_start()

DESCRIPTION

Flush the directory entry and flush the fat chain to disk. Process any deferred

cluster chain linking and free all memory associated with the file descriptor.

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEBADF Invalid file descriptor

PEEFIOILLEGALFD The file not open in extended IO mode

PEINVALIDPARMS Missing or invalid parameters

PEEINPROGRESS Asynchronous operation already in progress

An Rtfs system error See Appendix for a description

 pc_efilio_read
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Read from an extended 32 bit file or 64 bit metafile

SUMMARY

BOOLEAN pc_efilio_read (fd, buf, count, nread)

int fd A file descriptor that was returned from a

successful call to pc_efilio_open

dword count The length of the read request, (0 to

0xffffffff)

byte *buf Buffer where data is to be placed.

NOTE: If buf is a null pointer pc_efilio_read

will proceed as usual but it will not transfer

bytes to the buffer

dword *nread Returns the number of bytes read.

DESCRIPTION

pc_efilio_read() takes advantage of the extended file I/O subsystem to perform

file reads. There is no disk latency required for mapping file extents to cluster

regions, so reads may be performed at very near the bandwidth of the underlying

device.

pc_efilio_read() attempts to read count bytes or to the end of file, whichever is

less, from the current file pointer. The value of count may be up 0xffffffff. If the read

count plus the current file pointer exceeds the end of file, the read count is

truncated to the end of file.

Note: If buf is 0 (the null pointer) then the operation is performed identically to a

normal read except no data transfers are performed. This may be used to quickly

advance the file pointer.

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEBADF Invalid file descriptor

PECLOSED File is no longer available. Call pc_efilio_close().

PEEFIOILLEGALFD The file not open in extended IO mode

PEINVALIDPARMS Missing or invalid parameters

PEEINPROGRESS Asynchronous operation already in progress

An Rtfs system error See Appendix for a description

pc_efilio_write
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Write to an extended 32 file or 64 bit metafile

SUMMARY

BOOLEAN pc_efilio_write (fd, buf, count, nwritten)

int fd A file descriptor that was returned from a successful call

to pc_efilio_open

dword count The length of the write request, (0 to 0xffffffff)

NOTE: If count is zero no data is transferred and the file

pointer is not moved, but the write routine verifies that

clusters are allocated at the file pointer This feature

plays a key role in DMA enabling applications. Please

consult application notes for more information.

byte *buf Buffer containing data is to be written.

NOTE: If buf is a null pointer pc_efilio_write() will

proceed as usual but it will not transfer bytes to the

buffer. This feature may be used to quickly expand a file

or to move the file pointer.

dword *nwritten Returns the number of bytes written.

DESCRIPTION

pc_efilio_write() takes advantage of the extended file I/O subsystem to perform

file writes. There is guaranteed no disk latency required for mapping file extents to

cluster regions, so writes may be performed at very near the bandwidth of the

underlying device.

pc_efilio_write() attempts to write count bytes to the file at the current file

pointer. The value of count may be up 0xffffffff.

The behavior of pc_efilio_write() is affected by the following options and

extended options that were established in the open call.

PO_APPEND Always seek to end of file before writing.

PCE_FIRST_FIT Allocate from beginning of file data area

PCE_FORCE_FIRST Precedence to small free disk fragments over

contiguous fragments

PCE_FORCE_CONTIGUOUS Force contiguous allocation or fail

PCE_TRANSACTION_FILE When Rtfs returns from pc_efilio_write(), it

guarantees that the data is written to the

volume and will survive power loss. If power is

interrupted before pc_efilio_write() returns

then it is guaranteed that the file is unchanged.

If the write operation overwrites an existing

region, Rtfs insures that the overwritten bytes

may be rewound if a power outage occurs

before it completes.

min_clusters_per_allocation If pc_efilio_write() needs to allocate clusters

during a file extend operation and the

min_clusters_per_allocation field was

established when the file was opened, the

pc_efilio_write() pre-allocates

min_clusters_per_allocation clusters.

RETURNS

TRUE If no errors were encountered. *nwriiten is set to the

number of bytes successfully written.

FALSE An error occurred

If an error occurred: errno is set to one of the following:

PEBADF Invalid file descriptor

PECLOSED File is no longer available. Call pc_efilio_close().

PEINVALIDPARMS Bad or missing argument

PEACCES File is read only

PEIOERRORWRITE Error performing write

PEIOERRORREADBLOCK Error reading block for merge and write

PENOSPC Disk to full to allocate file minimum allocation size.

PEEFIOILLEGALFD The file not open in extended IO mode.

PETOOLARGE Attempt to extend a 32-bit file beyond 4 gigabytes

PERESOURCEREGION Ran out of region structures while performing

operation

An Rtfs system error See Appendix for a description

pc_efilio_lseek
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Move the file pointer of an extended 32-bit file or 64-bit metafile

SUMMARY

BOOLEAN pc_efilio_lseek (fd, offset_hi, offset_lo, origin, *poffset_hi, *poffset_lo)

int fd A file descriptor that was returned from a successful call

to pc_efilio_open()

dword offset_hi High 32-bit word of the 64-bit offset from the beginning

of the file. For 32-bit files, this argument must be zero

dword offset_lo Low 32-bit word of the 64-bit offset from the beginning of

the file

int origin Origin and direction of the request (see below)

dword *poffset_hi The high dword of the new 64-bit offset from the

beginning of the file is returned in - *poffset_hi. For 32-

bit files this argument is ignored

dword *poffset_lo The low dword of the offset from the beginning of the

linear file is returned in *poffset_lo

DESCRIPTION

pc_efilio_lseek() takes advantage of the extended file IO subsystem to perform

file seeks with zero disk latency. A seek may be performed from anywhere to

anywhere in a file almost instantaneously. The offset field is an unsigned long 64-bit

value so a single seek may move the file pointer up to 0xffffffffffffffff bytes if the file

is an exFat file or 0xffffffff bytes for a 32 bit file.

Note: The previous statement is not true if the file was opened with the

PCE_LOAD_AS_NEEDEDED option. In this case, a small delay is incurred when

the file pointer is first moved to a region of the file. After that initial seek the extent

map is cached and seek behaves as above.

If a negative offset from the current file pointer is required the origin value

PSEEK_CUR_NEG may be used. Seeks from PSEEK_END are always made in the

negative direction from the end of file.

 The file pointer is set according to the following rules:

ORIGIN RULE

PSEEK_SET Positive offset from beginning of file

PSEEK_CUR Positive offset from current file pointer

PSEEK_CUR_NEG Negative offset from current file pointer

PSEEK_END Negative offset from end of file

PSEEK_SET_RAW Positive offset from beginning of reserved

area that precedes the data. (see

pc_cfilio_extract).

If a PSEEK_CUR or PSEEK_SET operation attempts to move the file pointer

beyond the end of file, the pointer is moved to the end of file.

If a PSEEK_CUR_NEG or PSEEK_END, operation tries to place the file pointer

before zero the file pointer is placed at zero.

To query the current file pointer call:

pc_efilio_lseek(fd, 0, 0, PSEEK_CUR, &offset_hi, &offset_lo)

To report the file size in end_hi:end_lo without moving the file pointer:

pc_efilio_lseek(fd, 0, 0, PSEEK_CUR, &temp_hi, &temp_lo);

pc_efilio_lseek(fd, 0, 0, PSEEK_END, &end_hi, &end_lo);

pc_efilio_lseek(fd, temp_hi, temp_lo, PSEEK_SET, &temp_hi, &temp_lo);

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEBADF Invalid file descriptor

PECLOSED File is no longer available. Call pc_efilio_close().

PEEFIOILLEGALFD The file not open in extended IO mode

PEINVALIDPARMS Missing or invalid parameters

PEEINPROGRESS Asynchronous operation already in progress

An Rtfs system error See Appendix for a description

pc_efilio_chsize
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Expand or truncate an extended 32-bit file or 64-bit metafile

SUMMARY

BOOLEAN pc_efilio_chsize (fd, newsize_hi, newsize_lo)

int fd A file descriptor that was returned from a successful call

to pc_efilio_open()

dword newsize_hi High 32-bit word of the 64-bit offset from the beginning

of the file. For 32-bit files, this argument must be zero

dword newsize_lo Low 32-bit word of the 64-bit offset from the beginning

of the file

DESCRIPTION

pc_efilio_chsize() Changes the file to the new size requested in the pair newsize_hi,

newsize_lo. The file size is changed immediately and operations on the file may

continue. The operation occurs without making any disk accesses. To update the

disk the file must be closed or flushed. If the file is truncated it must be closed or

flushed to return the freed clusters to the pool of available clusters.

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEBADF Invalid file descriptor

PECLOSED File is no longer available. Call pc_efilio_close().

PEEFIOILLEGALFD The file not open in extended IO mode

PEINVALIDPARMS Missing or invalid parameters

PEEINPROGRESS Asynchronous operation already in progress

An Rtfs system error See Appendix for a description

pc_efilio_extract
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Extract clusters from one 32-bit or 64-bit file and insert them into another.

SUMMARY

BOOLEAN pc_efilio_extract (fd1, fd2, n_clusters)

int fd1 A file descriptor that was returned from a successful call

to pc_efilio_open()

int fd2 A file descriptor that was returned from a successful call

to pc_efilio_open()

dword n_clusters Number of clusters to extract.

Use zero to extract to the end of file 1.

DESCRIPTION

pc_efilio_extract() removes the clusters from the file at fd1, inserts them into the

file at fd2 and adjusts both file sizes. This operation performs no disk accesses so it

performs in real time.

 fd1 may be either a 32 bit or 64 bit file

 fd2 may be either a 32 bit or 64 bit file

 If the current file pointer for fd1 is zero the clusters are removed from the

beginning of the file.

 If the current file pointer for fd1 is non-zero the clusters are removed

starting with the first cluster beyond the cluster containing the current file

pointer.

 If the current file pointer for fd2 is zero the clusters are inserted at the

beginning of file two.

 If the current file pointer for fd2 is non-zero the clusters are inserted starting

with the first cluster beyond the cluster containing the current file pointer.

 If the current file pointer for fd2 is the last cluster in the file, the clusters are

appended to the end of file two.

 The file size of fd1 is reduced.

 The file size of fd2 is increased.

 Both files must be closed or flushed for the changes to be commited to the

volume

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEBADF Invalid file descriptor

PECLOSED File is no longer available. Call pc_efilio_close().

PEEFIOILLEGALFD The file not open in extended IO mode

PEINVALIDPARMS Missing or invalid parameters

PETOOLARGE The result of the extract would make the file at fd2

too large. If fd2 is a 32 bit file, this means the result

would exceed 4 gigabytes. If fd2 is a 64 bit file, this

means the result would exceed the configured

maximimum 64 bit file size.

PEEINPROGRESS Asynchronous operation already in progress

An Rtfs system error See Appendix for a description

pc_efilio_swap
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Swap clusters between one 32-bit or 64-bit file and another.

SUMMARY

BOOLEAN pc_efilio_swap (fd1, fd2, n_clusters)

int fd1 A file descriptor that was returned from a successful call

to pc_efilio_open()

int fd2 A file descriptor that was returned from a successful call

to pc_efilio_open()

dword n_clusters Number of clusters to swap.

Use zero to swap to the end of file 1.

DESCRIPTION

pc_efilio_swap() exchanges clusters from the file at fd1 with clusters in the file at

fd2. The file sizes are unchanged. This operation performs no disk accesses so it

performs in real time.

 fd1 may be either a 32 bit or a 64 bit file

 fd2 may be either a 32 bit or a 64 bit file

 If the current file pointer for fd1 is zero the clusters are swapped from the

beginning of the file.

 If the current file pointer for fd1 is non-zero the clusters are swapped

starting with the first cluster beyond the cluster containing the current file

pointer.

 If the current file pointer for fd2 is zero the clusters are swapped from the

beginning of file two.

 If the current file pointer for fd2 is non-zero the clusters are swapped

starting with the first cluster beyond the cluster containing the current file

pointer.

 Both files must be closed or flushed for the changes to be commited to the

volume

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEBADF Invalid file descriptor

PECLOSED File is no longer available. Call pc_efilio_close().

PEEFIOILLEGALFD The file not open in extended IO mode

PEINVALIDPARMS Missing or invalid parameters

PETOOLARGE The number of clusters to swap is larger than the

number of clusters available at the current file

pointer of fd1 or fd2.

PEEINPROGRESS Asynchronous operation already in progress

An Rtfs system error See Appendix for a description

pc_efilio_remove
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Extract clusters from a 32 or 64 bit file and free them.

SUMMARY

BOOLEAN pc_efilio_remove (fd, n_clusters)

int fd A file descriptor that was returned from a successful call

to pc_efilio_open

dword n_clusters Number of clusters to remove.

Use zero to remove to the end of the file.

DESCRIPTION

pc_efilio_remove() removes the clusters from the file at fd and queues them to

be freed when the file is flushed or closed. This operation performs no disk accesses

so it performs in real time.

 If the current file pointer for fd is zero the clusters are removed from the

beginning of the file.

 If the current file pointer for fd is non-zero the clusters are removed starting

with the first cluster beyond the cluster containing the current file pointer.

 The file size of fd is reduced.

 The file must be closed or flushed for the clusters to be available for re-use

and for the changes to be commited to the volume

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEBADF Invalid file descriptor

PECLOSED File is no longer available. Call pc_efilio_close().

PEEFIOILLEGALFD The file not open in extended IO mode

PEINVALIDPARMS Missing or invalid parameters

PETOOLARGE The number of cluters to remove is larger than the

number of clusters available at the current file

pointer of fd1.

PEEINPROGRESS Asynchronous operation already in progress

An Rtfs system error See Appendix for a description

pc_efilio_flush
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Flush an extended 32 bit file or a 64 bit metafile

SUMMARY

BOOLEAN pc_efilio_flush (fd)

int fd A file descriptor that was returned from a

successful call to pc_efilio_open()

DESCRIPTION

Flush the directory entry and flush the fat chain to disk. Process any deferred

cluster chain linking and free all memory associated with the file descriptor.

NOTE: An asynchronous file flush routine is also available, see

pc_efilio_async_flush_start()

NOTE: As a rule for very large files, both synchronous and asynchronous file re-

opens, file flushes, file truncates and file deletes complete faster as user buffer

space is increased. pc_efilio_setbuf() is available to temporarily increase buffer

space to speed up this operation.

RETURNS

TRUE The operation was a success

FALSE Bad drive id requested or bad parameters

Application Level Error Return Codes:

PEBADF Invalid file descriptor

PEEFIOILLEGALFD The file not open in extended IO mode

PEINVALIDPARMS Missing or invalid parameters

PEEINPROGRESS Asynchronous operation already in progress

An Rtfs system error See Appendix for a description

pc_efilio_fstat
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Report statistics on an extended 32-bit file or 64-bit metafile.

SUMMARY

BOOLEAN pc_efilio_fstat (fd, pestat)

int fd A file descriptor that was returned from a successful call to

pc_efilio_open()

RTFS_EFILIO_STAT

*pestat

The address of an RTFS_EFILIO_STAT structure that will

be filled in by this function

DESCRIPTION

pc_efilio_fstat() fills in the extended stat structure with information about the

open file.

The extended stat structure contains the following fields:

dword minimum_allocation_size Minimum number of bytes that will be pre-

allocated at one time when the file is

extended, by default this is the cluster size

of the volume but it may be affected by the

extended file open option

“min_clusters_per_allocation”.

dword allocation_policy These are the policy bits that were set in the

allocation_policy field of the extended file

open call. Please see the documentation for

pc_efilio_open() and pc_cfilio_open()

for a description of the allocation policy bits.

dword fragments_in_file The numbers of separate disjoint fragments

in the file.

dword first_cluster First cluster in the file.

dword allocated_clusters Clusters used for data in the file.

dword preallocated_clusters Cluster used for data plus clusters pre-

allocated for data in the file.

dword clusters_to_link Count of clusters to be linked into a chain

when the file is closed or flushed.

dword file_size_hi The current file size in bytes. file_size_hi and

file_size_lo are the high and low 32-bit

words of the 64-bit file length. If the file is, a

32-bit file file_size_hi will always be zero.

For a 64-bit metafile, file_size_hi will be non-

zero if the file is over four gigabytes in

length.

dword file_size_lo

dword allocated_size_hi The number of bytes currently allocated to

the file including the file contents

(current_file_size) and any additional blocks

that were pre allocated due to minimum

allocation guidelines. allocated_size_hi and

allocated_size_lo are the high and low 32-bit

words of the 64 bit allocated file size. If the

file is a 32-bit file, allocated_size_hi will

always be zero. For a 64-bit metafile,

allocated_size_hi will be non-zero if the file

is over four gigabytes in length.

dword allocated_size_lo

dword file_pointer_hi High and low, 32-bit words of the current file

pointer.

dword file_pointer_lo

REGION_FRAGMENT

*pfirst_fragment[]

The list of fragments that make up the

file. For 32 bit files there is only one valid

element, pfirst_fragment[0], which contains

a linked list of the file’s disjoint cluster

fragments. For 64 bit files there may be up

to MAX_SEGMENTS_64 valid elements

pfirst_fragment[0] to

pfirst_fragment[MAX_SEGMENTS_64-1].

Each element contains a linked list of the

individual file segments that make up the 64

bit metafile. It is useful to use for test and

diagnostic procedures and to study file

allocation patterns. These lists should not be

manipulated.

The region fragment structure is declared as

follows:

typedef struct region_fragment

{

 unsigned long start_location;

 unsigned long end_location;

 struct region_fragment *pnext;

}

REGION_FRAGMENT;

ERTFS_STAT stat_struct This is a standard stat structure used by

pc_stat and pc_fstat. The stat structure is

documented in the table below.

The ERTFS_STAT structure:

st_dev the entry’s drive number

st_mode Contains one or more of the following

bits:

S_IFMT - type of file mask

S_IFCHR - char special (unused)

S_IFDIR - directory

S_IFBLK - block special (unused)

S_IFREG - regular (a “file”)

S_IWRITE - Write permitted

S_IREAD - Read permitted

st_rdev the entry’s drive number

st_size file size

st_atime Last modified date in DATESTR format

st_mtime Last modified date in DATESTR format

st_ctime Last modified date in DATESTR format

t_blksize optimal blocksize for I/O (cluster size)

t_blocks blocks allocated for file

The following fields are extensions to the standard stat structure

fattributes The DOS attributes. This is non-standard

but supplied if you wish to look at them.

st_size_hi If the file is exFAT, the high 32 bits of the

file size

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEINVALIDPARMS Missing or invalid parameters

PEEINPROGRESS Asynchronous operation already in progress

PEEFIOILLEGALFD API call not compatible file descriptor open method

An Rtfs system error See Appendix for a description

RtfsProPlus - Asynchronous operations API

pc_async_continue
Basic ProPlus X

Pro ProPlus DVR X

FUNCTION

HEREHERE

Process functions queued for asynchronous completion.

SUMMARY

int pc_async_continue(int driveno, int target_state, int steps)

int driveno Drive number (A: == 0, B: == 1, etc

int target_state Level of processing to complete (see below)

int steps Number of iterations, 0 == finish

DESCRIPTION

This routine must be called by applications to complete one or more passes on
asynchronous routines that have been queued for completion by the subroutines

described in this section.

pc_async_continue() may be used as a background asynchronous process
manager when called by a background thread on a periodic basis or when called
from a foreground thread periodically to process outstanding asynchronous

operations.

pc_async_continue() may also be used to precisely manage the completion of

asynchronous operations. pc_async_continue() may be used in this mode
even if it is also being used in a periodic scheme. This usage of
pc_async_continue() is useful in many circumstances, including:

An application normally calls pc_async_continue() periodically from a
background thread, but it knows it is shutting down and must complete all

asynchronous operations now.

An application normally calls pc_async_continue() periodically from a

background thread, but it is critical now for the application to ensure that the
session's view of the volume is committed to the Journal file and is persistent.

An application normally calls pc_async_continue() periodically from a
background thread, but it is currently performing an asynchronous file operation
that it needs to complete before it can proceed.

How to use pc_async_continue():

Select the step count - The step count tells pc_async_continue() how many
iterations to loop for before returning. If the step count is zero the routine loops
until the target state is reached. Each loop will execute at most one disk read or

one disk write, so if pc_async_continue() is called with a step count of one,
the application can be sure that only one disk access will occur per call.

Select the target_state - When pc_async_continue() is called it executes up to
the number of iterations specified by the step

Possible target states:

DRV_ASYNC_DONE_FILES Process until all outstanding
asynchronous file operations
complete.

DRV_ASYNC_DONE_FATFLUSH Process until all outstanding
asynchronous file operations
complete, and FATS are flushed.

DRV_ASYNC_DONE_JOURNALFLUSH Process until all outstanding
asynchronous file operations

complete, FATS are flushed and the
Journal file is flushed.

DRV_ASYNC_DONE_RESTORE Process until all outstanding

asynchronous file operations
complete, FATS are flushed, the

Journal file is flushed and the FAT
volume is synchronized with the
journal.

DRV_ASYNC_IDLE Process until all outstanding
asynchronous operations complete

Note: By default pc_async_continue() does not enter any state greater than

or equal to DRV_ASYNC_FATFLUSH. In other words FAT flushing, Journal
flushing and FAT synchronization are not automatically part of the asynchronous
processing. To enable these states you must set the following policy bits in
device_configure_volume.

DRVPOL_ASYNC_AFFLUSH Enable background FAT flushing

DRVPOL_ASYNC_AJFLUSH Enable background Journal flushing

DRVPOL_ASYNC_AJRESTORE Enable background volume synchronization

Which steps to be completed can still be controlled when these bits are set by

varying the target_state variable that is passed to pc_async_continue(). For
example even if these bits are set, calling pc_async_continue() with
target_state equal to DRV_ASYNC_DONE_FILES will result in file operations

being completed but will not flush the FAT. Calling the routine later with
target_state set to DRV_ASYNC_DONE_FATFLUSH will flush the FAT.

pc_async_continue: State Diagram

 Example:

 /* Execute one iteration per 100 Miliseconds */
 for (;;) {

 pc_async_continue(0, DRV_ASYNC_IDLE, 1);
 Sleep(100);
 }

 /* Execute all iterations needed to complete all outstanding file operations */
 pc_async_continue(0, DRV_ASYNC_DONE_FILES, 0);

 /* Execute all iterations needed to complete all outstanding file operations */
 /* and Flush the FAT buffers */
 pc_async_continue(0, DRV_ASYNC_DONE_FATFLUSH, 0);

 /* Execute all iterations needed to complete all outstanding file operations */

DRV_ASYNC_IDLE

DRV_ASYNC_JOURNALFLUS
H

DRV_ASYNC_IDLE

DRV_ASYNC_DONE_JOURNALFLUSH

START

CONTINUE

DRV_ASYNC_FATFLUSH

DRV_ASYNC_FILE
S

DRV_ASYNC_MOUN
T

DRV_ASYNC_RESTOR
E

DRV_ASYNC_DONE_RESTOR
E

DRV_ASYNC_DONE_FATFLUS
H

DRV_ASYNC_DONE_FILE
S

DRV_ASYNC_DONE_MOUN
T

 /* and Flush the FAT buffers */
 /* and Flush the Journal file */

 pc_async_continue(0, DRV_ASYNC_DONE_JOURNALFLUSH, 0);

 /* Execute all iterations needed to complete all outstanding file operations */

 /* and Flush the FAT buffers */
 /* and Flush the Journal file */
 /* and synchronize the volume with the Journal file */

 pc_async_continue(0, DRV_ASYNC_DONE_RESTORE, 0);

RETURNS

PC_ASYNC_COMPLETE Target state succesfully reached

PC_ASYNC_CONTINUE Target state not reached in step_count iterations,
continue calling pc_async_continue()

PC_ASYNC_ERROR An error Target state not reached in step_count
iterations, continue calling pc_async_continue()

pc_diskio_async_flush_start
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

HEREHERE

Non-blocking disk flush.

SUMMARY

int pc_diskio_async_flush_start (driveid)

byte *driveid Name of a mounted volume “A:”, “B:” etc.

DESCRIPTION

Schedule modified blocks in the FAT buffer pool to be flushed by

pc_async_continue() when it is next executed. Each pass through

pc_async_continue() causes at most one write to occur. The number of passes

required and the blocks written per pass depend on user buffer size and drive

configuration options. See application notes and the manual pages for

pc_diskio_config() and pc_async_continue() for more information of FAT

buffering strategies.

Notes:
 Use of this function is not recommended. Instead it is recommended that

you configure the disk with the policy DRVPOL_ASYNC_AFFLUSH

enabled (see device_configure_volume). Then asynchronous FAT
flushing is enabled by default and if you wish to control when flushing
occurs you may still do so by controlling the arguments to

pc_async_continue().
 rtfs_app_callback(RTFS_CBA_ASYNC_FILE_COMPLETE) is called when

the flush operation completes or if it fails. The first argument to the callback

contains DRV_ASYNC_FATFLUSH and the second argument contains 1 if

successful, zero otherwise.

RETURNS

PC_ASYNC_CONTINUE One or more blocks were successfully flushed but

more calls are needed to complete the flush.

PC_ASYNC_COMPLETE The operation was a success, no flush needed.

PC_ASYNC_ERROR The operation failed. errno reflects the error condition.

Application Level Error Return Codes

PEINVALIDDRIVEID Not a valid drive identifier

PEEINPROGRESS Asynchronous operation already in progress

PEIOERRORWRITEFAT IO error writing to the FAT

PEIOERRORREADINFO32 IO error reading the info block (FAT32 only)

PEIOERRORWRITEINFO32 IO error writing the info block (FAT32 only)

An Rtfs system error See Appendix for a description

 pc_diskio_async_mount_start
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

HEREHERE

Start a non-blocking disk mount

SUMMARY

int pc_diskio_async_mount_start (driveid)

byte *driveid Name of the volume “A:”, “B:” etc.

DESCRIPTION

A normal synchronous disk mount performs three initial disk accesses to read the

master boot record, bios parameter block and, for FAT32 volumes, the FAT32 info

sector. It then scans the file allocation table building a free map. On larger volumes,

the FAT may contain thousands of disk blocks so the mount procedure may not

return for several seconds while it scans the FAT. The asynchronous disk mount

separates the three initial reads into one call and the subsequent FAT scan operation

into multiple calls that are completed by pc_async_continue(). With this method,

the system can continue to perform useful work while the disk is being mounted.

Note: You can eliminate the need to call pc_diskio_async_mount_start() and

simplify using asynchronous mounts with removable media by configuring Rtfs to

perform asynchronous mounts automatically by returning the value 1 when

rtfs_app_callback(RTFS_CBA_ASYNC_MOUNT_CHECK) is called. Then Rtfs call

errno is set to PENOTMOUNTED and the API call fails. Before returning Rtfs calls

pc_diskio_async_mount_start() to start a mount and then calls

rtfs_app_callback(RTFS_CBA_ASYNC_START) to inform the application it

should be certain the foreground process or a background process is cycling

pc_async_continue(). The drive will not be accessible to the API until

pc_async_continue() completes the mount processing. Rtfs calls

rtfs_app_callback(RTFS_CBA_ASYNC_DRIVE_COMPLETE) when the mount

process is complete

Notes: If any other API call is attempted on the drive before the asynchronous

mount is completed the call will fail and errno will be set to PEEINPROGRESS.

Example:

if (pc_diskio_async_mount_start ((byte *) “A:”) != PC_ASYNC_ERROR)

{

int driveno = pc_drname_to_drno((byte *) “A:”);

do {

 /* Process other application needs here */

 /* Process one iteration of the mount process */

rval = pc_async_continue(driveno, DRV_ASYNC_IDLE, 1);

} while (rval == PC_ASYNC_CONTINUE);

RETURNS

PC_ASYNC_CONTINUE Mount start completed. Now call pc_async_continue.

PC_ASYNC_ERROR The operation failed. errno reflects the error condition.

Application Level Error Return Codes

PEINVALIDDRIVEID Not a valid drive identifier

PEEINPROGRESS Asynchronous operation already in progress

PEINVALIDBPB No signature found in BPB (please format)

PEINVALIDMBR No signature found in MBR (please write partition)

PEINVALIDMBROFFSET Partition requested but none at that offset

PEIOERRORREADMBR IO error reading MBR (MBR read is the first

access, indicates device not ready)

PEIOERRORREADBPB IO error reading BPB (block 0)

PEIOERRORREADINFO32 IO error reading fat32 INFO structure (BPB

extension)

An Rtfs system error See Appendix for a description

pc_efilio_async_open_start

pc_efilio_async_open_start_uc
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Start a non-blocking file open

SUMMARY

See the manual page for pc_efilio_open().

DESCRIPTION

There really is no real pc_efilio_async_open_start() subroutine. This manual

page is here to remind you that an asynchronous open operation is available. To

open a file asynchronously call pc_efilio_open() and set the PCE_ASYNC_OPEN

bit in the allocation policy field.

Note: As a rule for very large files, both synchronous and asynchronous file re-

open’s, file flushes, file truncates and file deletes will complete faster as user buffer

space is increased.

Example:

 PCFD fd;

 EFILEOPTIONS my_options;

 rtfs_memset(&my_options, 0, sizeof(my_options));

 my_options.allocation_policy |= option;

 my_options.allocation_policy |= PCE_ASYNC_OPEN;

 fd = pc_efilio_open((byte *)"MYFILE",

 (word)(PO_BINARY|PO_RDWR|PO_TRUNC|PO_CREAT),

 ,(word)(PS_IWRITE | PS_IREAD)

 ,&my_options);

 /* Complete asynchronously */

 if (fd>=0)

 {

 int rval,my_driveno;

 byte my_drivename[8];

 my_driveno = pc_fd_to_driveid(fd, my_drivename);

 do {

 rval = pc_async_continue(my_driveno, DRV_ASYNC_DONE_FILES, 1);

 /* Do other useful application work here */

 } while (rval == PC_ASYNC_CONTINUE);

 }

pc_efilio_async_close_start
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Start a non-blocking file close.

SUMMARY

int pc_efilio_async_close_start (int fd)

int fd A file descriptor that was returned from a successful call to

pc_efilio_open().

DESCRIPTION

Initiate flush of a file’s cluster map to the file allocation table followed by a flush of

file’s directory entry, followed by a release of the file descriptor.

pc_efilio_async_close_start() behaves almost identically to

pc_efilio_async_flush_start() except that when the asynchronous close

completes the file descriptor is released.

Proper use of user buffering to optimize the asynchronous flush procedure improves

overall system performance. So please note the following:

pc_async_continue() performs only one write operation per iteration. Either the

number of contiguous clusters in the chain or the size of the assigned user buffer,

whichever is less, limits the number of cluster entries written per iteration. Since

Rtfs files are typically contiguous, the size of the user buffer is usually the limiting

factor in maximizing the performance of the flush operation.

Note: As a rule for very large files, both synchronous and asynchronous file re-

open’s, file flushes, file truncates and file deletes will proceed and will complete

faster as user buffer space is increased

For a FAT32 volume with a cluster size of 32768 bytes, 256 Kbytes of FAT table

space are occupied per 1 gigabyte of data. A flush of a one gigabyte file requires

one iteration if 256 K of user buffering space is provided, 2 iterations if 128 K is

provided, or 4 iterations if 64 K is provided and so on. On most media, larger user

buffers during asynchronous flushes will improve performance.

Example:

/* Sample function to close a file asynchronously */

void do_asy_close(int fd)

{

 In my_driveno;

 byte my_drivename[8];

 my_driveno = pc_fd_to_driveid(fd, my_drivename);

 if (pc_efilio_async_close_start(fd) == PC_ASYNC_CONTINUE)

 {

 int rval;

 do {

 rval = pc_async_continue(my_driveno, DRV_ASYNC_DONE_FILES, 1);

 /* Do other useful application work here */

 } while (rval == PC_ASYNC_CONTINUE);

 }

}

RETURNS

PC_ASYNC_COMPLETE Asynchronous operation completed

PC_ASYNC_CONTINUE No failure has occurred. Continue calling

pc_async_continue().

PC_ASYNC_ERROR Could not initiate the flush operation because of

some sort of parameter problem. Consult errno for

the cause. A call to pc_async_continue() will fail

Application Level Error Return Codes

PEEINPROGRESS Asynchronous operation already in progress

PEEFIOILLEGALFD Not opened as an extended file

An Rtfs system error See Appendix for a description

pc_efilio_async_flush_start
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Start a non-blocking file flush

SUMMARY

int pc_efilio_async_flush_start (int fd)

int fd A file descriptor that was returned from a successful call to

pc_efilio_open().

DESCRIPTION

Initiate flush of a file’s newly allocated clusters to the file allocation table. After the

file has been been flushed, it may continue to be used or it may be closed.

After pc_efilio_async_flush_start() has been called you must complete the flush

operation by calling pc_async_continue() until it no longer returns

PC_ASYNC_CONTINUE. While the flush is in progress no API calls for this file

descriptor will succeed.

Proper use of user buffering to optimize the asynchronous flush procedure improves

overall system performance. So please note the following:

pc_async_continue() performs only one write operation per iteration. Either the

number of contiguous clusters in the chain or the size of the assigned user buffer,

whichever is less, limits the number of cluster entries written per iteration. Since

Rtfs files are typically contiguous, the size of the user buffer is usually the limiting

factor in maximizing the performance of the flush operation.

Note: As a rule for very large files, both synchronous and asynchronous file re-

open’s, file flushes, file truncates and file deletes will complete faster as user buffer

space is increased.

For a FAT32 volume with a cluster size of 32768 bytes, 256 Kbytes of FAT table

space are occupied per 1 gigabyte of data. A flush of a one gigabyte file requires

one iteration if 256 K of user buffering space is provided, 2 iterations if 128 K is

provided, or 4 iterations if 64 K is provided and so on. On most media, larger user

buffers during asynchronous flushes will improve performance.

Example:

 /* Sample function to flush a file asynchronously */

void do_asy_flush(int fd)

{

 int my_driveno;

 byte my_drivename[8];

 my_driveno = pc_fd_to_driveid(fd, my_drivename);

 if (pc_efilio_async_flush_start(fd) == PC_ASYNC_CONTINUE)

 {

 int rval;

 do {

 rval = pc_async_continue(my_driveno, DRV_ASYNC_DONE_FILES, 1);

 /* Do other useful application work here */

 } while (rval == PC_ASYNC_CONTINUE);

 }

}

RETURNS

PC_ASYNC_COMPLETE Asynchronous operation completed

PC_ASYNC_CONTINUE No failure has occurred. Continue calling

pc_efilio_async_continue().

PC_ASYNC_ERROR Could not initiate the flush operation because of

some sort of parameter problem. Consult errno for

the cause. A call to pc_async_continue() will fail.

Application Level Error Return Codes

PEEINPROGRESS Asynchronous operation already in progress

PEEFIOILLEGALFD Not opened as an extended file

An Rtfs system error See Appendix for a description

pc_efilio_async_unlink_start

pc_efilio_async_unlink_start_uc
Basic ProPlus x

Pro ProPlus DVR x

FUNCTION

Start a non-blocking file delete.

SUMMARY

int pc_efilio_async_unlink_start (byte *filename)

byte *filename The name of the file to delete.

DESCRIPTION

Initiate deleting a file. The whole process involves loading the file’s chain

representation from the FAT into an internal form and then generating the disk write

operations necessary to overwrite the on-disk cluster chains with zeroes, and finally,

clearing the directory entry.

Note: After pc_efilio_async_unlink_start() has been called you must complete

the flush operation by calling pc_async_continue() until it no longer returns

PC_ASYNC_CONTINUE. While the flush is in progress no API calls other than

pc_async_continue() will succeed on the file.

Proper use of user buffering to optimize the asynchronous flush procedure improves

overall system performance. So please note the following:

pc_async_continue() performs only one read or write operation per iteration.

Either the number of contiguous clusters in the chain or the size of the assigned

user buffer, whichever is less, limits the number of cluster entries transferred per

iteration. Since Rtfs files are typically contiguous, the size of the user buffer is

usually the limiting factor in maximizing the performance of the flush operation.

For a typical FAT32 volume that consumes 128 Kbytes of FAT table space per 1

gigabyte of data, a flush of a one gigabyte file requires only two iterations (one

read/one write) if 128 K of user buffering space is provided, or 4 iterations if 64 K is

provided, 8 iterations if 32 K is provided and so on. On most media, larger user

buffers during asynchronous deletes will improve performance.

Note: As a rule for very large files, both synchronous and asynchronous file re-

opens, file flushes, file truncates, and file deletes will complete faster as user buffer

space is increased.

Example:

Void do_async_delete(byte *filename)

{

Int fd,rval,my_driveno;

byte my_drivename[8];

 fd = pc_efilio_async_unlink_start();

 if (fd >= 0)

 {

 my_driveno = pc_fd_to_driveid(fd, my_drivename);

 do {

 rval = pc_async_continue(my_driveno, DRV_ASYNC_DONE_FILES, 1);

 /* Do other useful application work here */

 } while (rval == PC_ASYNC_CONTINUE);

 }

}

RETURNS

A file descriptor to be passed to pc_async_continue(), -1 on an error

Application Level Error Return Codes:

PEACCES Deleting an in-use object or writing to read only

object

PENOENT File or directory not found

PESHARE Sharing violation

PEINVALIDPARMS Missing or invalid parameters

PEINVALIDPATH Invalid path name used as an argument

PEEINPROGRESS Asynchronous operation already in progress

An Rtfs system error See Appendix for a description

RtfsProPlusDVR - Circular File IO API

Introduction to circular files

Circular files are useful for Video and Data acquisition systems. This manual

describes each circular file function and how to use it. Since circular files are slightly

different from linear files, please note the following concepts before using the API:

 Circular files act as ring buffers of data blocks. When the file is read and

written the file pointer advances until it reaches a user defined file wrap point

and then wraps back to the beginning of the file.

 Separate read and write file pointers are maintained. These separate

pointers act similarly to the separate input and output pointers presented in

traditional memory based ring buffer schemes. The circular file presents a file

based FIFO (first in first out) interface to the application.

 Traditional file pointer view. APIs are provided to seek the read and write

pointers within the physical view of the file. In this view the file pointers are

constrained to be between zero and the wrap point.

 Stream file pointer view. APIs are provided to seek the read and write

pointers within a virtual or “stream” view of the file. In this view the file

pointers are 64 bit offsets of the read and write file pointers from the origin.

The first byte written to the file is at location zero and the last byte written to

the file is at a location we will call END for this discussion. The file can only

contain a fixed number of bytes determined by the wrap point, which we will

call FILESIZE for this discussion. In stream view mode, the virtual end of the

file corresponds to location END, the virtual beginning of the file is zero. The

oldest data in the file corresponds to the virtual pointer at location END-

FILESIZE. In this way stream view of the data file is a sliding-window that is

FILESIZE bytes wide, starting at the 64 bit index of the oldest byte in the

file. Stream view is useful for coordinating the current view of the file with

the actual sequences that are being recorded. For example: A video recorder

application may have a circular buffer that is only capable of holding one

hour of video at a time, but in stream view when the file wraps, the stream

view pointer does not. So for example in hour zero to one the stream view

pointer appears as zero to (framesize * frames_per_hour), but in hour three

to four the stream view pointer appears as (3 X framesize *

frames_per_hour) to (4 X framesize * frames_per_hour). The file pointers

may only reside within the current sliding window and stream view seek

functions are provided to move both the read pointer and the write pointer

within this window.

 Circular buffer mode. By default files are opened with the

PCE_CIRCULAR_BUFFER attribute set. In this mode if the write file pointer

catches and laps the read file pointer no exceptional processing occurs and

the write operation continues, allowing data that was written but never read

to be overwritten. This is useful for applications like PVRs where not all data

is permanently archived.

 Circular file mode. Files may be opened with the PCE_CIRCULAR_FILE

attribute set. In this mode if the write file pointer catches the read file

pointer the write operation stops, writing only as many bytes that can fit in

the buffer without overwriting data that has not been read. This is useful for

traditional data acquisition applications where buffer overflows are

considered an error and indicate that the buffer must be made larger. The

data processing or archiving rate must be increased or the rate of data

acquisition must be reduced.

 Determining the amount of unread data in the buffer. This may be

done by using the stream view seek functions to ascertain the current stream

write pointer and the current stream read pointer. The amount of unread

data in the buffer is the write pointer minus the read pointer.

 Extracting linear portions from the file. An extract function is provided to

allow extracting regions from the circular file into permanent linear files.

o The linear extract files must be opened first with pc_efilio_open(),

specifying the PCE_REMAP_FILE file option.

o The extract process is typically a zero copy operation, whenever

possible using cluster “soft linking” rather than data copies.

o The extracted data exists in both the linear file and the circular file

until the extract file is closed or the circular file write pointer

overtakes the extract region.

o The application is notified via a callback mechanism when the extract

region has been overtaken, so it may close the extract file if it desires.

o The extract file must be flushed or closed before becoming part of the

disk image. They may be flushed immediately after the extract has

occurred but they should not be closed (typically) until the region is

overwritten.

o If an extract file is closed before the write pointer overtakes the

region of the buffer it was associated with, the data in that region of

the circular file will be random, containing the contents of un-

initialized or re-used disk data blocks.

o Extracts fragment the circular file – The linear extract file occupies the

original clusters from the circular file and the circular file extents in

that regions are linked to newly allocated clusters.

 The circular buffer may be a temporary file. If the circular buffer is

purely temporary it may be opened the PCE_TEMP_FILE attribute. This way

when the file is closed its contents are quickly returned to free space and no

flushing occurs.

 Reopening circular files. When circular files are reopened the stream view

read and write pointers are both at zero. So there appears to be no data in

the file. The write pointer may be advanced by either writing to the file

passing a NULL pointer as the data pointer or by pc_cfilio_lseek(). This has

the affect of making the stream view write pointer non-zero while leaving the

read pointer at zero. This same scheme may be used to restore the stream

view pointers to values larger than the physical size of the file by “writing”,

using a NULL pointer, as many bytes as necessary to restore the write stream

view pointer to its previous value. Then seek on the read pointer to place it

within the sliding window

pc_cfilio_open

pc_cfilio_open_uc
Basic ProPlus

Pro ProPlus DVR x

FUNCTION

Open a file for circular file IO operations

SUMMARY

int pc_cfilio_open (name, flag, poptions)

byte *name File name

word flag Flag values. Same as for po_open

EFILEOPTIONS *poptions Extended options

DESCRIPTION

Open the file for access as a circular file with options specified in flag, with

additional options specified in the poptions structure.

Note: pc_cfilio_open() accepts many of the same options as pc_efilio_open().

Please also consult the documentation for pc_efilio_open().

Flag values are:

PO_BINARY Ignored. All file access is binary

PO_TEXT Ignored

PO_RDONLY Open for read only

PO_RDWR Read/write access allowed

PO_WRONLY Open for write only

PO_CREAT Creates the file if it does not exist. Use mode to

specify the permission on the file.

PO_EXCL If flag contains (PO_CREAT | PO_EXCL) and the file

already exists fail and set errno() to EXIST

PO_TRUNC Truncate the file if it already exists

PO_NOSHAREANY Fail if the file is already open. If the open succeeds,

no other opens will succeed until it is closed.

PO_NOSHAREWRITE Fail if the file is already open for write. If the open

succeeds, no other opens for write will succeed until

it is closed.

PO_AFLUSH Flush the file after each write

PO_APPEND Always seek to end of file before writing.

PO_BUFFERED Use persistent buffers to improve performance of

non-block aligned reads and writes.

Extended Options

Unlike pc_efilio_open() the options argument is required for pc_cfilio_open().

The options structure must be zeroed and its fields must be initialized properly

before they are passed.

The options structure is:

typedef struct efileoptions {

dword allocation_policy;

dword min_clusters_per_allocation; see pc_efilio_open

dword allocation_hint; see pc_efilio_open

byte *transaction_buffer; see pc_efilio_open

dword transaction_buffer_size; see pc_efilio_open

dword circular_file_size_hi;

dword circular_file_size_lo;

int n_remap_records;

REMAP_RECORD *remap_records;

} EFILEOPTIONS;

EFILEOPTIONS;

allocation_policy This field contains bit flags that may be set by the

user to modify the behavior of the extended file IO

routines.

The following option, specific to circular files may be used:

PCE_CIRCULAR_FILE Select this option to force pc_cfilio_write() calls to

truncate the write operation rather than allow the

write file pointer to overtake the read file pointer.

PCE_CIRCULAR_BUFFER Select this option to allow pc_cfilio_write() calls to

proceed even when the write file pointer overtakes

the read file pointer. (If neither

PCE_CIRCULAR_FILE or

PCE_CIRCULAR_BUFFER are selected this is the

default behavior)

The following allocation options (see pc_efilio_open()) may be used

PCE_TEMP_FILE

PCE_64BIT_META_FILE

PCE_SMALL_FILE

PCE_FIRST_FIT

PCE_FORCE_FIRST

PCE_FORCE_CONTIGUOUS

PCE_KEEP_PREALLOC

The following allocation options (see pc_efilio_open()) may not be used

PCE_ASYNC_OPEN

PCE_TRANSACTION_FILE

PCE_REMAP_FILE

These two fields, which must be zero for pc_efilio_open(), must be set for

pc_cfilio_open().

circular_file_size_hi Set this value to the high 32 bits of the 64-bit file

offset that defines the circular file wrap point. If

the wrap point is, less than 4 gigabytes set this to

zero.

Note: If circular_file_size_hi is non- zero, the circular file operations require

underlying 64-bit metafiles support. Therefore, pc_cfilio_open() sets the

PCE_64BIT_META_FILE option bit automatically.

circular_file_size_lo Set this value to the low 32 bits of the 64-bit file

offset that defines the circular file wrap point.

These two fields, which must be zero for pc_efilio_open(), must be set for

pc_cfilio_open(), if pc_cfilio_extract() is going to be used.

If the application will call pc_cfilio_extract() to extract linear sections from the

circular file then these two fields must provide storage to contain the file’s remap

records. One remap record is required per active extract file (an active extract file is

a file descriptor that was used as an argument to pc_cfilio_extract() but has not

yet been closed or overtaken by the write pointer). (See the Rtfs-Pro Plus

application notes for a description and tutorial on using extract files).

n_remap_records The number of remap records being provided in

the space pointed to by remap_records

remap_records Pointer to a user supplied buffer or array of

structures of type REMAP_RECORD large enough to

contain n_remap_records structures. The

REMAP_RECORD is a small structure

(approximately 32 bytes).

RETURNS

>= 0 The operation was a success the return value is a

valid file descriptor

-1 The operation failed consult errno

Application Level Error Return Codes:

PEACCES Deleting an in-use object or writing to read only

object

PEEXIST Creating an object that already exists

PENOENT File or directory not found

PENOSPC Out of space to perform the operation

PESHARE Sharing violation

PEINVALIDPARMS Missing or invalid parameters

PEINVALIDPATH Invalid path name used as an argument

PEEINPROGRESS Asynchronous operation already in progress

PEEFIOILLEGALFD API call not compatible file descriptor open method

PE64NOT64BITFILE Attempt to open a directory with 64 bit file API

An Rtfs system error See Appendix for a description

pc_cfilio_setalloc
Basic ProPlus

Pro ProPlus DVR x

FUNCTION

Specify and optionally reserve clusters for a file.

SUMMARY

BOOLEAN pc_cfilio_setalloc(int fd, dword cluster, dword ntoreserve)

int fd A file descriptor that was returned from a

successful call to pc_cfilio_open

dword cluster Hint for the next cluster to allocate, or

start of clusters to reserve

int fd Reserve this many clusters, or zero

DESCRIPTION

pc_cfilio_setalloc() allows the programmer either specify a hint where the next

cluster should be allocated from or to specify a group of clusters to be pre-allocated

to this file for its exclusive use.

If ntoreserve is non-zero then clusters in the range cluster to cluster + ntoreserve -

1 are removed from free space and added to the file's reserved cluster list. When

the file is expanded, these clusters are used. When the file is closed, any unused

clusters in the reserve list are released. If all of the specified clusters are not

currently free then pc_cfilio_setalloc() fails and sets errno to

PEINVALIDPARMS.

If ntoreserve is zero, the clusters are not pre-allocated but when the file is next

expanded, Rtfs tries to allocate clusters starting at cluster. If cluster is already in

use, it allocates starting at the next free cluser beyond cluster.

Note: pc_diskio_free_list() may be used in conjunction with

pc_cfilio_setalloc() to retrieve a free cluster map and assign specific clusters from

that map to files.

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEBADF Invalid file descriptor

PECLOSED File is no longer available. Call pc_cfilio_close().

PEEFIOILLEGALFD The file not open in extended IO mode

PEINVALIDPARMS Missing or invalid parameters

PEEINPROGRESS Asynchronous operation already in progress

An Rtfs system error See Appendix for a description

pc_cfilio_close
Basic ProPlus

Pro ProPlus DVR x

FUNCTION

Close an open circular file

SUMMARY

BOOLEAN pc_cfilio_close (int fd)

int fd A file descriptor that was returned from a successful

call to pc_cfilio_open().

DESCRIPTION

Flush the directory and FAT to disk, process any deferred cluster maintenance

operations and free all memory associated with the file descriptor.

Note: If there are still any remap regions attached to the circular file when it is

closed they are released and the release callback function is called, as if they were

released because of a region overwrite.

RETURNS

TRUE The operation was a success.

FALSE The operation failed consult errno

Application Level Error Return Codes

PEBADF Invalid file descriptor

PEEFIOILLEGALFD The file not open in circular IO mode

PEINVALIDPARMS Missing or invalid parameters

PEEINPROGRESS Asynchronous operation already in progress

An Rtfs system error See Appendix for a description

pc_cfilio_read
Basic ProPlus

Pro ProPlus DVR x

FUNCTION

Read from a circular file

SUMMARY

BOOLEAN pc_cfilio_read (fd, buf, count, nread)

int fd A file descriptor that was returned from a successful

call to pc_cfilio_open()

dword count The length of the read request, (0 to 0xffffffff)

byte *buf Buffer where data is to be placed.

If buf is a null pointer pc_cfilio_read() will proceed

as usual but it will not transfer bytes to the buffer

dword *nread Returns the number of bytes read

DESCRIPTION

Read forward from the current pointer count bytes or until the last valid data byte is

encountered, whichever is less.

If the region of the circular file to be read contains remapped sections the data is

transferred from the remap file rather than the blocks of the circular file itself.

If the read pointer crosses (laps) the file wrap point during the read operation then

the underlying physical linear file pointer as reported by pc_cfilio_lseek() is reset

to zero. The logical stream pointer as reported by pc_cstreamio_ lseek()

continues to increase. pc_efilio_read() uses underlying extended file read

functions so it has the same zero disk latency file extent tracking behavior.

RETURNS

TRUE The operation was a success.

FALSE The operation failed consult errno

Error Return Codes:

PEBADF Invalid file descriptor

PECLOSED File is no longer available. Call pc_cfilio_close().

PEEFIOILLEGALFD The file was not opened as a circular file.

PEINVALIDPARMS Missing or invalid parameters.

PEEINPROGRESS Asynchronous operation already in progress.

An Rtfs system error See Appendix for a description

pc_cfilio_write
Basic ProPlus

Pro ProPlus DVR x

FUNCTION

Write to a circular file

 SUMMARY

 BOOLEAN pc_cfilio_write(fd, buf, count, nwrite)

int fd A file descriptor that was returned from a successful

call to pc_cfilio_open.

dword count The length of the write request, (0 to 0xffffffff)

NOTE: If count is zero no data is transferred and the

file pointer is not moved, but the write routine

verifies that clusters are allocated at the file pointer

This feature plays a key role in DMA enabling

applications. Please consult section 5 and the

application notes for more information.

byte *buf Buffer containing data is to be written.

NOTE: If buf is a null pointer pc_cfilio_write() will

proceed as usual but it will not transfer bytes to the

buffer

DESCRIPTION

Write forward from the current write pointer, count bytes. If the circular file is not yet

filled to the wrap point extend the underlying linear file using the allocation rules

provided to pc_cfilio_open(). If the circular file is filled to the wrap point and the

write file pointer reaches the wrap point operation then the underlying physical

linear file pointer as reported by pc_cfilio_lseek() is reset to zero. The logical

stream pointer as reported by pc_cstreamio_ lseek() continues to increase.

pc_cfilio_write() uses underlying extended file write functions so it has the same

zero disk latency file extent tracking and allocation behavior.

If the region of the circular file to be written contains remapped sections, the

remapped sections are reduced by the amount to be written before the write takes

place so the newly written data is contained in the extents owned by the circular file,

and not the remap file. Subsequent reads from this section of the circular file will

return the bytes just written and not bytes in the remap region. If a remapped

section becomes completely overwritten it is released and the callback mechanism

alerts the user that the remap file is no longer associated with the circular file.

If the circulator file was opened with the PCE_CIRCULAR_FILE allocation strategy

rather than PCE_CIRCULAR_BUFFER, a write call will write less bytes than

requested if the write pointer catches the read pointer, a short write return value

may be used to signal to your application that the buffer offload function is not

keeping up with the buffer load functions.

RETURNS

TRUE If no errors were encountered. *nwrite is set to the

number of bytes successfully written.

FALSE An error occurred

If an error occurred: errno is set to one of the following:

PEBADF Invalid file descriptor

PECLOSED File is no longer available. Call pc_cfilio_close().

PEINVALIDPARMS Bad or missing argument

PEACCES File is read only

PEIOERRORWRITE Error performing write

PEIOERRORREADBLOCK Error reading block for merge and write

PENOSPC Disk to full to allocate file minimum allocation size.

PEEFIOILLEGALFD The file was not opened as a circular file.

PETOOLARGE Attempt to extend a 32-bit file beyond 4 gigabytes

PERESOURCEREGION Ran out of region structures while performing

operation

An Rtfs system error See Appendix

pc_cfilio_lseek
Basic ProPlus

Pro ProPlus DVR x

FUNCTION

Move linear read or write file pointer of a circular file

SUMMARY

BOOLEAN pc_cfilio_lseek (fd, which, off_hi, off_lo, origin, *poff_hi, *poff_lo)

int fd A file descriptor that was returned from a successful

call to pc_cfilio_open()

int which_pointer Which file pointer read or write

 CFREAD_POINTER Move the read file pointer

 CFWRITE_POINTER Move the write file pointer

dword offset_hi High 32-bit word of the 64 bit offset from the

beginning of the file. For 32 bit, files must be zero.

dword offset_lo Low 32 bit word of the 64 bit offset from the

beginning of the file.

int origin Origin and direction of the request (see below)

dword *poffset_hi The high dword of the new 64 bit offset from the

beginning of the underlying linear file is returned in

*poffset_lo.

dword *poffset_lo The low dword of the new 64 bit offset from the

beginning of the underlying linear file is returned in

*poffset_hi.

DESCRIPTION

pc_cfilio_lseek() moves the linear read or write file pointer of the linear file

underlying the circular file. This function selects the appropriate read or write file

structure and then calls the underlying pc_efilio_lseek() to move the file pointer

according to the rules of pc_efilio_lseek().

The file pointer is not the same as the stream pointer that is used by

pc_cstreamio_lseek(). The file pointer may not exceed the current file length

and at steady state, this maximum will be the circular file wrap point that was

provided when the file was opened. The stream pointer is not bounded like the file

pointer; it begins at zero and extends to the 64-bit value 0xffffffffffffffff. At a given

time, valid values for the stream pointer are contained in a sliding window that

extends backwards to the last logical offset written to, minus the size of the circular

file. If the file has not yet reached the wrap point, the window extends from zero to

the wrap point.

The file pointer is set according to the following rules:

PSEEK_SET offset from beginning of file

PSEEK_CUR positive offset from current file pointer

PSEEK_CUR_NEG negative offset from current file pointer

PSEEK_END 0 or negative offset from end of file

If a PSEEK_CUR operation attempts to move the file pointer beyond the end of file,

the pointer is moved to the end of file.

If a PSEEK_CUR_NEG or PSEEK_END, operation tries to place the file pointer

before zero the file pointer is placed at zero.

To query the current file pointer call:

pc_cfilio_lseek(fd, CFREAD_POINTER,0, 0, PSEEK_CUR, &offset_hi, &offset_lo)

Or

pc_cfilio_lseek(fd, CFWRITE_POINTER,0, 0, PSEEK_CUR, &offset_hi, &offset_lo)

RETURNS

TRUE The operation was a success.

FALSE The operation failed consult errno

Application Level Error Return Codes

PEBADF Invalid file descriptor

PECLOSED File is no longer available. Call pc_cfilio_close().

PEEFIOILLEGALFD The file was not opened as a circular file.

PEINVALIDPARMS Missing or invalid parameters.

PEEINPROGRESS Asynchronous operation already in progress.

An Rtfs system error See Appendix for a description

pc_cstreamio_lseek
Basic ProPlus

Pro ProPlus DVR x

FUNCTION

Move read or write stream pointer of a circular file

SUMMARY

BOOLEAN pc_cstreamio_lseek (fd, which, off_hi, off_lo, origin, *poff_hi, *poff_lo)

int fd A file descriptor that was returned from a successful

call to pc_cfilio_open()

int which_pointer Which file pointer read or write

 CFREAD_POINTER Move the read file pointer

 CFWRITE_POINTER Move the write file pointer

dword offset_hi high dword 64 bit offset.

dword offset_lo lo, dword 64 bit offset to move the file pointer from

the specified origin.

Note: the stream pointer is a 64-bit value regardless

of whether the underlying circular file is a 32-bit file

or a 64-bit Meta file.

int origin Origin and direction of the request (see below)

dword *poffset_hi Returned hi dword 64 bit offset.

dword *poffset_lo Returned lo dword 64 bit offset, contains the new file

pointer value after seek.

DESCRIPTION

pc_cstreamio_lseek() moves the read or write stream pointer of a circular file.

The stream file pointer is the offset in the data stream that has been written to the

circular file.

The stream pointer is not the same as the file pointer that is used by

pc_cfilio_lseek(). The stream pointer is not bounded like the file pointer; it begins

at zero and extends to the 64-bit value 0xffffffffffffffff. At a given time, valid values

for the stream pointer are contained in a sliding window that extends backwards

from the last logical offset written to, to the last logical offset written to minus the

size of the circular file. If the file has not yet reached the wrap point, the window

extends from zero to the wrap point.

If a PSEEK_SET operation attempts to move the read stream pointer beyond the

end of the sliding window or before the sliding window, the function returns FALSE

and errno is set to PEINVALIDPARMS.

To clear this condition and place the stream pointer at the beginning of the sliding

window call:

 pc_cstreamio_lseek(fd, CFREAD_POINTER, 0xffffffff, 0xffffffff,

 PSEEK_END, &offset_hi, &offset_lo)

This will place the stream pointer at the beginning of the sliding window. If a

PSEEK_CUR operation attempts to move the stream pointer beyond the end of the

sliding window, the pointer moves to the end of sliding window, (the last byte

written).

If a PSEEK_CUR_NEG or PSEEK_END operation tries to place the stream pointer,

before sliding window, the stream pointer positions at the beginning of the sliding

window (the oldest data in the stream).

To query the current stream pointer call:

pc_cstreamio_lseek (fd, CFREAD_POINTER, 0, 0,

 PSEEK_CUR, &offset_hi, &offset_lo)

Or

pc_cstreamio_lseek (fd, CFWRITE_POINTER, 0, 0,

 PSEEK_CUR, &offset_hi, &offset_lo)

The end of the data stream is numerically the furthest offset from the origin where a

byte has been written.

It is an error to seek beyond the end of the data stream or before the beginning of

the sliding window location.

The behavior of the function with each origin is provided here:

ORIGIN RULE

PSEEK_SET Seek to the absolute location in the data

stream. If the provided location is outside of the

sliding window, return FALSE and set errno to

PEINVALIDPARMS

PSEEK_CUR Seek foreword in the data stream. If the

provided offset plus the current stream pointer

resides outside of the sliding window, place the

stream pointer at the end of the data stream.

PSEEK_CUR_NEG Seek backward in the data stream. If current

stream pointer minus the provided offset

precedes the sliding window, place the stream

pointer at the beginning of the sliding window.

PSEEK_END Seek backward in the data stream. If the

current ends of the data stream minus the

provided offset precedes the sliding window

place the stream pointer at the beginning of the

sliding window.

RETURNS

TRUE The operation was a success.

FALSE The operation failed consult errno

Application Level Error Return Codes

PEBADF Invalid file descriptor

PECLOSED File is no longer available. Call pc_cfilio_close().

PEEFIOILLEGALFD The file cannot open in circular IO mode.

PEINVALIDPARMS Missing or invalid parameters.

PEEINPROGRESS Asynchronous operation already in progress.

An Rtfs system error See Appendix for a description

pc_cfilio_extract
Basic ProPlus

Pro ProPlus DVR x

FUNCTION

Extract a region from a circular file to a linear extract file.

SUMMARY

BOOLEAN pc_cfilio_extract(circ_fd, linear_fd, length_hi, length_lo, header_buffer,

header_size)

int circ_fd A file descriptor that was returned from a successful

call to pc_cfilio_open.

int linear_fd

A file descriptor that was returned from a successful

call to pc_cfilio_open. The file must have been

opened with the PCE_REMAP_FILE allocation

attribute.

dword length_hi These two fields are the high and low values of the

length of the region to extract from the current

logical read pointer in the circular buffer.

dword length_lo

byte *header_buffer Data passed in this buffer will be placed in reserved

bytes before the start of data in the extracted file. If

no header is desired pass 0. This data section may be

read or written to by calling the pc_efilio_lseek

using the origin PSEEK_SET_RAW.

int header_size Length of the data in header_buffer, or 0.

Note: pc_cfilio_extract() must sometimes copy data. When it does it uses the

user buffer. So the size of the user buffer may impact the performance of

pc_cfilio_extract(). User buffer space at least the size of a cluster is required.

See the documentation for device_configure_volume in the media driver callback

section of the API reference Guide for instructions on providing Rtfs with user

buffering.

DESCRIPTION

This function unlinks the cluster chains in the range bounded by the current read file

pointer and the current read file pointer plus length_hi:length_lo. It moves these

clusters to the linear file, allocates new clusters from free space, and links these

replacement clusters into the circular file where the extracted file was removed.

If the extracted region does not begin on a cluster boundary, the extracted file will

be assigned a start offset equal to the offset into the first cluster and the file size

will be this offset plus the size of the extracted data.

Under most circumstances, clusters are linked not copied. However, sometimes

clusters must be copied.

If the beginning of the extract region does not lie on a cluster boundary, that cluster

must be copied from the circular file to the extract file.

If the end of the extract region does not lie on a cluster boundary, that cluster must

be copied from the circular file to the extract file.

If the extract region spans previously extracted and remapped regions then these

overlapping blocks are copied and not re-linked.

After pc_cfilio_extract() completes the extracted region is remapped in the

circular file. What this means is that future reads from the circular file in this region

will return bytes from the extract file. Future writes to this region write, not to the

extract file, but to replacement clusters in the circular file. If an area of the remap

region is overwritten, the remap region is split or shrunk so future reads from that

area will be from the circular file and not the remap file.

When the linear extract file closes the remap region is removed from the circular

file. In this event, the contents of the region may be read but the data will be un-

initialized until the region is overwritten.

Note: the following preconditions for using pc_cfilio_extract().

The linear extract file: the file must have been opened with pc_efilio_open() using

the PCE_REMAP_FILE allocation attribute and it must be an empty file.

pc_cfilio_extract() requires at least one block of user supplied buffering for

copying clusters that must be copied instead of linked. The amount of buffering

must be at least one block but it is a good idea for the user buffer size to be large

enough to hold at least one cluster. If larger regions are being copied because of

overlapping extract regions then even larger buffer will improve performance by

reducing seeks.

When the circular file was opened pc_cfilio_open() must have been provided with

enough remap structures to hold this remap extract region, and all other active

remap regions. The number of remap regions present depends on the number of

remap regions that have been created by calls to pc_cfilio_extract() and have not

yet been released. Remap regions are purged when the write file pointer overwrites

the region, when a new remap region covers all of the current remap region or

when the file descriptor of the extract file is closed with pc_efilio_close().

A call to pc_cfilio_extract() will consume one remap record if it either does not

overlap an existing region or if it intersects or overlaps an existing region on one

side. If the new region resides completely inside of another remap region then the

existing region is split and two instead of one remap structures are consumed. If

one new remap region completely overlaps one or more existing remap regions then

those regions are released resulting in one or more remap records being made

available again for reuse.

Remap records are relatively small (around 32 bytes) so make sure enough of them

are provided.

See the description of pc_cfilio_open() for a description of the configuration

values n_remap_records and remap_records.

Note: While the extract file is sharing a data region with the circular file, both files

share a common view of the region when they read from it. The write behavior is

different though. When the extract file is written to, the data is visible through the

read call to both the circular file and the linear file. When the region is written to by

the circular file the new data is visible only in the circular file, not in the linear file.

If the linear file is closed before the region is fully overwritten by the circular file

then the data regions are no longer shared. The read view from the linear file will be

what was extracted, but the circular file’s view of that region will be un-initialized

data on disk blocks. For this reason it is not a good idea to close extract files until

they have been overwritten. To aid in this process

rtfs_app_callback(RTFS_CBA_DVR_EXTRACT_RELEASE) is called everytime an
extract file is overwritten. This callback may be used to signal that the extract file

may now be closed.

See the Application callbacks section of the manual for an explanation of user

callbacks.

RETURNS

TRUE The operation was a success.

FALSE The operation failed consult errno

Application Level Error Return Codes

PEINVALIDPARMS Missing or invalid parameters

PETOOLARGE Extract File is not exFat but region size exceeds

PEEFIOILLEGALFD API call not compatible file descriptor open method

PECFIONOMAPREGIONS More open remap regions than provided for in

pc_cfilio_open()

An Rtfs system error See Appendix for a description

