
Rtfs API Reference Guide

1�1§

Rtfs with exFAT

API Reference Guide
©2011 EBS, Inc

Revised January 2011

For on-line viewing navigate using the Adobe Acrobat’s Bookmarks tab or use
hyperlinks in the table of contents.

http://www.ebsembeddedsoftware.com

http://www.ebsembeddedsoftware.com/

2�2§

TABLE OF CONTENTS

Initialize and shutdown __________________________________ 6

pc_ertfs_init __ 6

rtfs_init_configuration___ 7

pc_ertfs_shutdown __ 11

Media driver interface ___________________________________ 12

pc_rtfs_media_insert __ 12

device_io – media driver callback _______________________________ 14

device_erase – media driver callback ____________________________ 15

device_ioctl – media driver callback _____________________________ 16

device_configure_media – media driver callback ___________________ 17

device_configure_volume – media driver callback __________________ 19

pc_rtfs_media_alert ___ 22

Application callbacks ___________________________________ 23

rtfs_sys_callback ___ 23

rtfs_app_callback ___ 26

rtfs_diag_callback ___ 28

rtfs_failsafe_callback __ 29

All Rtfs packages - Basic API _____________________________ 30

pc_diskclose ___ 30

pc_diskflush ___ 31

pc_set_cwd __ 32

pc_set_cwd_uc ___ 32

pc_set_default_drive __ 34

pc_get_default_drive __ 35

pc_get_default_drive_uc _____________________________________ 35

pc_drno_to_drname ___ 36

pc_drno_to_drname_uc ______________________________________ 36

pc_drname_to_drno ___ 37

pc_diskio_info __ 38

get_errno ___ 40

get_errno_location __ 41

pc_gfirst __ 42

pc_gfirst_uc ___ 42

pc_gnext __ 43

pc_gnext_uc ___ 43

pc_glast __ 44

pc_glast_uc __ 44

pc_gprev __ 45

pc_gprev_uc ___ 45

pc_gread __ 47

pc_get_attributes ___ 49

pc_get_attributes_uc __ 49

pc_set_attributes ___ 50

pc_set_attributes_uc __ 50

pc_isdir ___ 51

pc_isdir_uc __ 51

pc_isvol ___ 52

pc_isvol_uc __ 52

pc_stat ___ 53

pc_stat_uc __ 53

pc_blocks_free ___ 55

pc_mkdir __ 56

pc_mkdir_uc ___ 56

pc_rmdir __ 57

pc_rmdir_uc ___ 57

pc_mv __ 58

pc_mv_uc ___ 58

pc_unlink ___ 59

pc_unlink_uc ___ 59

Basic File IO API _______________________________________ 60

po_open __ 60

po_open_uc ___ 60

po_close __ 62

po_read ___ 63

po_write __ 64

po_lseek64 __ 65

po_chsize ___ 67

po_flush __ 68

pc_fstat ___ 69

Format and partition management API _____________________ 71

pc_get_media_parms __ 71

pc_get_media_parms_uc _____________________________________ 71

pc_partition_media __ 73

pc_partition_media_uc _______________________________________ 73

pc_format_media ___ 75

pc_format_media_uc __ 75

pc_format_volume __ 76

pc_format_volume_uc _______________________________________ 76

pc_format_volume_ex _______________________________________ 77

pc_format_volume_ex_uc ____________________________________ 77

pcexfat_format_volume ______________________________________ 79

Utility API __ 80

pc_deltree ___ 80

pc_deltree_uc __ 80

pc_enumerate __ 81

pc_enumerate_uc ___ 81

pc_check_disk __ 83

Miscellaneous functions _________________________________ 85

tst_shell __ 85

pc_free_user ___ 86

Sixty four bit math package ______________________________ 87

Mixed 64 bit 32 bit operators __________________________________ 87

64 bit arithmetic operators ____________________________________ 87

64 bit logical operators _______________________________________ 87

Initialize and shutdown

pc_ertfs_init
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

pc_ertfs_init() must be called by the application before it calls any Rtfs API

functions. pc_ertfs_init() in turn calls an application specific callback subroutine

named rtfs_init_configuration() configure Rtfs and acquire operating memory.

SUMMARY

BOOLEAN pc_ertfs_init (void)

DESCRIPTION

 This function works in conjunction with an application supplied callback subroutine
named rtfs_init_configuration() to configure and initialize Rtfs memory. It then

allocates memory dynamically, if so instructed, and allocates necessary semaphores

for the operating system porting guide.

NOTE: Please consult the manual page for rtfs_init_configuration() for detailed

instructions on what this function must provide to Rtfs.

RETURNS

TRUE All memory and system resource initialization

succeeded and Rtfs is usable

FALSE Memory and system resource initialization failed and

Rtfs is not usable

This function does not set errno.

SEE ALSO

rtfs_init_configuration()

rtfs_init_configuration
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Set system wide operating parameters. This is a callback subroutine that must be

provided by the application layer to configure Rtfs and provides operating
memory.

SUMMARY

void rtfs_init_configuration (preply)

struct rtfs_init_resource_reply *preply Contains operating parameters for

Rtfs .

DESCRIPTION

rtfs_init_configuration() configures the global operating parameters and

buffering that Rtfs will use. It is called by pc_ertfs_init() when Rtfs is first

initialized.

A reference version of this function is provided in the file named rtfsconfig.c in
the subdirectory rtfsprojects\msvc.net\source. These files and rtfscallbacks.c

should be copied to your project file and reconfigured to suit your application's
needs.

The reference version of rtfs_init_configuration() is controlled by the
following compile time constants defined in rtfsconfig.h.

RTFS_CFG_SINGLE_THREADED
RTFS_CFG_INIT_DYNAMIC_ALLOCATION
RTFS_CFG_MAX_DRIVES

RTFS_CFG_MAX_FILES
RTFS_CFG_MAX_SCRATCH_BUFFERS
RTFS_CFG_MAX_SCRATCH_DIRS

RTFS_CFG_MAX_USER_CONTEXTS
RTFS_CFG_MAX_REGION_BUFFERS
RTFS_CFG_SINGLE_THREADED_USER_BUFFER_SIZE

RTFS_CFG_SINGLE_THREADED_FAILSAFE_BUFFER_SIZE
RTFS_CFG_DIRS_PER_DRIVE
RTFS_CFG_DIRS_PER_USER_CONTEXT

rtfs_init_configuration() must initialize an rtfs_init_resource_reply.

struct rtfs_init_resource_reply {

int max_drives

int max_scratch_buffers

int max_file

int max_user_contexts

int max_region_buffers

int spare_user_directory_objects

int spare_drive_directory_objects

int use_dynamic_allocation

int run_single_threaded

dword single_thread_buffer_size

dword single_thread_fsbuffer_size

void * single_thread_buffer

void * single_thread_fsbuffer

void * mem_drive_pool

void * mem_mediaparms_pool

void * mem_block_pool

void * mem_block_data

void * mem_file_pool

void * mem_finode_pool

void * mem_finodeex_pool

void * mem_drobj_pool;

void * mem_region_pool;

void * mem_user_pool;

void * mem_user_cwd_pool

};

struct rtfs_init_resource_reply – This table describes the fields that must be

initialized to configure Rtfs. A sample version of rtfs_init_configuration() is

provided in rtfsconfig.c. It may be modified for your application’s requirements.

Field name Meaning

max_drives

The maximum number of drives that may be
mounted at one time. The maximum value is 26.

max_files The maximum number of files that may be opened
at one time.

max_scratch_buffers The number of blocks in the scratch buffer pool.
These are used by Rtfs as scratch memory buffers

when performing certain operations. Each scratch
buffer consumes approximately 536 bytes. The
default value is 32 but it may be reduced to as low

as 8 in most applications.

spare_drive_directory_objects
spare_user_directory_objects

These constants controls allocation of extra “dirent”
objects for use in certain non-file operations like

pc_enumerate() and pc_getcwd() that consume
dirent structures as they execute. The default
values are 16 and 4 respectively. They should not

be changed lightly, but if ram is a precious resource
you may wish to reduce them and then verify that

your application still runs correctly.

max_region_buffers The number of 12 byte REGION_FRAGMENT
structures dedicated to run length encoding of
cluster fragments in open files and free space.

The default setting is 5000, this consumes 60 K
and provides enough buffering for 5000 fragments

in free-space and in open files.

Increase this value if your application can spare the

memory.

If not enough fragment buffers are available Rtfs

resorts to much slower disk based FAT scans when
allocating clusters. If not enough buffers are
available for open files then file IO operations will

fail.

max_user_contexts The number of separate threads that will have their

own separate current working directory, and errno
contexts.

run_single_threaded Set to one to force Rtfs to run in single threaded

mode. In single threaded mode all drive accesses
use the same semaphore and thus execute

sequentially. This eliminates the need for individual
user buffers and failsafe restore buffers per drive,
resulting in reduced memory consumption, with

marginal to no performance degradation in most
systems.

The following fields, single_thread_buffer_size and

single_thread_fsbuffer_size, should be set only if run_single_threaded is true.
If run_single_threaded is not true, buffers must be provided for each mounted
drive.

These buffers are used for certain bulk fat table access operations and for Failsafe
journaling respectively. They are specified in bytes and since they are shared among

all drives they must be large enough to accommodate all media types, for optimal
performance with NAND flash they should be the size of an erase block. For large
rotating media, buffers sized 32 K or 64 K provide performance improvements.

single_thread_buffer_size Set to zero if run_single_threaded is zero.

single_thread_fsbuffer_size Set to zero if run_single_threaded is zero or if

you are not using Failsafe.

use_dynamic_allocation Set to 1 to instruct Rtfs to dynamically allocate

system wide resources.

Set to 0 to instruct Rtfs that system wide resources

are provided.

If use_dynamic_allocation is set to zero, the following fields must be initialized

with pointers to enough space for the objects being configured. The sample code
provided in rtfsconfig.c, does this for you and it is unlikely that you will need to
modify it.

void *single_thread_buffer; void *mem_finode_pool;

void *single_thread_fsbuffer; void *mem_finodeex_pool;

void *mem_drive_pool; void *mem_drobj_pool;

void *mem_mediaparms_pool; void *mem_region_pool;

void *mem_block_pool; void *mem_user_pool;

void *mem_block_data; void *mem_user_cwd_pool;

void *mem_file_pool;

RETURNS

Nothing

If an error occurred: errno is set to one of the following:

Errno is not set

pc_ertfs_shutdown
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

void pc_ertfs_shutdown (void)

SUMMARY

Shut down Rtfs.

DESCRIPTION

pc_ertfs_shutdown() puts Rtfs in an un-initialized state releasing all allocated

memory and system resources. Rtfs may be restarted by calling pc_ertfs_init().

RETURNS

Nothing

If an error occurred: errno is set to one of the following:

Errno is not set

Media driver interface

pc_rtfs_media_insert
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

This function must be called by the device driver when media is inserted or the
device powered up. It sets operating parameters for the media.

SUMMARY

int pc_rtfs_media_insert(struct rtfs_media_insert_args *pmedia_parms)

struct rtfs_media_insert_args

*pmedia_parms

Operating parameters for Rtfs to

use when accessing this device.

See below for a complete

description of pmedia_parms.

DESCRIPTION

pc_rtfs_media_insert() alerts Rtfs that new media is available and provides it

with operating parameters and buffering that Rtfs stores internally and uses when

accessing this device.

The device driver must pass the address of an initialized rtfs_media_insert_args

structure to pc_rtfs_media_insert() . Configuration parameters are copied to

internal structures, so the configuration structure itself may reside on the stack.

struct rtfs_media_insert_args {

void * devhandle

int device_type

int unit_number

int write_protect

dword media_size_sectors

dword numheads

dword numcyl

dword Secptrk

dword sector_size_bytes

dword eraseblock_size_sectors

int (*device_io) ()

int (*device_erase) ()

int (*device_ioctl) ()

int (*device_configure_media)()

int (*device_configure_volume)()

};

struct rtfs_media_insert_args

devhandle Rtfs will pass this handle as one of the

arguments to certain device driver callback

functions. The device layer uses this to identify

the device and retrieve system specific

information.

Rtfs does not interpret devhandle, but it must be

a unique non-zero value.

device_type Rtfs will pass this device_type as one of the

arguments to certain driver callback functions.

The device layer uses this to identify the device

type when providing configuration information.

Rtfs does not interpret device_type.

unit_number Rtfs will pass unit_number as one of the

arguments to certain driver callback functions.

The device layer uses this to identify the device

type when providing configuration information.

Rtfs does not interpret device_type.

write_protect Initial write protect state of the device. Rtfs will

not write to the media if this is non-zero. The

driver can change the write protect state later

by calling pc_rtfs_media_alert().

media_size_sectors Total number of addressable sectors on the

media.

eraseblock_size_sectors Sectors per erase block for NAND devices.

Must be set to zero for media without erase

blocks

Numheads, numcyls and secptrk must be valid HCN values, they are placed

into the FAT boot structures where needed but they are otherwise not used.

HCN values should be calculated and then clipped to fit within the legal

values.

numheads Must be <= 255

numcyl Must be <= 1023

Secptrk Must be <= 63

sector_size_bytes 512, 124, 2048 etc.

(*device_io) () Device sector IO function

(*device_erase) () Device erase block erase function

(*device_ioctl) () Device IO control function

(*device_configure_medi

a)()

Device media Configuration function

(*device_configure_volu

me)()

Device volume mount Configuration function

};

device_io – media driver callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

This is a callback function that must be implemented for the target device. This

function is called by Rtfs and should not be called externally.

SUMMARY

int (*device_io)(void *devhandle, void *pdrive, dword sector, void

*buffer, dword count, int reading)

DESCRIPTION

This function is called when Rtfs wants to perform sector reads or writes to media

that was attached by pc_rtfs_media_insert() .

devhandle Handle passed to pc_rtfs_media_insert() when the device

was inserted. (*device_io) may use this to locate media

properties and state.

pdrive Void pointer to the Rtfs drive structure. Advanced device

drivers may caste this with (DDRIVE *) to access the drive

structure.

sector Starting sector number to read or write
buffer Buffer to read to write from

count Number of sectors to transfer
reading True for a read, False for a write request

RETURNS

0 Returned if IO failed.

1 Returned if IO successful

device_erase – media driver callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

This is a callback function that must be implemented for the target device. This

function is called by Rtfs and should not be called externally.

SUMMARY

int (*device_erase)(

void *devhandle, void *pdrive, dword start_sector, dword

nsectors)

DESCRIPTION

This function is called when Rtfs wants to erase sectors on media that was attached

by pc_rtfs_media_insert().

Note: This function will only be called if the value of eraseblock_size_sectors passed

to pc_rtfs_media_insert() is non zero.

NOTE: The region spanned by start_sector and nsectors is not always guaranteed to

be on erase block boundaries ! If the volume was formatted by Rtfs with enforced

erase block alignment the span will be erase block bound, but if the media was not

formatted this way the span could possibly not lie on erase block boundaries. If the

span is not erase block bound the device driver should return success without

erasing the sectors.

devhandle Handle passed to pc_rtfs_media_insert() when the device

was inserted. (*device_erase) may use this to locate media

properties and state.

pdrive Void pointer to the Rtfs drive structure. Advanced device

drivers may caste this with (DDRIVE *) to access the drive

structure.

sector Starting sector number to erase

nsectors Number of sectors to erase

RETURNS

0 Returned if erase failed.

1 Returned if erase was successful

device_ioctl – media driver callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

This is a callback function that must be implemented for the target device. This

function is called by Rtfs and should not be called externally.

SUMMARY

int (*device_ioctl)(void *devhandle, void *pdrive, int opcode, int iArgs,

void *vargs)

DESCRIPTION

This function is called when Rtfs wants to perform an ioctl subroutine call directly to

the device driver. Most devices can simply return 0 whenever this function is called.

See the opcode descriptions below for more information.

devhandle Handle passed to pc_rtfs_media_insert() when the device

was inserted. (*device_ioctl) may use this to locate media

properties and state.

pdrive Void pointer to the Rtfs drive structure. Advanced device

drivers may caste this with (DDRIVE *) to access the drive

structure.

opcode Ioctl opcode to perform.
iArgs Integer argument for ioctl.

vArgs Pointer argument for ioctl.

OPCODE Description

RTFS_IOCTL_FORMAT

Format the media if that is a supported operation.

Flash media drivers may erase all blocks on the media.

Most other media type don’t require formatting. These

devices should return 0 when asked to format.

RTFS_IOCTL_INITCACHE

Advanced feature. Devices should return 0 when

passed this argument.

RTFS_IOCTL_FLUSHCACHE Advanced feature. Devices should return 0 when

passed this argument.

RETURNS

-1 If the command failed.

0 If the command was successful

device_configure_media – media driver callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

This is a callback function that must be implemented for the target device. This

function is called by Rtfs and should not be called externally.

SUMMARY

int (*device_configure_media)(

struct rtfs_media_insert_args *pmedia_parms,

struct rtfs_media_resource_reply *pmedia_config_block ,

int sector_buffer_required)

DESCRIPTION

This function is called by Rtfs while it is executing pc_rtfs_media_insert() on

behalf of the device driver. pc_rtfs_media_insert() passes a

rtfs_media_insert_args structure containing information about the device. This

function must fill in the rtfs_media_resource_reply structure with configuration

and buffering information.

See the manual page for pc_rtfs_media_insert() for a descriptions of the

rtfs_media_insert_args structure.

struct rtfs_media_resource_reply {

int use_dynamic_allocation

int requested_driveid

int requested_max_partitions

int use_fixed_drive_id

dword device_sector_buffer_size_bytes

byte *device_sector_buffer_base

void *device_sector_bffer_data

};

struct rtfs_media_resource_reply

use_dynamic_allocation Set to 1 to instruct Rtfs to dynamically

allocate media buffers.

Set to 0 to instruct Rtfs that media buffers

are provided.

requested_driveid Drive Id (0 – 25) to assign to the media if

not partitioned or to the first partition on the

media if it is.

requested_max_partitions Maximum number of volumes to mount on

this media.

Note: device_configure_volume() must

be prepared to configure this many

partitions.

use_fixed_drive_id Must be set to 1.

device_sector_buffer_size_b

ytes

This buffer is used for certain bulk FAT table

access operations. It is specified in bytes, for

optimal performance with NAND flash it

should be the size of an erase block. For

large rotating media, buffers sized 32 K or

64 K provide performance improvements.

Note: If rtfs_init_configuration() was

configured for run_single_threaded, then

device_sector_buffer_size_bytes should be

set to zero.

*device_sector_buffer_data If use_dynamic_allocation is zero, this

must be initialized to point to an area of ram

device_sector_buffer_size_bytes wide. If

use_dynamic_allocation is one, leave this

field blank, Rtfs will allocate the necessary

memory.

*device_sector_buffer_base Internal, do not set.

RETURNS

0 Return if successful

-1 Return if an unsupported device type was encountered

-2 Returned if out of resources

device_configure_volume – media driver callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

This is a callback function that must be implemented for the target device. This

function is called by Rtfs and should not be called externally.

SUMMARY
Int (*device_configure_volume)(

struct rtfs_volume_resource_request *prequest_block,

struct rtfs_volume_resource_reply *pvolume_config_block)

DESCRIPTION
This function is called when the volume on a device must be configured. This

function is passed in an rtfs_volume_resource_request structure containing

information about the volume. The configuration of the volume is passed back in

the pvolume_config_block. The purpose of this function is to fill in the values of

the rtfs_volume_resource_reply structure. Below are description of the

rtfs_volume_resource_request structure and the rtfs_volume_resource_reply

structure.

Note: If an exFAT volume is being mounted some additional resources are required. These resources
must be provided though the callback layer. For more information see the manual page for:

rtfs_sys_callback(RTFS_CBS_GETEXFATBUFFERS).

struct rtfs_volume_resource_request {

void *devhandle

int device_type

int unit_number

int driveid

int partition_number

dword volume_size_sectors

dword sector_size_bytes

dword eraseblock_size_sectors

int buffer_sharing_enabled

int failsafe_available

};

struct rtfs_volume_resource_request

*devhandle Device driver access Handle

device_type Device type returned by

device_configure_media()

unit_number Unit number type returned by

device_configure_media()

Driveid Drive letter (0-25).

partition_number Which partition it is.

volume_size_sectors Total number of addressable sectors on the

partition or media containing the volume

sector_size_bytes Sector size in bytes: 512, 2048, etc…

eraseblock_size_sectors Sectors per erase block. Zero for media

without erase blocks

buffer_sharing_enabled If 1, Rtfs is configured to share restore

buffers.

failsafe_available If 1, failsafe is available and operating policy

and failsafe buffering may select failsafe.

struct rtfs_volume_resource_reply {

int use_dynamic_allocation

dword drive_operating_policy

dword n_sector_buffers

dword n_fat_buffers

dword fat_buffer_page_size_sectors

dword n_file_buffers

dword file_buffer_size_sectors

dword fsrestore_buffer_size_sectors

dword fsjournal_n_blockmaps

void *blkbuff_memory

void *fatbuff_memory

void *filebuff_memory

void *fsfailsafe_context_memory

void *fsjournal_blockmap_memory

byte *sector_buffer_base

byte *file_buffer_base

byte *fat_buffer_base

byte *failsafe_buffer_base

byte *failsafe_indexbuffer_base

void *sector_buffer_memory

void *file_buffer_memory

void *fat_buffer_memory

void *failsafe_buffer_memory

void *failsafe_indexbuffer_memory

};

struct rtfs_volume_resource_reply

use_dynamic_allocation Set to one to request Rtfs to allocate structures and

buffers dynamically.

drive_operating_policy Drive operating policy, defaults to zero, See app

notes.

n_sector_buffers Total number of sector sized directory buffers.

n_fat_buffers Total number of FAT table buffers.

fat_buffer_page_size_sector

s

Number of sectors per FAT table buffer.

Required for NAND Flash. Otherwise use defaults.

n_file_buffers Total number of file buffers.

file_buffer_size_sectors File buffer size in sectors.

Required for Failsafe. Otherwise use defaults.

fsrestore_buffer_size_sector

s

Failsafe restore buffer size in sectors.

fsjournal_n_blockmaps Number of Failsafe sector remap records provided.

Determine the number of outstanding remapped

sectors permitted.

The rest of the fields may be left blank if use_dynamic_allocation is selected.

If dynamic allocation is not selected please populate the following fields according to

the descriptions.

*blkbuff_memory Must point to n_sector_buffers *

sizeof(BLKBUFF) bytes (sizeof(BLKBUFF) is around

40 bytes)

*fatbuff_memory Must point to n_fat_buffers * sizeof(FATBUFF)

bytes. sizeof(FATBUFF) is around 40 bytes)

Required for NAND Flash. Otherwise use defaults.

*filebuff_memory Must point to n_file_buffers * sizeof(BLKBUFF)

bytes. sizeof(BLKBUFF) is around 40 bytes)

Required for Failsafe. Otherwise use defaults

*fsfailsafe_context_memory Must point to sizeof(FAILSAFECONTEXT) bytes.

sizeof(FAILSAFECONTEXT) is around 300 bytes)

*fsjournal_blockmap_memo

ry

Must point to fsjournal_n_blockmaps *

sizeof(FSBLOCKMAP) bytes. sizeof(FBBLOCKMAP)

equals 16

These pointers contain arrays do require IO address alignment if that is a system

requirement

*sector_buffer_memory Must point to sector_size * n_sector_buffers

bytes.

*fat_buffer_memory Must point to sector_size * n_fat_buffers *

fat_buffer_page_size_sectors bytes.

Required for NAND Flash. Otherwise use defaults.

*file_buffer_memory Must point to

sector_size*n_file_buffers*file_buffer_size_sect

ors bytes.

Required for Failsafe. Otherwise use defaults

*failsafe_buffer_memory Must point to sector_size *

fsrestore_buffer_size_sectors bytes.

*failsafe_indexbuffer_mem

ory

Must point to sector_size bytes.

These fields are used internally, do not change them.

*sector_buffer_base *failsafe_buffer_memory;

*file_buffer_base *failsafe_indexbuffer_memory

*fat_buffer_base

RETURNS

0 Return if successful

-1 Return if an unsupported device type was encountered

-2 Returned if out of resources

pc_rtfs_media_alert
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

This function must be called from the device driver when the write protect status

changes or the device is ejected.

SUMMARY

int pc_rtfs_media_alert(void *devhandle, int alertcode, void *vargs)

DESCRIPTION

This function takes as arguments, the devhandle that was passed to

pc_rtfs_media_insert() when the device was inserted and an alert code.

devhandle The same handle that was passed to pc_rtfs_media_insert

when the device was inserted.

alertcode The alert that the driver is passing to Rtfs.

vargs Unused.

 Alert Codes Behavior

RTFS_ALERT_EJECT All drive identifiers, mount structures, control

structure, semaphores and buffers associated with the

device are released.

RTFS_ALERT_WPSET Sets the internal write protect status for the media.

Rtfs will not write to the media unless the status is

cleared.

RTFS_ALERT_WPCLEAR Clear the internal write protect status for the media.

Rtfs will write to the media.

RETURNS

Nothing

If an error occurred: errno is set to one of the following:

Errno is not set

Application callbacks

rtfs_sys_callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

System service callback function.

SUMMARY

int rtfs_sys_callback(int cb_code, void *pvargs)

DESCRIPTION

This call back provides the system services. Rtfs calls this function for certain

system functions. The cb_codes are described in the table below. Sample source for

this function is located in rtfscallbacks.c.

 cb_code Required Functionality

RTFS_CBS_INIT This callback is made by pc_ertfs_init

before any other callbacks are made or any

operating system porting layer functions are

called. System initializations like opening the

terminal window may be performed by the

handler.

RTFS_CBS_PUTS Print the string pointed to by (char*)pvargs

to the console.

RTFS_CBS_GETS Retrieve a string from the console and store

in (char*)pvargs.

RTFS_CBS_GETDATE Retrieve the system date and store in

(char*)pvargs. Modify the function named

pc_get_system_date() in rtfscallbacks.c to

interface with your system’s calendar

function.

RTFS_CBS_ 10MSINCREMENT exFat only - Retrieve the one byte 10

millisecond precision component for the

previous RTFS_CBS_GETDATE call. (0-199 for

up to 1990 milliseconds).

RTFS_CBS_UTCOFFSET exFat only - Retrieve the one byte value to

place in the offset from UTC field. The default

is 0xf0, Eastern time zone US.

RTFS_CBS_POLL_DEVICE_READY Poll for device changes if your system cannot

provide insert/remove interrupts.

RTFS_CBS_GETEXFATBUFFERS This callback is made by Rtfs when it detects

insertion of an exFat volume. The callback

layer is passed a structure of type

EXFATMOUNTPARMS which contains

informational fields suggesting what the

callback should provide. The callback layer

must provide the necessary buffering.

Note: If the callback can’t provide the

memory it should set all return values to 0.

See the table below describing the fields.

RTFS_CBS_RELEASEEXFATBUFFER

S

This callback is made by Rtfs when it detects

removal of an exFat volume. The callback

layer is passed a structure of type

EXFATMOUNTPARMS which contains

informational fields plus values that were

allocated by

RTFS_CBS_GETEXFATBUFFERS. The

callback should free the memory. If staic
pools are in use driveID my be used to identify the

pool.

EXFATMOUNTPARMS Field descriptions. (see RTFS_CBS_GETEXFATBUFFERS)

These values are passed in.

driveID

integer 0-25 == A:-Z: - Informational but you may use it as a

handle to help keep track of static buffer pools if you are not

using dynamic allocation.

pdr Informational void pointer, you may caste this to access the drive

structure directly from the callback routine.

SectorSizeBytes Sector size – You will need this to allocate buffers.

BitMapSizeSectors

This value contains the size of the volume’s free space bitmap

(BAM). If you allocate enough mempry to buffer the whole

BAM then no page swapping of the BAM is required. Otherwise

if less than the optimal value is allocated Rtfs will swap the BAM

sectors to disk as required.

Note: exFAT requires one bit in the BAM per cluster. (one sector

per 4096 clusters). The BAM of a 512 GIG drive is approximately

450 sectors (225k). Assuming memory starved systems the

example provided arbitrarily limits the size of the BAM cache to

64 sectors (32 K), but this can be removed.

UpcaseSizeBytes Size to allocate for the Upcase table cache. If the volume has a

standard upcase table Rtfs will uses a precompiled standard table

and this value will be zero, because. Otherwise this value will be

128K.

If the value is 0 you need not provide any memory.

If the value is 128K you may either provide 128 K of memory

for full upcase support or you may allocate no memory and Rtfs

will use the internal table to upcase only the lower 128 characters.

These values are returned.

BitMapBufferSizeSectors

Return the number of sectors allocated for the bit map cache up to

BitMapSizeSectors.

BitMapBufferPageSizeSectors You should always return 1.

BitMapBufferCore

A memory array of size (BitMapBufferSizeSectors *

SectorSizeBytes). Up to (BitMapSizeSectors * SectorSizeBytes)

BitMapBufferControlCore

Must return a memory array of size:

sizeof(FATBUFF) *

(BitMapSizeSectors/ BitMapBufferPageSizeSectors)

 (not BitMapBufferSizeSectors)

sizeof(FATBUFF) is approximately 50 bytes so in the 512 GIG

example above we would return (450*50) or approximately 22K.

The memory consumption may be reduced by setting
BitMapBufferPageSizeSectors to a larger value, but this is not

recommended unless memory is very tight.

UpCaseBufferCore

Return 0 or a pointer to UpcaseSizeBytes bytes (128K).

RETURNS

Nothing

If an error occurred: errno is set to one of the following:

Errno is not set

rtfs_app_callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Application callback function.

SUMMARY

int rtfs_app_callback(int cb_code, int iarg0, int iargs1, void *pvargs)

DESCRIPTION

This function provides the callback for the application layer. The cb_codes and

necessary parameters are described in the table below. Sample source for this

function is located in rtfscallbacks.c.

 cb_code Required Functionality

Informational codes, no response is required

RTFS_CBA_INFO_MOUNT_

STARTED

Called when a mount has been started. iarg0

contains the drive number.

RTFS_CBA_INFO_MOUNT_

FAILED

Called when a mount has failed. iarg0 contains the

drive number.

RTFS_CBA_INFO_MOUNT_

SUCCEEDED

Called when a mount has succeeded iarg0 contains

the drive number.

Rtfs ProPlus informational and response codes. These codes may be used to in certain

application settings.

RTFS_CBA_ASYNC_MOUNT

_CHECK

Check if the current mount should proceed or if it

should fail and request an asynchronous mount.

iarg0 contains the drive number.

Return 0 to proceed with the mount.

Return 1 to abort the mount and request an

asynchronous mount.

Note: The API call that initiated the mount will fail
with errno set to PENOTMOUNTED.

RTFS_CBA_ASYNC_MOUNT

_START

Start an asynchronous mount.

This will be called if

RTFS_CBA_ASYNC_MOUNT_CHECK returned 1.

This callback should signal the application to call

pc_diskio_async_mount_start() to start an

asynchronous mount on the drive number contained

in iarg0.

Note: A foreground or background task must execute

pc_async_continue to complete the mount.
RTFS_CBA_ASYNC_DRIVE_

COMPLETE

An asynchronous drive operation has completed.

 iarg0 contains the drive number.

iarg1 contains the id of the completed operation.

iarg2 contains the completion status.

See the RtfsProPlus - Asynchronous operations API
manual section for more information.

 An asynchronous file operation has completed.

RTFS_CBA_ASYNC_FILE_C

OMPLETE

 iarg0 contains the file descriptor.

iarg1 contains the completion status.

See the RtfsProPlus - Asynchronous operations API
manual section for more information.

RTFS_CBA_DVR_EXTRACT_

RELEASE

A DVR extract file has been released from sharing

sectors with the circular buffer and may be closed.

iarg0 contains the file descriptor.

 iarg1 contains the status.

See the RtfsProPlusDVR - Circular File IO API
manual section for more information.

RETURNS

0 Rtfs proceeds with default behavior.

1 For non-informational callbacks returning 1 alters

behavior.

If an error occurred: errno is set to one of the following:

Errno is not set

rtfs_diag_callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Diagnostic callback function.

SUMMARY

void rtfs_diag_callback(int cb_code, int iarg0)

DESCRIPTION

Provides an interface for fielding Rtfs asserts and for monitoring Rtfs errnos and to

detect when device IO errors occur. Sample source for this function is located in

rtfscallbacks.c.

 cb_code Required Functionality

RTFS_CBD_ASSERT Monitor for when Rtfs detects an unexpected internal

state.

RTFS_CBD_ASSERT_TEST Monitor for when an Rtfs regression test fails

RTFS_CBD_IOERROR Monitor for IO errors. iarg0 contains the drive

number.

RTFS_CBD_SETERRNO Inspect Rtfs errno values and monitor for system

errors.

 iarg0 contains the error value.

rtfscallbacks.c. provide an example of rtfs_diag_callback with a switch table that

may be populated to monitor for the following error conditions.
Normal application errors Device level failures Resource errors

PEACCES PEDEVICEFAILURE PERESOURCEBLOCK

PEBADF PEDEVICENOMEDIA PERESOURCEFATBLOCK

PEEXIST PEDEVICEUNKNOWNMEDIA PERESOURCEREGION

PENOENT PEDEVICEWRITEPROTECTED PERESOURCEFINODE

PENOSPC PEDEVICEADDRESSERROR PERESOURCEDROBJ

PESHARE PEINVALIDBPB PERESOURCEDRIVE

PEINVALIDPARMS PEIOERRORREAD PERESOURCEFINODEEX

PEINVAL PEIOERRORWRITE PERESOURCEFINODEEX64

PEINVALIDPATH PEIOERRORREADMBR PERESOURCESCRATCHBLOCK

PEINVALIDDRIVEID PEIOERRORREADBPB PERESOURCEFILES

PECLOSED PEIOERRORREADINFO32 PECFIONOMAPREGIONS

PETOOLARGE PEIOERRORREADBLOCK PERESOURCEHEAP

Other application errors PEIOERRORREADFAT PERESOURCESEMAPHORE

PENOEMPTYERASEBLOCKS PEIOERRORWRITEBLOCK PENOINIT

PEEINPROGRESS PEIOERRORWRITEFAT PEDYNAMIC

PENOTMOUNTED PEIOERRORWRITEINFO32 PERESOURCEEXFAT

PEEFIOILLEGALFD Corrupted volume errors

PE64NOT64BITFILE PEINVALIDCLUSTER

 PEINVALIDDIR

 PEINTERNAL

RETURNS

Nothing

rtfs_failsafe_callback
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Failsafe run time configuration callback function.

SUMMARY

void rtfs_failsafe_callback(int cb_code, int driveno, int iarg0, void *pvargs,

 void *pvargs1)

DESCRIPTION

This callback provides the functionality previously provided by multiple callback

functions that were recompiled along with the Failsafe source code. This callback

interface provides the same functionality as the previous interface and defaults to

the same configuration. Listed below are the cb_codes available for this function.

Sample source for this function is located in rtfscallbacks.c.

RTFS_CB_FS_RETRIEVE_FIXED_JOURNAL_LOCATION

RTFS_CB_FS_FAIL_ON_JOURNAL_FULL

RTFS_CB_FS_FAIL_ON_JOURNAL_RESIZE

RTFS_CB_FS_RETRIEVE_JOURNAL_SIZE

RTFS_CB_FS_RETRIEVE_RESOTRE_STATEGY

RTFS_CB_FS_FAIL_ON_JOURNAL_CHANGED

RTFS_CB_FS_CHECK_JOURNAL_BEGIN_NOT

RTFS_CB_FS_RETRIEVE_FLUSH_STRATEGY

Note: For more information on the cb_codes and operations see the

FailsafeTechnicalReferenceManual under Callback API

All Rtfs packages - Basic API

pc_diskclose
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Unconditionally dismount a volume without flushing and optionally clear values and

buffers established by device_configure_volume.

Note: You must call pc_diskflush() before calling pc_diskclose() if you wish to

flush the disk before closing,

SUMMARY

#include <rtfs.h>

BOOLEAN pc_diskclose(byte *driveid, BOOLEAN clear_init)

Driveid Name of the volume “A:” “B:” etc.

clear_init If clear_init is TRUE, all buffers and configuration

values provided by device_configure_volume are released.

DESCRIPTION

This routine unconditionally dismounts a volume if it is currently mounted. There is

no flushing of FAT buffers, file buffers, block buffers or of Failsafe.

Note: To flush the disk before closing, call pc_diskflush() before you call

pc_diskclose().

If clear_init is TRUE, the configuration is cleared. This releases all buffers that were

assigned to the drive by device_configure_volume. The next time the drive is

accessed device_configure_volume will be called.

Note: This function is used mainly for testing, a better way to dismount a

drive is to flush it and then call pc_rtfs_media_alert.

RETURNS

TRUE Success

FALSE Invalid drive specified in an argument

Application Level Error Return Codes

PEINVALIDDRIVEID Invalid drive specified in an argument

pc_diskflush
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Flush the FAT and all files to a disk

SUMMARY

BOOLEAN pc_diskflush (byte *drive_name)

DESCRIPTION

Given a valid drive specifier (A:, B:, C:…) in drive_name, flush the file allocation

table and all changed files to the disk. After this call returns, the disk image is

synchronized with the Rtfs internal view of the volume.

RETURNS

TRUE The disk flush succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

if (!pc_diskflush(“A:”))

printf(“Flush operation failed \n”);

 pc_async_flush_start() is also available

 fs_api_commit() is also available

pc_set_cwd

pc_set_cwd_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Set current working directory.

SUMMARY

BOOLEAN pc_set_cwd (byte *path)

DESCRIPTION

Make path the current working directory for this task. If path contains a drive

component, the current working directory is changed for that drive; otherwise the

current working directory is changed for the default drive.

RETURNS

TRUE The current working directory was changed

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDPATH Path specified badly formed

PENOENT Path not found

PEACCESS Not a directory

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

if(!pc_set_cwd(“D:\\USR\\DATA\\FINANCE”))

 printf(“Can’t change working directory\n”);

pc_get_cwd
pc_get_cwd_uc

Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return the current working directory.

SUMMARY

BOOLEAN pc_get_cwd (byte *drive, byte *return_buffer)

DESCRIPTION

Fill return_buffer with the full path name of the current working directory for the

current task for the drive specified in drive. If drive is a NULL pointer or a pointer to

an empty string (“”) or is an invalid drive specifier, the current working directory for

the default drive is returned. In a multitasking system Rtfs maintains a current

working directory for each task.

Note: Rtfs must be configured correctly in order for each task to have its own current

working directory. Please see the documentation of the routine pc_ertfs_config()

for a complete explanation of this requirement.

Note: return_buffer must point to enough space to hold the full path without

overriding user data. The worst case possible is 260 bytes.

RETURNS

TRUE A valid path was returned in return_buffer

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

if (pc_get_cwd(“A:”, pwd))

 printf (“Working dir is %s\n”, pwd);

else

 printf (“Can’t find working dir for A:\n”);

pc_set_default_drive
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Set the default drive.

SUMMARY

BOOLEAN pc_set_default_drive (byte *drive)

DESCRIPTION

Use this function to set the current default drive that will be used when a path

specifier does not contain a drive specifier.

Note: pc_set_default_drive() does not try to access the drive, it will succeed as

long as the specified drive id is between “A:” and “Z:”. If the drive is not mounted

the first API call to it will try to mount it. To test if a drive is present after calling

pc_set_default_drive() you must call other APIs. pc_set_cwd() and

pc_get_cwd() are convenient for this purpose.

RETURNS

TRUE The default drive id was set successfully.

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Driveno is incorrect

EXAMPLE

#include <rtfs.h>

if(!pc_set_default_drive(“C:”))

 printf(“Can’t change working drive\n”);

pc_get_default_drive

pc_get_default_drive_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Get the default drive name and drive number.

SUMMARY

int pc_get_default_drive (byte *drive_name)

DESCRIPTION

This function returns the default drive. The default drive name, (A:, B:, C: etc) is

returned in the drive_name buffer that is passed in.

The default drive number (0, 1, 2 ,3) is the return value of the functions.

Note: A NULL pointer may me passed in as the drive_name argument.

RETURNS

driveno The drive number of the default drive id

errno is not set

EXAMPLE

 int drive_no;

byte drive_name[8];

drive_no = pc_get_default_drive (drive_name);

printf(“Drive name == %s, drive number == %d\n”, drive_name, drive_no);

pc_drno_to_drname

pc_drno_to_drname_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Get the drive name associated with a drive number.

SUMMARY

void pc_drno_to_drname (int driveno, byte* pdrive_name)

DESCRIPTION

Use this function to get the drive name associated with the supplied drive number.

This function populates the buffer pointed to by pdrive_name (A:, B:, C:.. Z:) with

the drive identifier for the drive number passed in driveno (0,1,2..25).

Note: The buffer pointed to by pdrive_name must be large enough to contain the

NULL terminated drive identifier. This is 3 bytes in ASCII, 6 bytes in UNICODE.

RETURNS

Nothing

EXAMPLE

#include <rtfs.h>

 byte drive_name[6];

pc_drno_to_drname (3, drive_name);

 printf(“Drive name == %s\n”, drive_name); /* “C:” */

pc_drno_to_drname (25, drive_name);

printf(“Drive name == %s\n”, drive_name); /* “C:” */

pc_drname_to_drno
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Get the drive number associated with a drive name.

SUMMARY

int pc_drname_to_drno (byte* pdrive_name)

DESCRIPTION

Use this function to get the drive number associated with the supplied drive name.

This function interprets the buffer pointed to by pdrive_name (A:, B:, C:.. Z:) and

returns a drive number (0,1,2..25).

RETURNS

driveno The drive number for driveid

This function does not set errno.

EXAMPLE

#include <rtfs.h>

int driveno;

driveno = pc_drname_to_drno(“C:”);

printf(“Drive number== %d\n”, driveno); /* 2 */

driveno = pc_drname_to_drno(“Z:”);

printf(“Drive number== %d\n”, driveno); /* 25 */

pc_diskio_info
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return useful information about the specified drive.

SUMMARY

BOOLEAN pc_diskio_info (driveid, pinfo, extended)

byte *driveid Name of a mounted volume “A,”

“B,” etc.

DRIVE_INFO *pinfo Drive information is placed into this

structure.

BOOLEAN extended If this argument is TRUE additional

statistics are provided. The

additional statistics are listed in the

table below under the heading

extended statistics. If this argument

is FALSE the extended statistics are

all set to zero.

Note: Extended statistics are

calculated and thus may require

additional processing time.

DESCRIPTION

The drive capacity information provided by pc_diskio_info() is useful for

developing certain applications and for monitoring device utilization.

Detailed description of the info structure fields.

All fields are of type dword unless the type is specifically mentioned.

Volume and device information.

The sector size, cluster size total clusters and FAT type (12, 16 or 32) are useful

things to know so they are provided.

sector_size The sector size in bytes (normally 512)

cluster_size The cluster size in blocks

total_clusters The total number of clusters in the volume

free_clusters The current number of free clusters left in the volume.

fat_entry_size 12, 16 or 32

is_exfat TRUE if an exFAT volume. fat_entry_size is 32.

drive_operating_policy Drive operating policy bits may be set to control certain

aspects of drive operating policy. For most applications

there is no need to change them. (For more information

see device_configure_volume in the media driver

callback section of the API manua).

drive_opencounter Number of times the drive has been mounted. This

value is incremented every time the device is mounted.

It will increment when a device change event is

detected and the device is remounted.

Region buffer usage statistics. Rtfs relies on region buffers extensively. The

number of region buffers required at any one time can rely on several factors such

as the degree of fragmentation of the disk and the number of open files. These

statistics are system wide, not drive specific, but they are provided here to allow you

to determine if your region buffer configuration is correct

Free_manager_enabled

BOOLEAN

This field indicates if the region manager is currently

enabled.

 Note: free_manager_enabled will be FALSE only when

the free manager is purposely disabled or Rtfs exhausts

its region buffers and recovers by disabling the region

manager.

region_buffers_total This field will always contain the number of region

buffers that were provided in apicnfig.c. It will always

be equal to NREGIONS.

region_buffers_free This field contains the number of region buffers that are

not currently being used.

region_buffers_low_water This field contains the count of free region buffers at the

point when the most region buffers were being used by

the application.

Note: Some API functions will fail and set errno to

PERESOURCEREGION if they run out of region buffers,

so it is a good idea to make sure you have enough of

them. You should inspect region_buffers_low_water

after running your application at steady state or worst

case conditions to determine if NREGIONS is correct.

The elements that follow are provided only if the extended argument is TRUE, if the

extended argument is FALSE they will be zero.

free_fragments The free clusters are in this many fragments that are

separated by allocated space.

Note: free_fragments is calculated and thus require

some additional processing time. If a memory based

free manager is operational the free_fragments

calculation is ram based only and will complete quickly.

If the free manager is disabled as indicated by

free_manager_enabled is FALSE, the disk will be

scanned for free fragment, which will take significantly

longer.

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEINVALIDPARMS Missing or invalid parameters

PEINVALIDDRIVEID Invalid drive specified in an argument

An Rtfs system error See Appendix for a description

get_errno
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Get the last Rtfs assigned errno value for the calling task

SUMMARY

int get_errno (void)

DESCRIPTION

This function retrieves the last ERRNO value set by Ertfs for this task.

EXAMPLE

If (!pc_mkdir(“Test”))

 printf(“mk_dir failed: ERRNO == %d\n”, get_errno());

get_errno_location
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Get the current errno value and the source filename and source line number that last

set the errno value for the calling task.

SUMMARY

int get_errno_location (char **filename, long *linenumber)

DESCRIPTION

If INCLUDE_DEBUG_VERBOSE_ERRNO is enabled rtfs_set_errno() prints the

file name and line number that called it through the user supplied terminal IO output

handler.

get_errno_location () may be called to retrieve the last filename and line number

that were printed along with the last errno value. The application may retrieve these

values even when the target system does not have console IO support.

This function retrieves the last ERRNO value set by Rtfs for this task and the source

file name and line number that set errno.

If INCLUDE_DEBUG_VERBOSE_ERRNO is not enabled

*filename and *linenumber are not set.

If INCLUDE_DEBUG_VERBOSE_ERRNO is enabled and the current errno is non-

zero

*filename points to the read-only file name that last called rtfs_set_errno.

*linenumber contains the line number that last called rtfs_set_errno.

If INCLUDE_DEBUG_VERBOSE_ERRNO is enabled and the current errno is zero

*filename and *linenumber are not set.

EXAMPLE

If (!pc_mkdir(“Test”))

{

long linenumber = 0;

char *filename = “unknown”;

int errno;

 errno = get_errno_location (&filename, &linenumber);

 printf(“mk_dir failed: ERRNO == %d, FILE == %s, LINE = %d\n”,

 errno, filename, linenumber);

}

pc_gfirst

pc_gfirst_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return the first entry in a directory.

SUMMARY

BOOLEAN pc_gfirst (DSTAT *statobj, byte *pattern)

DESCRIPTION

Given a pattern which contains both a path specifier and a search pattern, fill in the

structure at statobj with information about the file and set up internal parts of

statobj to supply appropriate information for calls to pc_gnext().

Examples of patterns are:

“D:\USR\RELEASE\NETWORK*.C”

“BIN\UU*.*”

“MEMO_?.*”

“*.*”

Note: If pc_gfirst() succeeds you may call pc_gnext() to get the next directory

entry that matches the criteria. When you are done you must call pc_gdone() to

free internal resources. If pc_gfirst() does not succeed it is not necessary to call

pc_gdone().

RETURNS

TRUE The operation was a success and a match was found

FALSE Operation failed or no match found. consult errno

errno is set to one of the following:

 0 No error

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPATH Path specified badly formed

PENOENT Not found, no match

An Rtfs system error See Appendix for a description of system errors

SEE ALSO:

pc_gnext(), pc_gdone(), and pc_seedir() in appcmdsh.c

pc_gnext

pc_gnext_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return next entry in a directory.

SUMMARY

BOOLEAN pc_gnext (DSTAT *statobj)

DESCRIPTION

Continue with the directory scan started by a call to pc_gfirst().

RETURNS

TRUE The operation was a success and a match was found

FALSE The operation failed or no match found. consult

errno

errno is set to one of the following:

0 No error

PEINVALIDPARMS statobj argument is not valid

PENOENT Not found, no match (normal termination of scan)

PEINVALIDDRIVEID Drive was removed or closed since pc_gfirst() call.

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

if (pc_gfirst(&statobj,”A:\\dev*.c”))

{

do

{

/* print file name, extension and size */

printf(“%-8s.%-3s %7ld \n”,statobj.fname,

statobj.fext,statobj.fsize);

}

while (pc_gnext(&statobj));

/* Call gdone to free up internal resources */

pc_gdone(&statobj);
}

pc_glast

pc_glast_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return the last entry in a directory.

SUMMARY

BOOLEAN pc_glast (DSTAT *statobj, byte *pattern)

DESCRIPTION

Pc_glast behaves similarly to pc_gfirst except it finds the last entry in a directory to

match a pattern. Given a pattern which contains both a path specifier and a search

pattern, fill in the structure at statobj with information about the file and set up

internal parts of statobj to supply appropriate information for calls to pc_prev().

Examples of patterns are:

“D:\USR\RELEASE\NETWORK*.C”

“BIN\UU*.*”

“MEMO_?.*”

“*.*”

Note: If pc_glast() succeeds you may call pc_gprev() to get the next directory

entry that matches the criteria. When you are done you must call pc_gdone() to

free internal resources. If pc_glast() does not succeed it is not necessary to call

pc_gdone().

RETURNS

TRUE The operation was a success and a match was found

FALSE Operation failed or no match found. consult errno

errno is set to one of the following:

 0 No error

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPATH Path specified badly formed

PENOENT Not found, no match

An Rtfs system error See Appendix for a description of system errors

SEE ALSO:

pc_gprev(), pc_gdone(), and pc_seedir() in appcmdsh.c

pc_gprev

pc_gprev_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return previous entry in a directory.

SUMMARY

BOOLEAN pc_gprev (DSTAT *statobj)

DESCRIPTION

Continue with the directory scan started by a call to pc_glast().

RETURNS

TRUE The operation was a success and a match was found

FALSE The operation failed or no match found. consult

errno

errno is set to one of the following:

0 No error

PEINVALIDPARMS statobj argument is not valid

PENOENT Not found, no match (normal termination of scan)

PEINVALIDDRIVEID Drive was removed or closed since pc_gfirst() call.

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

if (pc_glast(&statobj,”A:\\dev*.c”))

{

do

{

/* print file name, extension and size */

printf(“%-8s.%-3s %7ld \n”,statobj.fname,

statobj.fext,statobj.fsize);

}

while (pc_gprev(&statobj));

/* Call gdone to free up internal resources */

pc_gdone(&statobj);
}

pc_gdone
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Free directory scan resources originally allocated by pc_first() or pc_gprev().

SUMMARY

void pc_gdone (DSTAT *statobj)

DESCRIPTION

Given a pointer to a DSTAT structure that was set up by a call to pc_gfirst() free

internal elements used by statobj.

Note: You must call this function after you have finished calling pc_gfirst() and

pc_gnext() or calling pc_gprev() and pc_gprev() or a memory leak will
occur.

RETURNS

Nothing

Does not set errno.

EXAMPLE

See pc_gnext()

pc_gread
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Read data from a directory scan result.

SUMMARY

BOOLEAN pc_gread (DSTAT *statobj,

int blocks_to_read,

byte *buffer,

 int *blocks_read)

DESCRIPTION

Read data from the DSTAT structure returned from a successful call to pc_gfirst()

or pc_gnext(). This function can be used to implement efficient file enumeration

procedures for media player devices by eliminating the need to open files to read

header information.

Note: This function is intended for reading file header information but the ability to

read blocks from a subdirectory is also provided.

Note: This function is block oriented and ignores the directory entry’s file size

attribute, so if (blocks_to_read*512) is larger than the file’s size, it will read up to

the last cluster boundary.

statobj DSTAT structure previously filled by pc_gfirst() or

pc_gnext()

blocks_to_read The number of blocks you would like to read from

the beginning of the file or subdirectory.

buffer Buffer that pc_gread should read data to.

Note: buffer must be at least large enough to hold

blocks_to_read sectors.This is typically 512 *

blocks_to_read bytes, but the buffer must be larger

if the media has a larger sector size.

blocks_read Pointer to an integer that returns the number of

blocks that were successfully transferred to the

buffer.

Note: If the file or subdirectory contains less than to

blocks_to_read blocks, data will be read up to the

boundary of the last cluster in the file.

RETURNS

TRUE The operation was a success. Blocks_read contains

the number of blocks transferred to buffer.

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive was removed or closed since pc_gfirst() call

PEINVALIDPARMS Invalid arguments

An Rtfs system error See Appendix for a description of system errors

pc_get_attributes

pc_get_attributes_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Get File Attributes of the named file

SUMMARY

BOOLEAN pc_get_attributes(byte *path, byte *p_return);

DESCRIPTION

Given a file or directory name, return the directory entry attributes associated with

the entry. One or more of the following values will be or’ed together:

BIT Mnemonic

0 ARDONLY

1 AHIDDEN

2 ASYSTEM

3 AVOLUME

4 ADIRENT

5 ARCHIV

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PENOENT Path not found

An Rtfs system error See Appendix for a description of system

errors

pc_set_attributes

pc_set_attributes_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Set File Attributes

SUMMARY

BOOLEAN pc_set_attributes (byte *path, byte attributes)

DESCRIPTION

Given a file or directory name set the directory entry attributes associated with the

entry. One or more of the following values may be or’ed together.

BIT Mnemonic

0 ARDONLY

1 AHIDDEN

2 ASYSTEM

3 ARCHIVE

4 ADIRENT

5 ARCHIVE

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDPARMS Attribute argument is invalid

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPATH Path specified badly formed

PENOENT Path not found

PEACCESS Object is read only

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

byte attribs;

if (pc_get_attributes(“A:\\COMMAND.COM”, &attribs)

{

attribs |= ARDONLY|AHIDDEN

pc_set_attributes(“A:\\COMMAND.COM”, attribs);

}

pc_isdir

pc_isdir_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Test if a path is a directory.

SUMMARY

BOOLEAN pc_isdir (byte *path)

DESCRIPTION

This is a simple routine that opens a path and checks if it is a directory, then

closes the path. The same functionality can be had by calling pc_gfirst() and
testing the DSTAT structure.

RETURNS

TRUE The operation was a success and it is a directory

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PENOENT Path not found

An Rtfs system error See Appendix for a description of system

errors

pc_isvol

pc_isvol_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Test if a path name is a volume label.

SUMMARY

BOOLEAN pc_isvol(byte *path)

DESCRIPTION

Tests to see if a path specification is a volume label specifier.

RETURNS

TRUE The operation was a success and it is a volume

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PENOENT Path not found

An Rtfs system error See Appendix for a description of system

errors

pc_stat

pc_stat_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return properties of a named file or directory.

SUMMARY

int pc_stat (byte *name,ERTFS_STAT *pstat)

DESCRIPTION

This routine searches for the file or directory provided in the first argument. If found,

it fills in the stat structure as described here:

The ERTFS_STAT structure:

st_dev the entry’s drive number

st_mode Contains one or more of the following bits:

S_IFMT - type of file mask

S_IFCHR - char special (unused)

S_IFDIR - directory

S_IFBLK - block special (unused)

S_IFREG - regular (a “file”)

S_IWRITE - Write permitted

S_IREAD - Read permitted

st_rdev the entry’s drive number

st_size file size

st_atime Last modified date in DATESTR format

st_mtime Last modified date in DATESTR format

st_ctime Last modified date in DATESTR format

t_blksize optimal blocksize for I/O (cluster size)

t_blocks blocks allocated for file

The following fields are extensions to the standard stat structure

fattributes The DOS attributes. This is non-standard but supplied if you

wish to look at them.

st_size_hi If the file is an exFAT file, the high 32 bits of the file size

NOTE: ERTFS_STAT structure is equivalent to the STAT structure available with most posix like

run time environments. Unfortunately certain run time environments like uITRON also use a
structure named STAT so in order to avoid namespace collisions Rtfs uses the proprietary
name ERTFS_STAT. If you are porting an application that uses STAT you may put the following
preprocessor macro in rtfs.H just below the declaration of ERTFS_STAT: #define STAT
ERTFS_STAT

RETURNS

0 The operation was a success

-1 The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PENOENT File or directory not found

An Rtfs system error See Appendix for a description

EXAMPLE

#include <rtfs.h>

struct ERTFS_stat st;

 if (pc_stat(“A:\\MYFILE.TXT”, &st)==0)

{

printf(“DRIVENO: %d\n”, st.st_dev);

printf(“SIZE: %d\n” st.st_size); /* in bytes */

printf(“Month: %d\n”, (st.st_atime.date >> 5) & 0xf,);

printf(“Day: %d\n”, (st.st_atime.date) & 0x1f,);

printf(“Year: %d\n”, (st.st_atime.date >> 9) & 0xf,);

printf(“Hour: %d\n”, (st.st_atime.time >> 11) & 0x1f);

printf(“Minute: %d\n”, (st.st_atime.time >> 5) & 0x3f);

printf(“OPT BLOCK SIZE:%d\n”,

 st.st_blksize,st.st_blocks);

printf(“FILE size (BLOCKS): %d\n”, st.st_blocks);

printf(“MODE BITS :”);

if (st.st_mode&S_IFDIR)

 printf(“S_IFDIR|”);

if (st.st_mode&S_IFREG)

printf(“S_IFREG|”);

if (st.st_mode&S_IWRITE)

printf(“S_IWRITE|”);

if (st.st_mode&S_IREAD)

printf(“S_IREAD\n”);
printf(“\n”);

pc_blocks_free
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return disk free space statistics

SUMMARY

BOOLEAN pc_block_free (byte *drive,

dword *total blocks,

dword *free blocks);

DESCRIPTION

Given a drive ID, return the total number of blocks on the drive in the dword pointed

to by total_blocks, return the number of blocks free in the dword pointed to by

free_blocks.

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Driveno is incorrect

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

If (pc_blocks_free (“A:”, & total_blocks, & free_blocks))

 printf (“%d blocks free out of %d blocks total \n:”,

 free_blocks, total_blocks);

pc_mkdir

pc_mkdir_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Create a subdirectory.

SUMMARY

BOOLEAN pc_mkdir (byte *path)

DESCRIPTION

Create a subdirectory in the path specified by path. Fails if a file or directory of the

same name already exists or if the directory component (if there is one) of path is

not found.

RETURNS

TRUE The subdirectory was created

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPATH Path specified badly formed.

PENOENT Path to new directory not found

PEEXIST File or directory of this name already exists

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

pc_mkdir(“\\USR\\LIB\\HEADER\\SYS”);

pc_rmdir

pc_rmdir_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Delete a directory

SUMMARY

BOOLEAN pc_rmdir (byte *path)

DESCRIPTION

Delete the directory specified in path. Fails if path is not a directory, is read only or is

not empty.

RETURNS

TRUE The directory was successfully removed.

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPATH Path specified badly formed.

PENOENT Directory not found

PEACCESS Directory is in use or is read only

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

if (!pc_rmdir(“D:\\USR\\TEMP”)

 printf(“Can’t delete directory\n”);

pc_mv

pc_mv_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Rename files and directories

SUMMARY

BOOLEAN pc_mv (char *oldpath, char *newpath)

DESCRIPTION

Moves the file or subdirectory named oldpath to the new name specified in newpath.

oldpath and newpath must be on the same drive but they may be in different sub-

directories. Both names must be fully qualified (see examples). Fails if newpath is

invalid or already exists or if oldpath is not found.

RETURNS

TRUE The file or subdirectory was moved

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid or they are not the same

PEINVALIDPATH Path specified by old_name or new_name is badly

formed.

PEACCESS File or directory in use, or old_name is read only

PEEXIST new_name already exists

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

if (!pc_mv(“\\USR\\TXT\\LETTER.TXT”, “LETTER.OLD”))

 printf(“Can’t move the file\n”);

if (!pc_mv(“\\employeefolders\\joe”, “\\ex-employeefolders\\joe”)

printf(“Can’t move the subdirectory \n”);

pc_unlink

pc_unlink_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Delete a file.

SUMMARY

BOOLEAN pc_unlink (byte *path)

DESCRIPTION

Delete the filename pointed to by path. Fail if it is not a simple file, if it is open, if it

does not exist, or it is read only.

RETURNS

TRUE It successfully deleted the file.

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPATH Path specified badly formed.

PENOENT Can’t find file to delete

PEACCESS File in use, is read only or is not a simple file.

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

if (!pc_unlink(“B:\\USR\\TEMP\\TMP001.PRN”))

printf(“Can’t delete file \n”)

pc_async_unlink_start() is also available

Basic File IO API

po_open

po_open_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Open a file.

SUMMARY

int po_open (byte *path, word flag, word mode)

DESCRIPTION

Open the file for access as specified in flag. If creating use mode to set the access

permissions.

Flag values are:

PO_APPEND All writes will be appended to the file

PO_BINARY Ignored

PO_TEXT Ignored

PO_RDONLY Open for read only

PO_RDWR Read/write access allowed

PO_WRONLY Open for write only

PO_CREAT Create the file if it does not exist

PO_EXCL If flag has (PO_CREAT|PO_EXCL) and the file

already exists, fail and set errno to EEXIST

PO_TRUNC Truncate the file if it already exists

PO_BUFFERED If this is set, reads and writes of less than 512

bytes and operations that do not start or end on

block boundaries are buffered. The buffer is

flushed when po_close() is called, when

po_flush() is called or if a buffered IO request is

made to a different block number. Using the

PO_BUFFERED flag increases performance of

applications performing reads and writes of small

or un aligned data buffers.

PO_AFLUSH Enable auto flush mode. The file is flushed

automatically by po_write() whenever the file

length changes.

PO_NOSHAREANY Fail if already open, fail if another open is tried

PO_NOSHAREWRITE Fail if already open for write and fail if another

open for write is tried

Mode values are:

PS_IWRITE Write permitted

PS_IREAD Read permitted (Always true anyway)

RETURNS

>= 0 to be used as a file descriptor for calling po_read(),

po_write(), po_lseek(), po_flush(),

po_truncate(), and po_close()

-1 The operation failed consult errno

errno is set to one of the following:

0 No error

PENOENT Not creating a file and file not found

PEMFILE Out of file descriptors

PEINVALIDPATH Invalid pathname

PENOSPC No space left on disk to create the file

PEACCES Is a directory or opening a read only file for write

PESHARE Sharing violation on file opened in exclusive mode

PEEXIST Opening for exclusive create but file already exists

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

#include <rtfs.h>

int fd;

if(fd=po_open(“\\USR\\MYFILE”,(PO_CREAT|PO_EXCL|PO_WRONLY)

,P S_IWRITE)<0))

printf(“Can’t create file error:%i\n” ,get_errno())

pc_efilio_open is also available

po_close
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Close a file that was opened with po_open

SUMMARY

int po_close (int fd)

DESCRIPTION

Close the file and update the disk by flushing the directory entry and file allocation

table. Free all core associated with fd.

RETURNS

0 The operation was a success

-1 The operation failed consult errno

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume.

po_close() must be called to clear this condition.

An Rtfs system error See Appendix for a description of system errors

SEE ALSO

po_flush

EXAMPLE

#include <rtfs.h>

if (po_close(fd) < 0)

 printf(“Error closing file:%i\n”,rtfs_get_errno());

pc_efilio_close is also available

po_read
Basic x ProPlus X

Pro x ProPlus DVR X

FUNCTION

Read from a file.

SUMMARY

int po_read (int fd, byte *buf, int count)

DESCRIPTION

Attempt to read count bytes from the current file pointer of file at fd and place the

data in buf. The file pointer is updated.

Note: If buf is 0 (the null pointer) then the operation is performed identically to a

normal read except no data transfers are performed. This may be used to quickly

advance the file pointer.

RETURNS

>= 0 The actual number of bytes

-1 The operation failed consult errno

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume. po_close

must be called to clear this condition.

PEIOERRORREAD Read error

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

int fd;

int fd2;

fd = po_open(“FROM.FIL”,PO_RDONLY,0);

fd2 =po_open(“TO.FIL”,PO_CREAT|PO_WRONLY,PS_IWRITE)

if (fd >= 0 && fd2 >= 0)

while (po_read(fd, buff, 512) ==512)

po_write(fd2, buff, 512);

pc_efilio_read is also available

po_write
Basic x ProPlus X

Pro x ProPlus DVR X

FUNCTION

Write to a file.

SUMMARY

int po_write (int fd, byte *buf, int count)

DESCRIPTION

Attempt to write count bytes from buf to the current file pointer of file at fd. The file

pointer is updated.

Note: If buf is 0 (the null pointer) then the operation is performed identically to a

normal write, the file pointer is moved and as the file cluster chain is extended if

needed but no data is transferred. This may be used to quickly expand a file or to

move the file pointer.

RETURNS

>= 0 The actual number of bytes written

-1 The operation failed consult errno

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume. po_close

must be called to clear this condition.

PEACCES File is read only

PEIOERRORWRITE Error performing write

PEIOERRORREAD Error reading block for merge and write

PENOSPC Disk full

An Rtfs system error See Appendix for a description of system errors

EXAMPLE

int fd, fd2;

fd = po_open(“FROM.FIL”,PO_RDONLY,0);

fd2 =po_open(“TO.FIL”,PO_CREAT|PO_WRONLY,PS_IWRITE)

if (fd >= 0 && fd2 >= 0)

while (po_read(fd, buff, 512) ==512)

 po_write(fd2, buff, 512);

pc_efilio_write is also available

po_lseek64
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

64 bit move file pointer

SUMMARY

ddword po_lseek64 (int fd, ddword offset, int origin)

DESCRIPTION

Move the file pointer offset bytes from the origin described by origin. Origin may

have the following values:

PSEEK_SET Seek from beginning of file

PSEEK_CUR Seek from the current file pointer

PSEEK_CUR_NEG Seek backward from the current file pointer

PSEEK_END Seek from end of file

Attempting to seek beyond end of file puts the file pointer one byte past end of file.

Seeking zero bytes from origin PSEEK_END returns the file length.

Note: for exFAT true 64 bit seeks are supported. For FAT, po_lseek64() operates on

the lower 32 bits but still reports error as (0xffffffffffffffff).

RETURNS

M64SET32(0xffffffff,

0xffffffff) or

(0xffffffffffffffff)

The operation failed consult errno.

(!0xffffffffffffffff) The new offset

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume.

po_close() must be called to clear this condition.

PEINVALIDPARMS Attempt to seek past EOF or to a negative offset

PEINVALIDCLUSTER Files contains a bad cluster chain

An Rtfs system error See Appendix for a description of system errors

po_ulseek
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Move file pointer, unsigned

SUMMARY

BOOLEAN po_ulseek (int fd, unsigned long offset,

 unsigned long *pnew_offset, int origin)

DESCRIPTION

Move the file pointer offset bytes from the origin described by origin. origin may have

the following values:

PSEEK_SET Seek from beginning of file

PSEEK_CUR Seek from the current file pointer

PSEEK_CUR_NEG Seek backward from the current file pointer

PSEEK_END Seek from end of file

The new file pointer is returned in *pnew_offset

Attempting to seek beyond end of file puts the file pointer one byte past end of file.

Seeking zero bytes from PSEEK_END returns the file length.

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume.

po_close() must be called to clear this condition.

PEINVALIDPARMS Attempt to seek past EOF or to a negative offset

PEINVALIDCLUSTER Files contains a bad cluster chain

An Rtfs system error See Appendix for a description of system errors

pc_efilio_lseek is also available

po_chsize
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Truncate or extend an open file.

SUMMARY

int po_chsize (int fd, unsigned long newfilesize)

DESCRIPTION

Given a file handle and a new file size, either extend the file or truncate it. If the

current file pointer is still within the range of the file, it is not moved, otherwise it is

moved to the end of file. This function uses other API calls and does not set errno

itself.

RETURNS

0 The operation succeeded

-1 The operation failed consult errno

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume.

po_close() must be called to clear this condition.

PEACCES File is read only

PEINVALIDPARMS Invalid or inconsistent arguments

An Rtfs system error See Appendix for a description of system errors

pc_efilio_chsize() is also available

po_flush
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Flush a file to disk.

SUMMARY

BOOLEAN po_flush (int fd)

DESCRIPTION

Flush file buffers, flush directory entry changes to disk, and flush the FAT. After this

call completes, the on disk view of the file is completely consistent with the in

memory view. It is a good idea to call this function periodically if a file is being

extended. If failsafe is not running and a file is not flushed or closed when a power

down occurs, the file size will be wrong on disk and the FAT chains will be lost.

RETURNS

TRUE The flush was successful

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume.

po_close() must be called to clear this condition.

PEACCES File is read only

An Rtfs system error See Appendix for a description of system errors

Directory is in use or is read only

SEE ALSO

pc_dskflush()

EXAMPLE

#include <rtfs.h>

if (po_flush(fd) < 0)

 printf(“Error flushing file:%i\n”,rtfs_get_errno());

pc_efilio_chsize is also available

pc_fstat
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Return properties of a file associated with a file descriptor.

SUMMARY

int pc_fstat (int file_descriptor, ERTFS_STAT *pstat)

DESCRIPTION

For the provided file descriptor this routine fills in the stat structure as described

here:

The ERTFS_STAT structure:

st_dev the entry’s drive number

st_mode Contains one or more of the following bits:

S_IFMT - type of file mask

S_IFCHR - char special (unused)

S_IFDIR - directory

S_IFBLK - block special (unused)

S_IFREG - regular (a “file”)

S_IWRITE - Write permitted

S_IREAD - Read permitted

st_rdev the entry’s drive number

st_size file size

st_atime Last modified date in DATESTR format

st_mtime Last modified date in DATESTR format

st_ctime Last modified date in DATESTR format

t_blksize optimal blocksize for I/O (cluster size)

t_blocks blocks allocated for file

The following fields are extensions to the standard stat structure

fattributes The DOS attributes. This is non-standard but supplied if you

wish to look at them.

st_size_hi If the file is an exFAT file, the high 32 bits of the file size

NOTE: ERTFS_STAT structure is equivalent to the STAT structure available with most

posix like run time environments. Certain run time environments like uITRON also

use a structure named STAT so to avoid namespace collisions Rtfs uses the

proprietary name ERTFS_STAT

RETURNS

0 The operation succeeded

-1 The operation failed consult errno

errno is set to one of the following:

0 No error

PEBADF Invalid file descriptor

PECLOSED Invalid file descriptor because a removal or media

failure asynchronously closed the volume.

po_close() must be called to clear this condition.

EXAMPLE

#include <rtfs.h>

struct ERTFS_stat st;

int fd;

fd = po_open(“A:\\MYFILE.TXT”,(PO_BINARY|PO_RDONLY),0);

if (pc_fstat(fd, &st)==0)

{

{

printf(“DRIVENO: %d\n”, st.st_dev);

printf(“SIZE: %d\n” st.st_size); /* in bytes */

printf(“Month: %d\n”, (st.st_atime.date >> 5) & 0xf,);

printf(“Day: %d\n”, (st.st_atime.date) & 0x1f,);

printf(“Year: %d\n”, (st.st_atime.date >> 9) & 0xf,);

printf(“Hour: %d\n”, (st.st_atime.time >> 11) & 0x1f);

printf(“Minute: %d\n”, (st.st_atime.time >> 5) & 0x3f);

printf(“OPT BLOCK SIZE:%d\n”,

 st.st_blksize,st.st_blocks);

printf(“FILE size (BLOCKS): %d\n”, st.st_blocks);

printf(“MODE BITS :”);

if (st.st_mode&S_IFDIR)

printf(“S_IFDIR|”);

if (st.st_mode&S_IFREG)

printf(“S_IFREG|”);

if (st.st_mode&S_IWRITE)

printf(“S_IWRITE|”);

if (st.st_mode&S_IREAD)

printf(“S_IREAD\n”);

printf(“\n”);

}

}

pc_efilio_fstat() is also available

Format and partition management API

pc_get_media_parms

pc_get_media_parms_uc

Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Get device geometry for a named device.

SUMMARY

BOOLEAN pc_get_media_parms (

 byte *path,

 PDEV_GEOMETRY pgeometry)

DESCRIPTION

Query the drive’s associated device driver for a description of the installed media.

This information is used by the command shell when performing the FDISK command

to prompt the user for the sizes required for each partition.

pc_partition_media() and pc_format_volume() require geometry information

but they call the device driver themselves to retrieve it.

Note: The floppy device driver uses a “back door” to communicate with the format

routine through the geometry structure. This allows us to not have floppy specific

code in the format routine but still use the exact format parameters that DOS uses

when it formats a floppy.

See the following definition of the geometry structure:

typedef struct dev_geometry {

int bytespsector; - 0 or 512 for 512 byte sectors, 1024, 2048, 4096

int dev_geometry_heads; - Must be < 256

int dev_geometry_cylinders; - Must be < 1024

int dev_geometry_secptrack; - Must be < 64

dword dev_geometry_lbas; - For oversized media that

supports logical block ad dressing. If this is non-zero

dev_geometry_cylinders

is ignored but dev_geometry_heads and

dev_geometry_secptrack must still be valid.

BOOLEAN fmt_parms_valid; - If the device I/O control call

 sets this TRUE, then it tells the

 applications layer that these

format parameters should be used. This is a way to

format floppy disks exactly as they are

formatted by DOS.

FMTPARMS fmt;
} DEV_GEOMETRY;

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEDEVICEFAILURE Device driver get device geometry request failed

PEINVALIDPARMS Device driver returned bad values

SEE ALSO

pc_format_media(), pc_partition_media(),

pc_format_volume()

EXAMPLE

Note: This routine is designed to work in a specific context. See the source code of

appcmdsh.c and the documentation for pc_format_volume() for example usage.

pc_partition_media

pc_partition_media_uc

Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Partition a disk

SUMMARY

BOOLEAN pc_partition_media (byte *path, struct mbr_specification *pmbrspec)

DESCRIPTION

Write a partition table onto the disk at path, according to the specification provided

in pmbrspec.

Note: If the underlying device driver is dynamic, it will provide dynamic partitioning

instructions and 0 may be passed for pmbrspec, since it is ignored.

Note: If extended partitions are desired then one additional mbr_specification

structure is required per virtual volume in the extended partition. The specifications

must be provided in a contiguous array pointed to by pmbrspec.

The MBR specification structure

Typically one specification structure is provided. This is used to initialize the primary

boot record.

struct mbr_specification {

 int device_mbr_count;

 dword mbr_sector_location;

 struct mbr_entry_specification entry_specifications[4];

};

device_mbr_count Only used in the first specification. This

must contain 1 if there is only one

partition table. If extended partitions are

required this must be 1 plus the

number of EBR (extended boot record)

specifications to follow.

mbr_sector_location Location of this primary or extended boot

record. Will contain 0 for the primary

MBR. For extended boot records this will

contain the absolute sector address

where the record will reside.

entry_specifications[4] Contains four partition table entries. If an

entry is not used it should be zero filled.

struct mbr_entry_specification {

 dword partition_start;

 dword partition_size;

 byte partition_type;

 byte partition_boot

};

partition_start Sector number where the volume BPB

resides.

partition_size Number of sectors in the partition.

partition_type 0x0c; - Fat 32

0x06; - Huge Fat 16

0x04; - Fat 16

0x01; - Fat 12

partition_boot use 0x80 for bootable, 0x00 otherwise

(ignored by Rtfs)

 If the device driver is dynamically providing the specifications, it will be called

once for each specification it needs, passing the index number as an argument.

Note: The source of appcmdshformat.c contains source code with example usage,

including how to create extended partitions. appcmdshformat.c is intentionally

partitioned to be easy to cut and paste sections, excluding user interface code into

your own project.

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPARMS Inconsistent or missing parameters

PEIOERRORWRITE Error writing partition table

An Rtfs system error See Appendix for a description of system errors

SEE ALSO

pc_get_media_parms(), pc_format_media(), pc_format_volume()

pc_format_media

pc_format_media_uc

Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Perform a device level format

Note: The source of appcmdshformat.c contains source code with example usage.

appcmdshformat.c is intentionally partitioned to be easy to cut and paste sections,

excluding user interface code into your own project.

Note: Format media requests are passed to the device driver which to format the device. Most devices
do not require formatting. If the devices supported by your application never require formatting you

may omit this call. Alternatively you may call pc_format_media which will have no effect. Devices for
which device format may be necessary are floppy disks, and some flash drivers that may wish to erase

sectors and possibly internal formatting hidden FTL control block.

SUMMARY

BOOLEAN pc_format_media (byte *path)

path is the device’s drive id (A:, B: etc).

DESCRIPTION

This routine performs a device level format on the specified device.

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEDEVICEFAILURE Device driver format request failed

PEDYNAMIC A dynamic device driver is present but it returned

invalid parameters

SEE ALSO

pc_get_media_parms(), pc_partition_media(), pc_format_volume()

pc_format_volume

pc_format_volume_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Perform a volume format

SUMMARY

BOOLEAN pc_format_volume (byte *path)

DESCRIPTION

This routine formats the volume referred to by drive letter. If the device is

partitioned, the partition table is read and the volume within the partition is

formatted. If it is a non-partitioned device, the device is formatted according to the

geometry parameters returned by the device driver

Note: The source of appcmdshformat.c contains source code with example usage.

appcmdshformat.c is intentionally partitioned to be easy to cut and paste sections,

excluding user interface code into your own project.

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEIOERRORREADMBR Partitioned device. I/O error reading

PEINVALIDMBR Partitioned device has no master boot record

PEINVALIDMBROFFSET Requested partition has no entry in master boot

record

PEINVALIDPARMS Inconsistent or missing parameters

PEIOERRORWRITE Error writing during format

PEDYNAMIC A dynamic device driver is present but it returned

invlid parameters

An Rtfs system error See Appendix for a description of system errors

SEE ALSO

pc_get_media_parms(), pc_partition_media(), pc_format_media()

EXAMPLE

See the routine doformat() in appcmdshformat.c.

pc_format_volume_ex

pc_format_volume_ex_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Perform a volume format

SUMMARY

BOOLEAN pc_format_volume_ex (byte *path, struct rtfsfmtparmsex *pfmtparms)

DESCRIPTION

This routine formats the volume referred to by drive letter. If the device is

partitioned, the partition table is read and the volume within the partition is

formatted. If it is a non-partitioned device, the device is formatted according to the

geometry parameters returned by the device driver

struct rtfsfmtparmsex {

BOOLEAN scrub_volume

unsigned char bits_per_cluster

unsigned short numroot

unsigned char numfats

unsigned char secpalloc

unsigned short secreserved

};

struct rtfsfmtparmsex

scrub_volume If TRUE erase the section of media

containing the volume. For NAND the device

driver erase routine will be called, for other

devices all sectors will be written with

zeroes.

bits_per_cluster Select file system type, 12, 16, 32 for FAT12,

FAT16, FAT32 respectively

numroot Number of root directory entries to reserve.

Normally 512 for FAT12 and FAT16, must be

0 for FAT32.

numfats Number of FATS on the disk, Must be 2 if

using Failsafe

secpalloc Sectors per cluster

secreserved Number of reserved sectors. usually 32 for

FAT32, 1 for not FAT32

Note: The source of appcmdshformat.c contains source code with example usage.

appcmdshformat.c is intentionally partitioned to be easy to cut and paste sections,

excluding user interface code into your own project.

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEINVALIDPARMS Inconsistent or missing parameters

PEIOERRORWRITE Error writing during format

An Rtfs system error See Appendix for a description of system errors

SEE ALSO

pc_get_media_parms(), pc_partition_media(), pc_format_media()

EXAMPLE

See the routine doformat() in appcmdshformat.c.

pcexfat_format_volume
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Perform an exFAT volume format

SUMMARY

BOOLEAN pcexfat_format_volume (byte *path)

DESCRIPTION

This routine partitions and formats the drive referred to by drive letter. The device is

partitioned and formatted according to rules in the SD card association exFAT file

specification.

Note: The source of appcmdshformat.c contains source code with example usage.

appcmdshformat.c is intentionally partitioned to be easy to cut and paste sections,

excluding user interface code into your own project.

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive component is invalid

PEIOERRORREADMBR Partitioned device. I/O error reading

PEINVALIDMBR Partitioned device has no master boot record

PEINVALIDMBROFFSET Requested partition has no entry in master boot

record

PEINVALIDPARMS Inconsistent or missing parameters

PEIOERRORWRITE Error writing during format

PEDYNAMIC A dynamic device driver is present but it returned

invlid parameters

An Rtfs system error See Appendix for a description of system errors

SEE ALSO

pc_ format_volume()

EXAMPLE

See the routine doexfatformat() in appcmdshformat.c.

Utility API

pc_deltree

pc_deltree_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Delete a directory tree

SUMMARY

BOOLEAN pc_deltree (byte *directory_name)

DESCRIPTION

Delete the directory specified in directory_name, deletes all subdirectories of that

directory, and all files contained therein. Fail if directory_name is not a directory, is

read only or is currently in use.

Note: If a portion of the tree being deleted is in use, either with an open file or

directory traversal, then the deltree algorithm will abort leaving the tree partially

removed.

RETURNS

TRUE The directory was successfully removed

FALSE consult errno

errno is set to one of the following:

0 No error

PEINVALIDDRIVEID Drive name is invalid

PEINVALIDPATH Path specified by name is badly formed.

PENOENT Can’t find path specified by name.

PEACCES Directory or one of its subdirectories is read only or

in use.

An Rtfs system error See Appendix for a description of System Errors

pc_enumerate

pc_enumerate_uc
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Recursively process all directory entries that match a pattern.

SUMMARY

int pc_enumerate(

byte * from_path_buffer

- pointer to a scratch buffer of size EMAXPATH

byte * from_pattern_buffer

- pointer to a scratch buffer of size EMAXPATH

byte * spath_buffer

- pointer to a scratch buffer of size EMAXPATH

byte * dpath_buffer

- pointer to a scratch buffer of size EMAXPATH

byte * root_search

- Root of the search IE C:\ or C:\USR etc.

word match_flags

- Selection flags (see below)

byte match_pattern

- Match pattern (see below)

int maxdepth

 - Maximum depth of the traversal.

PENUMCALLBACK pcallback

- User callback function (see below).

)

DESCRIPTION

This routine traverses a subdirectory tree and tests each directory entry to see if it

matches user supplied selection criteria. If it does match the criteria, a user supplied

callback function is called with the full path name of the directory entry and a pointer

to a DSTAT structure that contains detailed information about the directory entry

(see the pc_gfirst() manual page for a detailed description of the DSTAT structure).

Selection criteria: Two arguments are used to determine the selection criteria. One

is a flags word that specifies attributes; the other is a pattern that specifies a wild

card pattern.

The flags argument specifies what types of directory entries will be considered a

match if the wildcard match succeeds. It must contain a bitwise oring together of one

or more of the following:

MATCH_DIR Select directory entries

MATCH_VOL Select volume labels

MATCH_FILES Select files

MATCH_DOT Select ‘.’ entry MACTH_DIR must be true too

MATCH_DOTDOT Select ‘..’ entry MATCH_DIR must be true too

The selection pattern is a standard wildcard pattern such as *, ‘*.*’ or *.txt

Note: pc_enumerate() requires a fair amount of buffer space to function. Instead

of allocating the space internally, we require the application to pass three buffers of

size EMAXPATH in to the function. See below.

Note: to scan only one level set maxdepth to 1. For all levels set it to 99.

RETURNS

Returns 0 unless the callback function returns a non-zero value at any point. If the

callback returns a non-zero value, the scan terminates immediately and returns the

returned value to the application.

This function does not set errno.

About the callback:

The callback function returns an integer and is passed the fully qualified path to the

current directory entry and a DSTAT structure. The callback function must return 0 if

it wishes the scan to continue or any other integer value to stop the scan and return

the callback’s return value to the application layer.

EXAMPLE 1 - Print the name of every file and directory on a disk

byte buf0[EMAXPATH], buf1[EMAXPATH], buf2[EMAXPATH], buf3[EMAXPATH];

int rdir_callback(byte *path, DSTAT *d) {printf(“%s\n”, path);return(0);}

print_all()

{

pc_enumerate(buf0,buf1,buf2,buf3,”\\”,(MATCH_DIR|MATCH_FILES),

“*”,99,rdir_callback);

}

EXAMPLE 2 -Delete every file on a disk

int delfile_callback(byte *path, DSTAT *d) {pc_unlink(path); return(0);}

delete_all()

{

pc_enumerate(buf0,buf1,buf2,buf3,”\\”,(MATCH_DIR|MATCH_FILES),

“*”,99, delfile_callback);

}

Note appcmdsh.c provides source code for an example command “ENUMDIR” which

uses pc_enumerate().

pc_check_disk
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Check a volume’s integrity

SUMMARY

BOOLEAN pc_check_disk (byte *drive_id, CHKDISK_STATS *pstat, int verbose, int

fix_problems, int write_chains)

DESCRIPTION

This routine scans the disk searching for lost chains and crossed files and returns

information about the scan in the structure at pstat. If fix_problems is non-zero it

corrects file sizes if necessary. If fix_problems is non-zero and if write_chains is zero,

it frees lost cluster chains; if write_chains is non-zero, it writes lost chains to files

names FILE???.CHK in the root directory. If fix_problems is zero the write_chains

argument is ignored.

pstat - a pointer to a structure of type CHKDISK_STATS. pc_check_disk() returns

information about the disk in this structure.

typedef struct typedef struct chkdisk_stats {

dword n_user_files

dword n_hidden_files;

dword n_user_directories;

dword n_free_clusters;

dword n_bad_clusters; /* # clusters marked bad */

dword n_file_clusters; /* Clusters in non hidden files */

dword n_hidden_clusters; /* Clusters in hidden files */

dword n_dir_clusters; /* Clusters in directories */

dword n_crossed_points; /* Number of crossed chains. */

dword n_lost_chains; /* # lost chains */

dword n_lost_clusters; /* # lost clusters */

dword n_bad_lfns; /* # corrupt/disjoint lfns */

} CHKDISK_STATS;

} CHKDISK_STA

verbose - If this parameter is 1 pc_check_disk() prints status information as it

runs. If it is 0 pc_check_disk() runs silently.

fix_problems - If this parameter is 1 pc_check_disk() will make repairs to the

volume, if it is zero, problems are reported but not fixed.

write_chains - If this parameter is 1 pc_check_disk() creates files from lost

chains. If write_chains is 0 lost chains are automatically discarded and freed for re-

use. If fix_problems is 0 then write_chains has no affect.

RETURNS

TRUE The operation succeeded

FALSE The operation failed consult errno

pc_check_disk() does not set errno.

EXAMPLE

CHKDISK_STATS chkstat;

pc_check_disk(“A:”, &chkstat, 1, 1, 0);

/* Check disk, be verbose, fix problems, free lost chains */

pc_check_disk(“A:”, &chkstat, 1, 1, 1);

/* Check disk, run quietly, fix problems, convert lost chains to files */

return(0);

Note:

Failsafe users should never require pc_check_disk()

Miscellaneous functions

tst_shell
Basic X ProPlus x

Pro x ProPlus DVR x

FUNCTION

Interactive command Shell

SUMMARY

pc_tstsh(void)

DESCRIPTION

This subroutine provides an interactive command shell for controlling Rtfs. It

provides a handy method for testing and exercising your port of Rtfs and it may be

used to maintain the file system on your target system.

The test shell contains most basic file system maintenance commands like “mkdir”,

“rmdir” etc.

A command shell reference guide is included in the application notes.

Note: The source code for the command shell is provided in several files contained in

rtfscommom/apps and rtfsproplus/apps this source code contains many examples of

calling and using the Rtfs API.

EXAMPLE

main()

{

pc_ertfs_run(); /* Don’t forget to call the initialization code */

pc_tstsh(); /* Call the test shell. It will execute until

 the user types QUIT */

exit(0);

}

pc_free_user
Basic x ProPlus x

Pro x ProPlus DVR x

FUNCTION

Release this task’s Rtfs user context block

SUMMARY

#include <rtfs.h>

void pc_free_user()

pc_tstsh

DESCRIPTION

NOTE: This routine should be called by all tasks that have used Rtfs before they exit.

When a task first uses the Rtfs API, a user context block is automatically created

specifically for that task. Before the task exits it must release its context block,

otherwise Rtfs will run out of context blocks and all new tasks will have to share the

same context block.

Typical places to call to pc_free_user() are just prior to a task returning or exiting

or your RTOS’s task exit callback routine or in an “onexit” processing subroutine.

Please see the explanation for RTFS_CFG_NUM_USERS in the Configuration Guide

for more information about this function.

RETURNS

Nothing

EXAMPLE

void my_ftp_server_task()

{

do_server_session(); /* Call the ftp server function here */

pc_free_user(); /* Free Rtfs resources for this thread */

exit(0); /* Terminate the thread */

}

Sixty four bit math package

Basic ProPlus X

Pro ProPlus DVR x

A macro package is available to perform 64 bit arithmetic. This macro package works

on processors with 64 bit native integer support and on processors that provide only

32 bit integers.

This macro package is useful for application programming with 64 bit files.

A synopsis of the available macros is provided here. Many sample uses of these

macros may also be found in the source code for the test suite in the subdirectory

rtfspackages/apps.

Mixed 64 bit 32 bit operators

dword M64HIGHDW(ddword A) - Returns the high 32 bits of a 64 bit int.

dword M64LOWDW(ddword A) - Returns the low 32 bits of a 64 bit int.

ddword M64SET32(dword HI, dword LO) - Create a 64 bit int from 2 32 bit ints.

ddword M64PLUS32(ddword A, dword B) - Add a 32 bit int to a 64 bit int.

ddword M64MINUS32(ddword A, dword B) - Subtract a 32 bit int from a 64 bit int.

64 bit arithmetic operators

ddword M64PLUS(ddword A, ddword B) - Add 2 64 bit ints.

ddword M64MINUS(ddword A, ddword B) - Subtract a 64 bit int from a 64 bit int.

ddword M64LSHIFT(ddword A, int B) - Left shift a 64 bit int by B.

ddword M64RSHIFT(ddword A,int B) - Right shift a 64 bit int by B.

64 bit logical operators

BOOLEAN M64IS64(ddword A) - TRUE if A > than the largest 32 bit int

BOOLEAN M64EQ(ddword A, ddword B) - TRUE if A equals B

BOOLEAN M64LT(ddword A, ddword B) - TRUE if A less than B

BOOLEAN M64LTEQ(ddword A, ddword B) - TRUE if A less than or equal B

BOOLEAN M64GT(ddword A, ddword B)) - TRUE if A greater than B

BOOLEAN M64GTEQ(ddword A, ddword B) - TRUE if A greater than or equal to B

BOOLEAN M64NOTZERO(ddword A) - TRUE if A is not zero.

BOOLEAN M64ISZERO(ddword A) - TRUE if A is equal to zero.

