

1

Rtfs

Device Driver and Porting

Guide

©2008 EBS, Inc

Revised June 2008

For best online viewing experience we recommend using Adobe Acrobat’s

Bookmarks tab for navigating

EBS Inc. 39 Court Street Groton MA 01450 USA

http://www.ebsembeddedsoftware.com

http://www.ebsembeddedsoftware.com/

2

3

Table of Contents

Introduction 4

PORTKERN.C - OS Specific support functions 5

Creating Your Own Device Drivers 13

PORTIO.C - Hardware abstraction layer 15

DRIDEATA.C - ATA/IDE and Compact Flash Support 17

DRFLSFTL.C - Linear Flash Support 24

DRPCMCIA.C - Pcmcia Support 27

DRFLOPPY.C - Floppy Disk Support 31

4

Introduction

This section takes a detailed look at the steps involved in porting Rtfs to a new

target.

Porting Rtfs to a new target involves the following steps.

Configure target specific CPU configurations – Edit the file

rtfscommon/include/rtfsarch.h to configure Rtfs for your target CPU.

Implement target specific tick, mutex and task management adaptation – Provide a

file named portkern.c for your target operating system and implement the required

functionality. The subdirectory named rtfstargets contains several instances of

portkern.c that may already be configured for your OS or that you may modify.

When using certain EBS stock drivers you must implement target specific signaling,

interrupt, DMA, and register access functions – Modify some functions in portkern.c

and add in an additional file named portio.c for your target hardware. Portio.c is not

required unless you are using certain Rtfs stock drivers.

Optional target specific console input and output functions – You may implement

within portkern.c terminal line input and output functions. If your target can support

terminal input and output, you will be able to view diagnostic output and run the

included interactive shell programs for both testing and managing the contents of

your media. (Note: If a network port is available, you may use telnet instead for

your console input/output functions.)

Optional target specific memory allocation functions - The core Rtfs library does not

require dynamic memory allocation but it may be configured to take advantage of it

if the constant named RTFS_CFG_ALLOC_FROM_HEAP is enabled in rtfsconf.h.

Device Driver and Porting Guide

5

PORTKERN.C - OS Specific support functions

Some porting requirements depend on which device drivers are used – If not all

device drivers are being used then all target specific resources need not be

implemented. These needs are pointed out in this document, so read it carefully

before proceeding to avoid unnecessary work.

DYNAMIC MEMORY SUPPORT

 Dynamic memory functions must be implemented to use Rtfs command shells

and test code.

 Dynamic memory functions must be implemented if you want Rtfs to use

dynamic memory allocation.

See the Initialization and shutdown and Media driver interface sections of the API

Reference Guide for more information about dynamic versus static configuration.

void *rtfs_port_malloc(int nbytes)

This routine can be implemented as return(malloc(nbytes));

void rtfs_port_free(void *ptofree)

This routine can be implemented as free(ptofree);

PERIODIC CLOCK SUPPORT

Rtfs requires a periodic clock for measuring device watchdog timeouts. Also if Rtfs is

running in POLLED mode, it needs a clock source for timed signal tests.

The periodic clock support functions must be implemented.

dword rtfs_port_get_ticks(void)

This routine takes no arguments and returns an unsigned long. The routine must

return a tick count from the system clock. The macro named

MILLISECONDS_PER_TICK (also local to portkern.c) must be defined in such a

way that it returns the rate at which the tick increases in milliseconds per tick. This

routine is declared as static to emphasize that its use is local to the portkern.c file

only.

6

void rtfs_port_sleep(int sleeptime)

This routine takes as an argument the time to sleep in milliseconds. It must not

return to the caller until at least sleeptime milliseconds have elapsed. In a

multitasking environment this call should yield the cpu. In non-RTOS environments

we provide a sample implementation of portkern.c with this function implemented

using rtfs_port_get_ticks().

unsigned long rtfs_port_elapsed_zero()

This routine takes no arguments and returns an unsigned long. The routine must

return an unsigned long value that will later be passed to

rtfs_port_elapsed_check() to test if a given number of milliseconds or more have

elapsed. A typical implementation of this routine will read the system tick counter

and return it as an unsigned long. Rtfs makes no assumptions about the value that is

returned. Note: we provide sample implementations of this function that should work

unmodified in either an RTOS or non-RTOS environment as long the routine

rtfs_port_get_ticks() has been implemented.

int rtfs_port_elapsed_check(unsigned long zero_val, int timeout)

This routine takes, as arguments, an unsigned long value that was returned by a

previous call to rtfs_port_elapsed_zero() and a timeout value in milliseconds. If

“timeout” milliseconds have not elapsed it should return 0. If “timeout” milliseconds

have elapsed it should return 1. A typical implementation of this routine would read

the system tick counter, subtract the zero value, scale the difference to milliseconds

and compare that to timeout. If the scaled difference is greater or equal to timeout it

should return 1, if less than timeout it should return 0. Note: we provide sample

implementations of this function that should work unmodified in either an RTOS or

non-RTOS environment as long the routine rtfs_port_get_ticks() has been

implemented.

CLOCK CALENDAR SUPPORT

Clock calendar must be provided by the application level callback function

rtfs_sys_callback(). See the Application callbacks section of the API Reference

Guide for more information.

Device Driver and Porting Guide

7

MUTEX SEMAPHORE SUPPORT

The mutex semaphore support functions must be implemented if Rtfs is to be used in

a multi-threaded environment.

Note: Rtfs does not require mutex semaphore in non-multitasking environments. If

you are porting to a non-multitasking environment, or if you can guarantee that only

one task at a time will use Rtfs, then please skip this section.

The mutex code is abstracted into three functions that must be modified by the user

to support the target RTOS. The required functions are:

 rtfs_port_alloc_mutex()

 rtfs_port_free_mutex()

 rtfs_port_claim_mutex()

 rtfs_port_release_mutex()

 rtfs_port_release_mutex()

unsigned long rtfs_port_alloc_mutex (void) –

This routine takes no arguments and returns an unsigned long. The routine must

allocate and initialize a mutex, setting it to the “not owned” state. It must return an

unsigned long value that will be used as a handle. Rtfs will not interpret the value of

the return value. The handle will only be used as an argument to the

rtfs_port_claim_mutex() and rtfs_port_release_mutex() calls. The handle may

be used as an index into a table or it may be cast internally to an RTOS specific

pointer. If the mutex allocation function fails, this routine must return 0 and the Rtfs

calling function will return failure. NOTE: If dynamic creation and deletion of

semaphores is not supported a simulation must be devised.

void rtfs_port_free_mutex(dword handle)

This routine takes as an argument a mutex handle that was returned by

rtfs_port_alloc_mutex(). It must free the mutex. NOTE: If dynamic creation and

deletion of semaphores is not supported a simulation must be devised.

void rtfs_port_claim_mutex (unsigned long handle) -

This routine takes as an argument a mutex handle that was returned by

rtfs_port_alloc_mutex(). If the mutex is already claimed, it must wait for it to be

released and then claim the mutex and return.

8

void rtfs_port_release_mutex(unsigned long handle) -

This routine takes as an argument a mutex handle that was returned by

rtfs_port_alloc_mutex() that was previously claimed by a call to

rtfs_port_claim_mutex(). It must release the handle and cause a caller blocked in

rtfs_port_claim_mutex() for that same handle to unblock.

IDENTIFYING THE CURRENT TASK ID

The identify current task ID function must be implemented if Rtfs is to be used in a

multi-threaded environment and you wish for each thread to have it’s own persistent

notion of current working directory, current working drive ID and last reported errno

value. (ie: If RTFS_CFG_NUMUSERS is greater than 1). If this function is not

implemented Rtfs will still function in a multitasking environment but these state

variables will be shared by all threads, Making errno unreliable and producing

unexpected behavior if one of the threads changes the working drive or directory.

unsigned long rtfs_port_get_taskid()

This function must return an unsigned long number that is unique to the currently

executing task such that each time this function is called from the same task it

returns this same unique number. A typical implementation of this function would

get address of the current task control block, cast it, and return it.

Note: This function requires no modification to run in polled mode.

THREAD LOCAL STORAGE FOR USER CONTEXT STRUCTURES

Thread local storage is a more efficient way to map threads to user structures. These

functions may be implemented if your RTOS supports thread local storage.

NOTE: If your RTOS does not support thread local storage set

INCLUDE_THREAD_SETENV_SUPPORT to zero in rtfscommon\include\rtfsarch.h

and omit these functions.

void rtfs_port_set_task_env(void *pusercontext)

This routine takes as an argument the address of the Rtfs user context structure

reserved for this thread. It must store the address in thread local storage so that the

same value will be returned by rtfs_port_get_task_env() when called from this

same thread.

Device Driver and Porting Guide

9

void *rtfs_port_get_task_env(void)

This routine retrieves the last value that was passed to rtfs_port_set_task_env()

by the currently executed thread.

Note: If rtfs_port_set_task_env() was not previously called for this thread, this

function must return 0.

AUTOMATIC RELEASE OF CONTEXT STRUCTURES WHEN TASKS EXIT

When a thread accesses Rtfs it permanently reserves a user structure. User

structures must be released when threads exit or the user structure pool will be

exhausted. This function is called to register a exit handler if the RTOS supports

thread exit handlers.

NOTE: If your RTOS does not support thread exit handler set

INCLUDE_THREAD_EXIT_CALLBACK to zero in rtfscommon\include\rtfsarch.h

and omit this functions.

void rtfs_port_set_task_exit_handler(void)

Rtfs calls this function when a thread first calls the Rtfs API. If task exit functions are

supported this function should instruct the operating system to call the Rtfs API

function pc_free_user() when the task exits. If the operating system can not do

this then the application must make certain that pc_free_user() is called from the

thread before it exits.

CONSOLE INPUT AND OUTPUT SUPPORT

Console input and output support must be provided by the application level callback

function rtfs_sys_callback(). See the Application callbacks section of the API

Reference Guide for more information.

10

SHUTDOWN SUPPORT

Shutdown support is only required if your application calls pc_ertfs_shutdown().

void rtfs_port_shutdown(void)

Resources allocated by Rtfs are released before it exits. This callback is provided so

the porting layer and device drivers can de-allocate resources they have allocated.

rtfs_port_shutdown() may also disable devices and device interrupts

EVENT SIGNALING SUPPORT

(Event signaling is only required to support certain stock device drivers. Skip this

section if you are not using these drivers).

NOTE: Rtfs does not automatically free signals that device drivers request. If you

plan to support shutdown, then an internal method must be devised to release

signals when rtfs_port_shutdown() is called.

A set of signaling functions is required to support interrupt driven device drivers. The

porting layer provides a set of signal management functions that the user must

populate if interrupt driven device drivers are to be used. The signals are always

allocated, tested and cleared from within a task context. They are always signaled

from the interrupt context.

The signaling code is abstracted into four functions that must be modified by the

user to support the target RTOS. The required functions are:

rtfs_port_alloc_signal(), rtfs_port_clear_signal(), rtfs_port_test_signal(),

and rtfs_port_set_signal(). The requirements for each of these functions are

provided here. NOTE: In a NON-RTOS environment the implementation of these

functions do not need user modification as long as the routine

rtfs_port_get_ticks() has been implemented. In an RTOS environment these

routines MUST be implemented.

unsigned long rtfs_port_alloc_signal(void)

This routine takes no arguments and returns an unsigned long. The routine must

allocate and initialize a signaling device (typically a counting semaphore) and set it

to the “not signaled” state. It must return an unsigned long value that will be used

as a handle. Rtfs will not interpret the value of the return value. The handle will only

be used as an argument to the rtfs_port_clear_signal(),

rtfs_port_test_signal(), and rtfs_port_set_signal() calls.

Device Driver and Porting Guide

11

void rtfs_port_clear_signal(unsigned long handle)

This routine takes as an argument a handle that was returned by

rtfs_port_alloc_signal(). It must place the signal in an unsignaled state such that

a subsequent call to rtfs_port_test_signal() will not return success until

rtfs_port_set_signal() has been called. This clear function is necessary since it is

possible, although unlikely, that an interrupt service routine could call

rtfs_port_set_signal() after the intended call to rtfs_port_test_signal() timed

out. A typical implementation of this function for a counting semaphore is to set the

count value to zero or to poll it until it returns failure.

int rtfs_port_test_signal(unsigned long handle, int timeout)

This routine takes as an argument a handle that was returned by

rtfs_port_alloc_signal() and a timeout value in milliseconds. It must block until

timeout milliseconds have elapsed or rtfs_port_set_signal() has been called. If

the test succeeds it must return 0, if it times out it must return a non-zero value.

void rtfs_port_set_signal(unsigned long handle)

This routine takes as an argument a handle that was returned by

rtfs_port_alloc_signal(). It must set the signal such that a subsequent call to

rtfs_port_test_signal() or a call currently blocked in rtfs_port_test_signal() will

return success.

Note: rtfs_port_set_signal() is always called from the device driver interrupt

service routine while the processor is executing in the interrupt context.

FLOPPY DISK INTERRUPT SUPPORT

(required for stock floppy disk driver only. If not skip this section.)

void hook_floppy_interrupt(int irq)

This routine is called by the floppy disk device driver. It must establish an interrupt

handler such that the plain ‘C’ function void floppy_isr(void) is called when the

floppy disk interrupt occurs. The value in “irq” is always 6. This is the PC’s standard

mapping of the floppy interrupt. If this is not correct for your system, just ignore the

irq argument.

12

IDE INTERRUPT SUPPORT

(required for stock IDE only. If not skip this section.)

void hook_ide_interrupt(int irq, int controller_number)

82365 PCMCIA CONTROLLER INTERRUPT SUPPORT

(required for stock PCMCIA driver only. If not skip this section.)

void hook_82365_pcmcia_interrupt(int irq)

This routine must establish an interrupt handler that will call the plain ‘C’ routine void

mgmt_isr(void) when the chip’s management interrupt event occurs. The value of

the argument ‘irq’ is the interrupt number that was put into the 82365’s

management-interrupt selection register and is between 0 and 15. This is controlled

by the constant “MGMT_INTERRUPT” defined in pcmctrl.c.

Device Driver and Porting Guide

13

Creating Your Own Device Drivers

The Driver mount function

Device drivers are bound to Rtfs by calling the function pc_rtfs_media_insert().

This function simultaneously provides Rtfs with all of the media information and all of

the device driver access points Rtfs needs for the media. Rtfs and the device driver

are unbound when pc_rtfs_media_alert(RTFS_ALERT_EJECT,..) is called.

Please consult the documentation in the API reference guide for the function

pc_rtfs_media_insert() and the functions named device_io(), device_erase(),

device_ioctl(), device_configure_media() and device_configure_volume(),

in the Media Driver Callback section.

For Rtfs supplied sample device drivers we provide a function named

BLK_DEV_xxxxxx_Mount(void), where xxxxx is the name of the device driver, that

fills in a rtfs_media_insert_args structure and calls pc_rtfs_media_insert() to

attach the drive. We then call BLK_DEV_xxxxxx_Mount() from the startup code.

See the function named BLK_DEV_hostdisk_Mount(void) in

\rtfsdrivers\hostdisk\drhostdisk.c for and example.

The Device block data transfer function

Please refer to the documentation for the function named device_io() in the Media

Driver Callback section of the API Reference Guide.

The Device I/O control function

Please refer to the documentation for the function named device_ioctl() in the

Media Driver Callback section of the API Reference Guide.

Please review the following table if you are converting older Rtfs device drivers to

support pc_rtfs_media_insert().

14

Strategies for converting OP-CODE handlers from version four and earlier

Rtfs device drivers to version 6.

OP-CODE Description

DEVCTL_WARMSTART Obsolete. Device driver must be initialized

before pc_rtfs_media_insert() is called.

DEVCTL_CHECKSTATUS Obsolete. System software must call

pc_rtfs_media_alert(RTFS_ALERT_EJEC

T,..) when the device is removed.

Rtfs calls

rtfs_sys_callback(RTFS_CBS_POLL_DE

VICE_READY) before every device access.

Systems may use this callback to poll for

device removal events and call

pc_rtfs_media_alert(RTFS_ALERT_EJEC

T,..) if any are detected.

DEVCTL_GET_GEOMETRY Obsolete, device geometry is passed to

pc_rtfs_media_insert().

DEVCTL_FORMAT Obsolete, see the manual page for

device_ioctl() regarding

RTFS_IOCTL_FORMAT.

DEVCTL_REPORT_REMOVE Obsolete use

pc_rtfs_media_alert(RTFS_ALERT_EJEC

T,..) instead.

DEVCTL_POWER_LOSS Obsolete

DEVCTL_POWER_RESTORE Obsolete

Device Driver and Porting Guide

15

PORTIO.C - Hardware abstraction layer

(required Only if using certain stock device drivers. If not skip this section.)

Portio.c contains functions that must be customized to be used with your target

hardware. These functions are only required for certain device drivers, the table

below names the functions and the device drivers they are used for. Functions that

require further explanation are described in the device specific sections of this

document. Please ignore any functions that are not required for device drivers you

are using. If you must implement any of these functions, a fully populated version of

this file is provided in the subdirectory named rtfstargets/x86.io. You may want to

copy this file and edit it to fit your needs.

Hardware interface functions implemented in portio.c that may required

customization

Function Name Required only for

these device drivers

rtfs_port_disable FLOPPY/82365/FLASH

rtfs_port_enable FLOPPY/82365/FLASH

phys82365_to_virtual 82365 PCMCIA

write_82365_index_register 82365 PCMCIA

write_82365_data_register 82365 PCMCIA

read_82365_data_register 82365 PCMCIA

ide_rd_status IDE/ATA

ide_rd_data IDE/ATA

ide_rd_sector_count IDE/ATA

ide_rd_alt_status IDE/ATA

ide_rd_error IDE/ATA

ide_rd_sector_number IDE/ATA

ide_rd_cyl_low IDE/ATA

ide_rd_cyl_high IDE/ATA

ide_rd_drive_head IDE/ATA

ide_rd_drive_address IDE/ATA

ide_wr_dig_out IDE/ATA

ide_wr_data IDE/ATA

ide_wr_sector_count IDE/ATA

ide_wr_sector_number IDE/ATA

ide_wr_cyl_low IDE/ATA

ide_wr_cyl_high IDE/ATA

ide_wr_drive_head IDE/ATA

ide_wr_command IDE/ATA

16

ide_wr_feature IDE/ATA

ide_insw IDE/ATA

ide_outsw IDE/ATA

rtfs_port_ide_bus_master_address IDE/ATA

ide_detect_80_cable IDE/ATA

Hardware interface functions implemented in portio.c that may required

customization

Function Name Required only for

these device drivers

ide_rd_udma_status IDE/ATA

ide_wr_udma_status IDE/ATA

ide_rd_udma_command IDE/ATA

ide_wr_udma_command IDE/ATA

ide_wr_udma_address IDE/ATA

rtfs_port_bus_address IDE/ATA

read_mmc_word Multi Media Card

write_mmc_word Multi Media Card

read_smartmedia_byte SMARTMEDIA

write_smartmedia_byte SMARTMEDIA

INTERRUPT ENABLE AND DISABLE SUPPORT

The interrupt enable and disable functions are required only if the floppy disk driver,

the 82365 PCMCIA controller, or the flash chip memory technology driver are being

used. If you are not using any of these devices please skip this section.

void rtfs_port_disable(void)

This function must disable interrupts and return. An example implementation of this

function for Intel X86 is:

__asm cli

void rtfs_port_enable(void)

This function must re-enable interrupts that were disabled via a call to

rtfs_port_disable(). An example implementation of this function for Intel X86 is.

__asm sti

Device Driver and Porting Guide

17

DRIDEATA.C - ATA/IDE and Compact Flash Support

This section describes actions that must be taken by the user to support the ERTFS

ATA/ATAPI device driver that is implemented in the file drideata.c.

Note: If you are not using ATA, ATAPI or compact flash based devices in your

application, skip this section.

To support this device driver, you must populate several register access functions in

portio.c and provide an interrupt service layer in portkern.c if you wish to run the

device in interrupt driven mode versus polled mode.

void hook_ide_interrupt(int irq, int controller_number)

See the porting instructions for portkern.c.

REGISTER ACCESS FUNCTIONS REQUIRED BY THE DRIVER

All ide register access functions are implemented in the file named portio.c. The

register access functions access registers in a register file whose base is contained in

the register_file_address field of the driver function. This field may be initialized in

pc_ertfs_init() when the IDE device driver is registered. Since most embedded

applications have only a single ATA controller at a fixed address, the

register_file_address field may typically be ignored and the access functions may be

hardwired to access the proper memory addresses.

byte ide_rd_status(

dword register_file_address

)

Read the byte at location 7

(IDE_OFF_STATUS) of the ide register

file.

byte ide_rd_status(

dword register_file_address

)

Read the byte at location 0

(IDE_OFF_DATA) of the ide register file.

byte ide_rd_sector_count(

dword register_file_address

)

Read the byte at location 2

(IDE_OFF_SECTOR_COUNT) of the ide

register file.

byte ide_rd_alt_status(

dword register_file_address,

int contiguous_io_mode

)

Read the byte at location 0x206

(IDE_OFF_ALT_STATUS) of the ide

register file. If the contiguous_io_mode

argument is 1, then read the byte at

location 14 rather than 0x206.

18

byte ide_rd_error(

dword register_file_address

)

Read the byte at location 1

(IDE_OFF_ERROR)of the ide register file.

byte ide_rd_sector_number(

dword register_file_address

)

Read the byte at location 3

(IDE_OFF_SECTOR_NUMBER) of the ide

register file.

byte ide_rd_cyl_low(

dword register_file_address

)

Read the byte at location 4

(IDE_OFF_CYL_LOW) of the ide register

file.

byte ide_rd_cyl_high(

dword register_file_address

)

Read the byte at location 5

(IDE_OFF_CYL_HIGH) of the ide register

file.

byte ide_rd_drive_head(

dword register_file_address

)

Read the byte at location 6

(IDE_OFF_DRIVE_HEAD) of the ide

register file.

byte ide_rd_drive_address(

dword register_file_address,

int contiguous_io_mode

)

Read the byte at location 0x207

(IDE_OFF_DRIVE_ADDRESS) of the ide

register file at register_file_address. If the

value of the argument contiguous_io_mode

is 1, then read the byte at location 15

rather than 0x207.

void ide_wr_dig_out(

dword register_file_address,

int contiguous_io_mode,

byte value

)

Write the byte to location 0x206

(IDE_OFF_ALT_STATUS) of the ide

register file. If the contiguous_io_mode

argument is 1, write the byte to offset 14

rather than 0x206.

void ide_wr_data(

dword register_file_address,

word value

)

Write the word to location 0

(IDE_OFF_DATA) of the ide

void ide_wr_sector_count(

dword register_file_address,

byte value

)

Write the byte to location 2

(IDE_OFF_SECTOR_COUNT) of the ide

register file.

void ide_wr_sector_number(

dword register_file_address, byte

value

)

Write the byte to location 3

(IDE_OFF_SECTOR_NUMBER) of the ide

register file.

void ide_wr_cyl_low(

dword register_file_address, byte

value

)

Write the byte to location 4

(IDE_OFF_CYL_LOW) of the ide register

file.

void ide_wr_cyl_high(Write the byte to location 5

Device Driver and Porting Guide

19

dword register_file_address, byte

value

)

(IDE_OFF_CYL_HIGH) of the ide register

file.

void ide_wr_drive_head(

dword register_file_address, byte

value

)

Write the byte to location 6

(IDE_OFF_DRIVE_HEAD) of the ide

register file.

void ide_wr_command(

dword register_file_address, byte

value

)

Write the byte to location 0

(IDE_OFF_DATA) of the ide register file.

void ide_wr_feature(

dword register_file_address,

byte value)

This function must place the byte in value

at location 1 (IDE_OFF_FEATURE) of the

ide register file.

void ide_insw(

dword register_file_address,

unsigned short *p,

 int nwords

)

This function must read nwords 16 bit

values from the data register at offset 0 of

the ide register file and place them in

successive memory locations starting at p.

Since large blocks of data are transferred

from the drive in this way, this routine

should be optimized. On x86 based

systems the rep insw instruction should be

used, on non x86 platforms the loop should

be as tight as possible.

void ide_outsw(

dword register_file_address,

unsigned short *p,

int nwords

)

This function must write nwords 16 bit

values to the data register at offset 0 of

the ide register file. The data is taken from

successive memory locations starting at p.

Since large blocks of data are transferred

from the drive in this way this routine

should be optimized. On x86 based

systems the rep outsw instruction should

be used, on non x86 platforms the loop

should be as tight as possible.

IDE ULTRA DMA MODE SUPPORT

This section describes functions that must be customized in order to use the

ATA/ATAPI device driver in ultra dma mode. These support functions reside in

portio.c and must be modified for your target if you wish to use ULTRA DMA

20

If you don’t wish to use ULTRA DMA, you may set the compile time constant

INCLUDE_UDMA to 0 in portconf.h and ignore this section.

dword

rtfs_port_ide_bus_master_address

(

int controller_number

)

This function must determine if the specified

controller is a PCI bus-mastering IDE

controller and if so it must return the location

of the control and status region for that

controller. If it is not a bus-mastering

controller or ultra dma mode isn’t supported

it must return zero. This will tell the IDE

device driver to use PIO mode.

byte ide_rd_udma_status

(

dword bus_master_address

)

This function must read the status byte value

at location 2 of the bus master control

region.

void ide_wr_udma_status

(

dword bus_master_address,

byte value

)

This function must write a byte to location 2

of the bus master control region.

byte ide_rd_udma_command

(

dword bus_master_address

)

This function must read the command byte

value at location 0 of the bus master control

region.

void ide_wr_udma_command

(

dword bus_master_address,

byte value

)

This function must write a byte to location 0

of the bus master control region.

void ide_wr_udma_address

(

dword bus_master_address,

dword bus_address

)

This function must write a dword to location

4 of the bus master control region.

unsigned long

rtfs_port_bus_address

(

void * p

)

This function must map a pointer to an

unsigned long physical address.

Device Driver and Porting Guide

21

BOOLEAN ide_detect_80_cable

(

int controller_number

)

This function must determine if the ATA cable

is 80 wires or 40 wires. If an 80 wire cable is

installed it should return TRUE, otherwise

FALSE. In an embedded system this function

can be hardwired based on the hardware

configuration. If an 80 wire cable is installed

the ide device driver uses the highest

performance mode supported by the

attached drive.

SUPPORTING REMOVABLE ATA DEVICES

This section describes what is required to support hot swapping of removable TRUE

IDE and PCIMCIA compact flash devices.

Hot swapping may be supported if either a card removal interrupt can be generated

by the controller or if the controller provides a latched media change event. Six

routines related hot-swapping are provided: trueide_card_changed(),

trueide_card_installed() and trueide_report_card_removed(),

pcmctrl_card_changed(), pcmctrl_card_installed() and

pcmctrl_card_down(). The requirements for each of these routines are provided in

this section.

BOOLEAN trueide_card_changed(DDRIVE *pdr)

Modify this routine to support removable TRUEIDE devices. This routine may be used

to provide support for hot swapping of removable TRUEIDE devices in cases where a

removal interrupt source is not available. The TRUEIDE circuit must provide a latch

that detects a card removal. This routine must report the value of the latch, TRUE if

the media has changed, FALSE if it has not. It must clear the latch before it returns.

By default trueide_card_changed() returns FALSE, emulating a fixed disk or a

removable disk with no media changed latch.

Note: The DRIVE_FLAGS_REMOVABLE flag must be set in apiinit.c for removable

media. To do this, OR in DRIVE_FLAGS_REMOVABLE to the drive flags field.

pdr->drive_flags |= DRIVE_FLAGS_REMOVABLE;

mode 6 133 MB

mode 5 100 MB/s

mode 4 66 MB/s

mode 3 44 MB/s

22

Example:

 BOOLEAN trueide_card_changed(DDRIVE *pdr)

 {

 if (read_ide_change_latch() == 1)

 {

 clear_ide_change_latch();

 return(TRUE);

 }

 else

 return(FALSE);

 }

BOOLEAN pcmctrl_card_changed(int pcmcia_slotno)

This routine is analogous to the trueide_card_changed function. The pcmcia

subsystem must report if a removal or insertion event has occurred.

BOOLEAN trueide_card_installed(DDRIVE *pdr)

Modify this routine to support removable trueide devices. trueide_card_installed()

must return TRUE if IDE compatible media is installed, FALSE if it is not. By default

trueide_card_installed() returns TRUE, emulating a fixed disk.

Note: The DRIVE_FLAGS_REMOVABLE flag must be set in apiinit.c for removable

media. To do this, OR in DRIVE_FLAGS_REMOVABLE to the drive flags field.

pdr->drive_flags |= DRIVE_FLAGS_REMOVABLE;

To support removable trueide media you must modify this function to interface with

your trueide media detect circuit. If media is installed it must return TRUE, if not it

must return FALSE.

Example:

 BOOLEAN trueide_card_installed(DDRIVE *pdr)

 {

 if (read_ide_installed_latch() == 1)

 return(TRUE);

 else

Device Driver and Porting Guide

23

 return(FALSE);

 }

BOOLEAN pcmctrl_card_installed(int pcmcia_slotno)

This routine is analogous to the trueide_card_installed() function. The pcmcia

subsystem must report if a card is installed.

void trueide_report_card_removed(int driveno)

To support removable trueide media you must modify your media change interrupt

service routine to call this function when a card has been removed. The drive

number of the card that was removed must be passed in. The drive number must be

the same as the value assigned to the pdr->driveno in apiinit.c.

Note: The DRIVE_FLAGS_REMOVABLE flag must be set in apiinit.c for removable

media. To do this, OR in DRIVE_FLAGS_REMOVABLE to the drive flags field.

pdr->drive_flags |= DRIVE_FLAGS_REMOVABLE;

Example:

 #define TRUEIDE_DRIVEID 2 — C:

 void trueide_removal_interrupt(void)

 {

 trueide_report_card_removed(TRUEIDE_DRIVEID);

 }

void pcmctrl_card_down(int pcmcia_slotno)

This routine is analogous to the trueide_card_installed() function. The pcmcia

subsystem must clear any state variables and shut off power to the drive.

Note: Failure to shut off power to the slot will cause device accesses on subsequent

reinsertions to fail.

24

DRFLSFTL.C - Linear Flash Support

Rtfs linear flash device support is provided through a portable Flash Translation layer

(FTL) implemented in drflsftl.c.

The flash subsystem is included if the following line is true in portconf.h:

#define INCLUDE_FLASH_FTL 1 /* - Include the linear flash driver */

If INCLUDE_FLASH_FTL is zero, the flash subsystem is not included.

The FTL layer maps logical block addresses to physical block addresses and manages

block replacement, spare block management and block wear leveling. A simple

interface to underlying device specific Memory Technology Drivers (MTS’s) is

provided.

MTD’s are implemented in drflsmtd.c. The requirements of MTD’s are provided in the

next section.

FLASH MEMORY TECHNOLOGY (MTD) DRIVERS

Introduction

The file drflsmtd.c contains two Memory Technology drivers. One is a driver that

implements flash emulation in RAM, the other is a driver for Intel 28Fxxx flash parts.

Other drivers may be implemented by editing three or four routines in drflsmtd.c.

This section describes the required routines and the provided sample implementation

for RAM emulation of flash and for Intel flash chips.

Adding your own Flash Memory Technology Drivers

To implement a new mtd driver you must implement custom versions of these four

functions in this file.

flash_probe() - must report if flash is present, the total size,

 the erase block size, the address and memory

 window width of the flash.

flash_eraseblock() - must initialize one erase block of the flash.

mtd_window() - must assure that a region of the flash is

 addressable.

flash_write_bytes() - must program a region of the flash.

Device Driver and Porting Guide

25

Functions that must be provided to support a flash device

int flash_probe(void)

flash_probe() must determine if a flash chip is present and if so, determine the

address of the flash, the total size of the flash, the size of an erase block, and the

window of the flash that is addressable at any one time. flash_probe() must return

1 if a device is found, zero otherwise.

These values must be set by the flash_probe() routine:

flashchip_TotalSize - Set this to the total size of the flash in bytes.

flashchip_BlockSize - Set this to the size of one erase block in bytes.

flashchip_WindowSize - Set this to the addressable window. If the part is fully

addressable, set it to the size of the part in bytes.

flashchip_start - Set this byte pointer to the start of the flash.

void * mtd_MapWindow (RTFDrvFlashData *DriveData, dword BlockIndex,

 dword WindowIndex)

Map a region of the flash memory for reading and writing. The location of the flash

region to map in is calculated by multiplying the BlockIndex times the erase block

size (flashchip_BlockSize) and adding in the WindowIndex times the window map

size (flashchip_WindowSize). The region must be at least

flashchip_WindowSize bytes wide.

The included version of mtd_MapWindow() assumes that the flash part is fully

addressable. It simply multiplies these values together, adds them to the start of

flash address and returns the result. This version will not need to be changed in most

flat 32 bit target environments. In some environments it may be necessary to add

software to perform some sort of bank register selection in this routine.

mtd_MapWindow() must return a pointer that can be used to read and write the

flash at the requested location

int flash_erase_block(dword BlockIndex)

Erase a block of size flashchip_BlockSize at BlockIndex to the erased (all 1’s)

state. flash_erase_block() must return 0 on success and -1 on failure.

int flash_write_bytes(byte volatile * dest, byte * src, int nbytes)

Write nbytes of data from the buffer at src and write it to the flash memory at

address dest. Dest is an address pointer for a location in a region of the flash that

was returned by mtd_MapWindow(). The region between dest and dest plus

nbytes is guaranteed to reside within flashchip_WindowSize bytes of the pointer

returned by mtd_MapWindow().

flash_write_bytes must return 0 on success -1 on failure.

26

SAMPLE MTD DRIVERS

Introduction

Two sample MTD drivers are provided. One is a simple FLASH emulator implemented

in RAM and the other is a driver for the Intel 28FXX flash series.

Flash emulation in RAM

If #define USE_EMULATED_FLASH is set to 1 the ram flash emulator is enabled.

The size of the emulated Flash can be changed by changing the constant,

FLASHEMUTOTALSIZE. The default is 64K. The flash memory is emulated in the

array FlashEmuBuffer[]. The total size of FlashEmuBuffer[] is

FLASHEMUTOTALSIZE bytes. The Ram emulator is very simple and may be used

as a starting point for other flash device drivers.

If #define USE_DISK_EMULATOR is also set to 1, the ram will be mirrored to disk

any time a write occurs. This is only intended for testing purposes in Windows, and

the disk emulation code is not portable.

Intel Flash Chip Driver.

If #define USE_INTEL_FLASH is set to 1, the INTEL flash chip driver is enabled.

This driver is for Intel several 28FXXX components between 2 and 8 megabytes in

size. Other components from the series may be added by modifying the routine

flash_probe() to recognize the device and to correctly report its total size, erase

block size, and it’s address.

Two compile time constants must be changed when porting the Intel MTD driver to a

new target.

The constants tell the device driver the address of the Intel flash part and the width

of the address range window through which the part may be read and written.

The defaults are arbitrarily set to ten million and 64 K respectively.

 #define FLASH_STARTING_ADDRESS 0x10000000

 #define FLASHWINDOWSIZE 64*1024L

These must be modified. FLASH_STARTING_ADDRESS must be changed to the

base address of your flash memory and set FLASHWINDOWSIZE to one of the

following: If the whole address range of your flash part is completely visible then set

FLASHWINDOWSIZE to the size of the flash (in bytes). If it is addressable only

through a memory window that is smaller than the whole part, set

FLASHWINDOWSIZE to the width of the window. The routine mtd_MapWindow()

will be called to “seek” to the appropriate window each time a region of the flash is

accessed.

Device Driver and Porting Guide

27

DRPCMCIA.C - Pcmcia Support

Rtfs supports Compact Flash and PCMCIA ram cards. If these devices are to be used

then either the PCMCIA controller must be managed externally or the Rtfs PCMCIA

subsystem must be used. The subsystem consists of the files drpcmcia.c, which is

portable and should not need modifications, and drpcmctl.c, a device driver for INTEL

82365 compatible pcmcia controller chips which will need some porting.

SUPPORTING A NON 82365 BASED PCMCIA CONTROLLER

If you are not using an 82365 class controller you must provide the functionality

normally provided in drpcmctl.c with equivalent functions. These functions are

described here. If you do have an 82365 based controller or you are not using

PCMCIA, you can skip this section.

void pcmctrl_put_cis_byte(int socket, dword offset, byte c)

This function must store the byte c to the location that is offset bytes into the CIS

region of the card at slot number 0 or 1.

byte pcmctrl_get_cis_byte(int socket, dword offset)

This function must read and return the byte stored offset bytes into the CIS region of

the card at slot number 0 or 1.

void pcmctrl_map_ata_regs(int socket, dword ioaddr, int interrupt_number)

This function must configure the pcmcia controller such that the IDE driver can

access the ATA register in the Compact Flash card. It must also map in the PMCIA

interrupt line so that it will generate the I/O completion interrupt and it must apply

VCC power to the card.

Notes:

The value ioaddr is the address that was passed into the IDE device driver. This

value is assigned by the user inside pc_ertfs_init() through the variable pdr-

>register_file_address. This is the range of addresses that the ide register access

functions will address.

The value interrupt_number is the interrupt number that will be used by

hook_ide_interrupt() to field I/O completion interrupts. This value is assigned by

the user inside pc_ertfs_init() through the variable pdr->interrupt_number. If this

value is set to -1, the user is requesting polled interaction with the device and no

system level interrupt handling is required.

28

BOOLEAN pcmctrl_card_installed(int pcmcia_slot_number)

This routine must return TRUE if a card is installed in the slot, FALSE if it is not.

BOOLEAN pcmctrl_card_changed(int pcmcia_socket_number)

This routine must return TRUE if a media change event has occurred on the card.

Note: If the pcmcia controller supports card removal interrupts then this routine is

not needed and may simply always return FALSE. If card removal interrupts are not

supported then this routine must be implemented if hot swapping is needed.

If this routine is required, it must check the pcmcia interface at the logical socket for

the presence of a latched media change condition. If a change has occurred then it

must clear the latched condition and return TRUE. Otherwise, it must return FALSE.

If a change is detected the routine also unmaps the card in pcmcia space and shuts

off power to the card. This is done to assure that the card powers up appropriately

when it is reopened.

Inputs: pcmcia slot number (0,1)

Returns: TRUE - a card has been inserted or removed since last called

 FALSE - no card has been inserted or removed since last called

byte *pd67xx_map_sram(int socket_no , dword offset)

This routine is required only if the pcmcia SRAM card driver is being used. It must

return a pointer to a block in the pcmcia sram’s memory space that is offset bytes

from the beginning of the SRAM memory area and make sure that 512 bytes are

readable and writable at that location.

Note: The SRAM driver actually passes in the byte offset of the block divided by two

plus 256. This is because pcmcia SRAM cards are mapped into CIS space which has

mod two addressability and starts at location 512 in CIS space. You may modify

this algorithm in pcmsram_block() if needed.

IMPLEMENTING CARD EVENT HANDLERS FOR EXTERNALLY SUPPLIED

PCMCIA CONTROLLER DRIVERS

If you wish to support hot swapping of PCMCIA compact flash cards, a management

interrupt service or some other mechanism to announce card removal events to the

IDE device driver must be provided. The 82365 driver (drpcmctl.c) contains a routine

called mgmt_isr() that should be used as a model for how to approach this. That

source code is provided below. Please note the following about how the routine

works and how it must behave. The routine detects a card change, if the change was

a removal event(no card in slot) then it must turn off VCC power to the card and

then look up and call the IDE device driver’s device I/O control function with the

appropriate arguments to report a card removal event.

Here is the source code for the model event handler:

Device Driver and Porting Guide

29

void mgmt_isr(void)

{

int i;

byte card_status;

 for (i = 0; i < NSOCKET; i++)

 {

 card_status = pd67xx_read(i, 0x04);

 /* Write the status register to clear */

 pd67xx_write(i, 0x04, 0xff);

 if (card_status)

 {

 if (!pcmctrl_card_is_installed(i, FALSE))

 {

 pcmctrl_card_down(i);

 {

 int j;

 DDRIVE *pdr;

 for (j = 0; j < prtfs_cfg->cfg_NDRIVES; j++)

 {

 pdr = pc_drno_to_drive_struct(j);

 if (pdr &&

 pdr->drive_flags & DRIVE_FLAGS_PCMCIA &&

 pdr->drive_flags & DRIVE_FLAGS_VALID &&

 pdr->pcmcia_slot_number == i &&

 pdr->pcmcia_controller_number == 0

)

 pdr->dev_table_perform_device_ioctl(pdr->driveno,

 DEVCTL_REPORT_REMOVE, (PFVOID) 0);

 }

 }

 }

 }

 }

30

PORTING THE 82365 PCMCIA CONTROLLER

If you are not using PCMCIA or are not using and 82365 class controller, you can

skip this section.

void hook_82365_pcmcia_interrupt(int irq)

See the porting instructions for portkern.c.

void phys82365_to_virtual(PFBYTE * virt, unsigned long phys)

This routine must take a physical linear 32 bit bus address passed in the “phys”

argument and convert it to an address that is addressable in the logical space of the

CPU, returning that value in “virt.”

void write_82365_index_register(byte value)

void write_82365_data_register(byte value)

byte read_82365_data_register()

These routines write and read the 82365 index and data registers, which, in a

standard PC environment, are located in I/O space at address 0x3E0 and 0x3E1. Non

PC architectures typically map these as memory mapped locations somewhere high

in memory such as 0xB10003E0 and 0xB10003E1.

Device Driver and Porting Guide

31

DRFLOPPY.C - Floppy Disk Support

These routines are provided to support the floppy disk device driver in drfloppy.c. If

your application will not be using a floppy disk device please ignore this section.

The floppy driver is for NEC 756 class controllers and is primarily for PC architectures

but it can be made to work in non-PC environments. Six routines are listed here as

routines that may need modification. In a standard PC environment the only routine

that will need changing is the hook interrupt routine, this routine will need

modification to support your RTOS interrupt hook and dispatch method.

void hook_floppy_interrupt(int irq)

See the porting instructions for portkern.c.

void get_floppy_type(int driveno)

The source for this routine is in file drfloppy.c. It is hardwired to return DT_144

(1.44MB 3.5 inch floppy disk), by far the most common floppy disk drive type in use.

The source code is self-explanatory and describes what values to return for other

drive types.

BOOLEAN fl_dma_init()

This routine must set up a DMA transfer for the floppy device driver. The source for

this routine is in file drfloppy.c. It is hardwired to start the appropriate dma transfer

for DMA channel 2 on a standard PC AT architecture. It must be analyzed and

modified if being used on some other system.

Floppy disk register-access routines. Six functions, all contained in drfloppy.c, are

provided to access the registers of the NEC765 class floppy disk controller. They are

all hard wired to use Intel I/O out and I/O in instructions in the address range 0x3f0

to 0x3ff. If the floppy driver is being moved to a non PC environment, these routines

must be modified.

fl_read_data() - Reads a byte from the 765 data register

fl_read_drr() - Reads a byte from the 765 data rate register

fl_read_msr() - Reads a byte from the 765 master status register

fl_write_data() - Writes a byte to the 765 data register

fl_write_dor() - Writes a byte to the 765 digital output register

fl_write_drr() - Writes a byte to the 765 data rate register

