
 Failsafe Technical Reference

 1�

Rtfs

Failsafe Technical Reference
©2007 EBS, Inc
Revised June 2009

For best online viewing experience we recommend using Adobe Acrobat’s
Bookmarks tab for navigating

EBS Inc. 39 Court Street Groton MA 01450 USA
http://www.ebsembeddedsoftware.com

http://www.ebsembeddedsoftware.com/

2�

TABLE OF CONTENTS

Introduction ___ 4

Synopsis __ 4

Failsafe architecture _____________________________________ 4

Overview ___ 4

Improvements over earlier versions of Failsafe. _____________________ 5

Transaction Files ___ 7

The Failsafe algorithm ___ 8

Failsafe Journal file structure __________________________________ 10

Locating the Journal file in specific sectors ______________________ 10

Locating the Journal file in free sectors _________________________ 10

The Master Record ___ 11

The Frame Record ___ 11

Compile time configuration options ________________________ 12

Run time configuration options ___________________________ 13

Application level API ___________________________________ 14

fs_api_enable __ 15

fs_api_disable __ 17

fs_api_commit ___ 18

fs_api_async_commit_start ___________________________________ 20

fs_api_restore __ 22

fs_api_info __ 23

pc_diskio_failsafe_stats ______________________________________ 25

Failsafe Callback API ___________________________________ 28

RTFS_CB_FS_RETRIEVE_FIXED_JOURNAL_LOCATION ______________ 28

RTFS_CB_FS_FAIL_ON_JOURNAL_RESIZE ________________________ 28

RTFS_CB_FS_FAIL_ON_JOURNAL_FULL __________________________ 29

RTFS_CB_FS_RETRIEVE_JOURNAL_SIZE _________________________ 29

RTFS_CB_FS_RETRIEVE_RESTORE_STRATEGY ____________________ 29

RTFS_CB_FS_FAIL_ON_JOURNAL_CHANGED ______________________ 30

RTFS_CB_FS_CHECK_JOURNAL_BEGIN_NOT _____________________ 30

RTFS_CB_FS_RETRIEVE_FLUSH_STRATEGY ______________________ 31

Failsafe During Application Development ____________________ 33

Failsafe Testing _______________________________________ 35

Basic Tests __ 35

Unit Tests ___ 36

Transaction File Tests __ 36

Introduction

Synopsis

 Failsafe architecture is explained.

 A Failsafe API is provided.

 A fully transparent journaling mode, with no API calls required, is also provided.

 Several callback routines are available that modify the behavior of Failsafe, this

document discusses callbacks that perform the following tasks:

o Select Journal File placement

o Select Journal File size

o Determine auto restore strategy

o Determines the strategy if auto-restore fails

o Automatically enable failsafe journaling when a volume is mounted

 Failsafe is configured by initializing a Failsafe context block and returning it

from device_configure_volume.

 This document discusses how configuration parameters affect performance.

o Block map size impacts the number of blocks that may be remapped

during a session.

 By default 512 remap structures (4 kilobytes). Are assigned to

each drive. This should be adequate for any application but you

can make API calls to learn the maximum number of structures

your application consumes.

o The size of the restore buffer impacts performance.

 For a typical format, applications that manipulate files less than

200 megabytes, performance should increase until the restore

buffer size reaches approximately 70 (35 K), and then flatten

out.

 For a typical format, applications that manipulate files one

Gigabyte or larger, performance should increase until the

restore buffer size reaches approximately 130 (65 K), and then

flatten out.

 These values depend somewhat on how the device is formatted

and will vary depending on the format.

 If memory consumption is a problem the restore buffer size can

be reduced. This will result in a linear decline in synchronization

performance as the buffer size is reduced.

 The minimum restore buffer size is 2 sectors. (1024 for typical

devices with 512 byte sectors)

Failsafe architecture

Overview

 Failsafe eliminates the risk of file system corruption caused by unexpected

power interruptions and media removal events.

 Changes to directory entries and FAT tables are written to a Journal file

instead of directly to the volume.

 After the Journal file is flushed all preceding file system operations are safe.

 Journal file flush may be invoked manually or automatically.

 A separate synchronization step updates the volume from the Journal file.

 If the synchronization step is interrupted by a power failure it can be

resumed when the system is restarted (restored).

 After a restore completes the volume structure is guaranteed to contain the

same information as the flushed Journal file.

 A special file open mode is available which forces file writes to be

transactional in nature. When a transactional file write returns, the volume is

guaranteed to contain the data that was written.

 Sequence numbers, session IDs, and replacement block checksums are

maintained to detect corruption of journal file blocks.

 FAT free space information is stored in the journal file to detect if volume

changes occurred while Failsafe was not active.

 Automatic or manual operation – Failsafe may be configured in such a way

that Failsafe operation is completely transparent to the application layer, or it

may be configured such that the API must be called to flush, synchronize, or

restore from the Journal. A mix of automatic and manual operations may

also be created. For example, the callbacks may be configured to specify that

journaling is automatically enabled, but API calls must be performed to flush

the Journal and synchronize with the volume.

 Programmers Interface – An API is provided to perform necessary operations

including enable and disable journaling, restore a volume from the Journal,

and retrieve the status of a session or Journal file.

 Callback Interface – A callback API is provided to control the Failsafe

algorithm.

 Journal file placement -The Journal file size and placement may be specified

through a callback function. This allows system integrators to place the

Journal data blocks in a separate partition or in a reserved section of the

media.

 If the Journal file size and placement are not specified, the Journal file

contents are placed in free sectors that Rtfs reserves for the Journal file. This

makes the Journal file clusters un-allocated when media is placed in another

PC or device.

 When the disk volume fills. The Journal file is automatically resized and

reserved free clusters are released to Rtfs for allocation.

 Journal file access functions are segregated so that alternative schemes,

such as journaling to on-board NVRAM, may be devised.

Improvements over earlier versions of Failsafe.

 Journal data is hidden in free sectors

 Journaling performance - Failsafe performs multi-block transfers to the

Journal file whenever possible. This mirrors the access characteristics of Rtfs

making operating speed when Journaling comparable to normal operation.

 Journal flushes are much faster, requiring only two additional sector writes

per flush. This makes frequent Journal flushing practical.

 Journal synchronization is much faster. During synchronization, Failsafe

performs multi-block read of the Journal file and writes to the volume

whenever possible. This provides a significant performance improvement and

makes frequent synchronization practical.

 The Journal file is organized as a circular linked list of frames. This allows

efficient scheduling of separate file flush and volume synchronization steps.

 Synchronization may be deferred, or performed from a background thread.

 Transaction processing - Failsafe’s auto-commit feature combined with its

fast Journal file flush feature allows it to perform high performance

transaction based operations. At the application’s discretion, Rtfs operations

may be performed as atomic transactions, such that when an API call returns

the disk image is guaranteed to reflect the operation requested.

 Transaction file IO – A new extended file open option is available that

provides transactional file write and overwrite capability. Overwrites are a

challenge that distinguish transactional file systems from Journaling file

systems. To perform file region overwrites, a transactional file system must

provide a data rollback mechanism in case a file region overwrite operation is

interrupted. Failsafe provides this capability with minimal data copying. Zero

data copying is needed if data is cluster aligned, if the data is not cluster

aligned as few bytes as necessary are copied to implement the rollback

feature.

Transaction Files

Transaction files are files opened with the PCE_TRANSACTION_FILE option

selected.

 Transaction files provide a way to perform write operations in such a way that

when a write call returns, the data is guaranteed to be on the media and

available even if power is interrupted.

 If the write call does not succeed then the data is guaranteed to not be a part

of the file and the file is guaranteed unchanged.

 Transaction file writes and overwrites perform more slowly than normal writes

but they are fast enough, adding only a few additional block writes per call,

that applications requiring transaction level assurance for certain files can use

them practically.

 Transaction file metadata changes are written to the Journal file and the

Journal file is flushed. If the power is interrupted before the volume is

synchronized the metadata changes are synchronized with the volume by a

restore.

Transaction file write operations that overwrite existing sections of the file perform

the following operations:

 New clusters are allocated to hold the data to be overwritten.

 If the file pointer or the write count is not cluster aligned, then one or

possibly two overlapping clusters are copied from the file to the new clusters.

 Cluster aligned data is written directly to the newly allocated clusters.

 The file’s cluster chain is modified to exclude the overwritten clusters and to

contain the new clusters.

 Before the write call returns the new cluster chain information is flushed to

the journal file and the journal file is flushed.

 Once the write call returns you can be assured that the data that was written

is present and the cluster chain information is preserved and the file size is

updated.

 If the over-write call fails, the contents of the file are guaranteed to be the

same as they were before the overwrite call was made.

The Failsafe algorithm

 The Journal file consists of a one block Journal file header followed by one or

more Journal file segments.

 Journal file segments consist of one or more frames.

 Journal file frames contain a one block frame header and replacement block

index that maps replacement blocks to blocks on the volume. The frame

header is followed by a variable number of replacement blocks. If any

transaction file overwrites have occurred the replacement blocks contain

updated FAT table blocks, directory blocks, and possibly file data.

 The frame header is written to the disk when either the replacement block

index is full or a Journal flush occurs.

 Only the current frame header is written when the Journal is flushed, but this

puts all frames in the current segment into the flushed state.

 A Journal file segment may be synchronized with the volume anytime after it

is flushed.

 After a Journal file segment is flushed, a new frame is created, to start a new

segment, to hold subsequent journal requests.

 A session may contain as many flushed segments as will fit in the Journal

file. The synchronization step processes outstanding flushed segments

sequentially.

Each frame cycles between the following states:

 OPEN - The frame is receiving volume blocks. When a block is recorded in

the Journal the frame’s block remap table is updated and the block is written

to the Journal file at the end of the current frame. If power is interrupted

during this phase, transactions performed so far on this frame and previous

frames in the current segment are lost. The volume structure suffers no

corruption and all operations performed on the current segment are lost. All

previous flushed segments are still valid and may be restored to the volume.

Various flush strategies are available to allow the application to determine

the number of outstanding operations in this state (down to as low as one).

 CLOSED - The frame’s block remap index is full and the frame header has

been flushed, but the segment containing this frame is not in the flushed

state, so if power is interrupted during this phase, transactions performed so

far on this segment are lost. The volume structure suffers no corruption and

all operations performed on the current segment are lost.

 FLUSHED - The segment that this frame terminates is flushed, but the FAT

volume has not yet been synchronized. Once a segment enters this state,

Failsafe guarantees that the volume can be restored to include all operations

performed on the segment.

 SYNCHRONIZING - The segment that this frame terminates is flushed and

the volume is currently being synchronized from it. This state is entered after

the FLUSHED state. It updates FAT tables and directory blocks from the

Journal file. If power is interrupted during this phase, the FAT volume will be

corrupted, but Failsafe guarantees that the Failsafe restore process will

complete the synchronization step. If check disk or scan disk are run before

the restore is executed they will show lost cluster chains. After the Failsafe

restore procedure is executed, check disk or scan disk will show no lost

cluster chains and the FAT volume structure will be identical to the view of

the file system the application had when the segment was flushed.

 SYNCHRONIZED - The segment that this frame terminates and the volume

are synchronized. The frames in the segment will be automatically re-used.

Failsafe Journal file structure

The Journal file contains a master record in the first sector followed by one or more

segments, each consisting of one or more frames. Frames contain a frame record in

the first sector followed by a variable number of replacement blocks. Replacement

blocks contain raw data to be copied to the volume structure. The next frame follows

immediately after the current frame record and it’s raw replacement blocks.

Locating the Journal file in specific sectors

The RTFS_CB_FS_RETRIEVE_FIXED_JOURNAL_LOCATION callback may be

used to specify that a Journal file of a specific size be placed at a specific sector

offset on the disk. If this method is used then the Journal file is created and accessed

at these locations only. None of the placement and resizing operations described in

the next section occur.

Locating the Journal file in free sectors

If the RTFS_CB_FS_RETRIEVE_FIXED_JOURNAL_LOCATION callback is not being

used the Journal file is placed in free sectors using the following algorithm:

 Create - Find enough free clusters to hold the Journal and write that cluster

number into location one of FAT copy 1.

 Reopen - Read the cluster number from location one of FAT copy 1 and read

the block at that cluster and check for a Failsafe signature.

 Remove the link after a synchronize when the Journal file is no longer needed

– Read the first block of FAT copy 0 and write it to FAT copy 1.

The algorithm performs the following steps.
 The RTFS_CB_FS_RETRIEVE_JOURNAL_SIZE callback is used to retrieve the

recommend Journal size.

 The Journal is placed at the first location on the volume having this many

contiguous free sectors.
 If not enough contiguous free sectors are found The

RTFS_CB_FS_FAIL_ON_JOURNAL_RESIZE callback is made and if resizing is

allowed the size is reduced until enough free contiguous clusters are found.

 If resizing is not allowed then the RTFS_CB_FS_FAIL_ON_JOURNAL_FULL

callback is made to determine if Journaling should be disabled.

 When the Journal file is flushed the cluster location of the free sectors is

written to the second reserved cluster (cluster 1) in FAT copy 1.

 At least two FAT copies are required. If there is only one FAT copy Journaling

is automatically disabled.

 When the Journal file is reopened, the cluster number is retrieved from the

reserved location in FAT copy 1. If the cluster number is valid and not

reserved the Journal data is accessed from the cluster at that location.

 The location of the Journal file is cleared from FAT copy 1 by overwriting the

first block of FAT copy 1 with the contents from FAT copy 0. This happens

when a volume restore completes or when the volume synchronization step

completes and no new frames have been flushed.

The Master Record

There is one master record for the Journal file. It is contained in the first sector of

the Journal file. It is initialized when journaling starts and it is only updated in the

rare case of a Journal file wrap, which requires a change to the start record field.

Master Record Contents

Offset in

dwords

Description

 0 Not a valid Journal file if this field does not contain ‘F’,’A’,’I’,’L’ .

 1 Not a valid Journal file if this field does not contain ‘S’,’A’,’F’,’E’
2 Not a valid Journal file if this field does not contain the current failsafe

version number

3 The size of the journal file in 512 byte blocks.
4 Session Id. This value is incremented every time a new Journal session is

started. All frames written during this session will have this session ID.
5 Start Record. Contains the offset of the first valid frame in this session.

This will initially contain the value one, but it changes to contain the first

frame of the first unsynchronized segment if the Journal wraps the end of

file.
6-127 These fields are unused

The Frame Record

This record is contained in the first block of each frame. The frame record contains a

few words of session information followed by the volume block numbers associated

with the FAT and directory replacement blocks to follow. The number of replacement

blocks per frame is limited by the number of block numbers that can be stored in the

frame record. The next frame record may be found by adding the number of

replacement blocks in the current frame record to the block number of the current

frame record. If the next frame record calculated by this method is beyond the

journal file size, then the next frame record may be found at block one of the journal

file.

Frame Record Contents

Offset in

dwords

Description

0 Frame Type – The frame type field contains the current operating state

for this frame. The type field is used to coordinate Journal, synchronize,

and restore operations.

1 - FS_FRAME_TYPE_OPEN – The record is written with this value

when a frame is the current frame and blocks are currently being written

to it.

2 - FS_FRAME_TYPE_NULL - This frame is reserved and ignored. Used

to create an empty frame if the frame record lands on the last sector in

the journal file and no replacement blocks can be allocated to it.

3 - FS_FRAME_TYPE_CLOSED – The record is full, all possible index

blocks in the frame have been used and the frame index has been

flushed. A new frame is opened to continue the segment.

4 - FS_FRAME_TYPE_FLUSHED - This value written by a Failsafe

Journal flush. This frame and all closed frames that precede it make up a

valid segment that may be synchronized or restored.

5 - FS_FRAME_TYPE_RESTORING – A frame that was previously

marked FS_FRAME_TYPE_FLUSHED is currently being restored. If the

system is interrupted during this state the volume will have some degree

of corruption, and the restore process should be restarted and completed

to eliminate the corruption.

6 - FS_FRAME_TYPE_RESTORED - The segment terminated by this

frame has been successfully restored. The frame records and all

replacement blocks in this segment will be re-used when the Journal file

wraps and reaches the segment.

1 Sequence – Sequence number within the current session. This value is

incremented for each new frame that is created. Failsafe uses the frame

sequence number and session ID to identify valid frames for the current

session.

2 Frame checksum - Contains the ones complement checksum of all block

numbers stored in the current frame. This field is used during restore and

synchronize operations to detect corruption of the index block.

3 Segment checksum – Contains ones complement checksum of all block

numbers stored in the current segment. This field is not used.

4 Frame record count – Contains the count of replacement blocks contained

in this frame. These replacement blocks are stored in the sectors

immediately following the frame record. The next frame record can be

found after the last replacement block of the frame. If the current frame

reaches the end of the Journal file the next frame may be found at block

offset one.
5 FAT free space signature – Contains the free cluster count of the volume

when the segment containing this frame was opened. If a session is

flushed, but not yet restored, this value is compared against the current

volume free space to determine if the volume was changed on another

system or by Rtfs while Failsafe was disabled.
6 Session id – Contains the same value as the session ID in the master

record. If these values do not match then the frame is not part of the

current session and it marks the end of the session.
7-127 Replacement block index table – The rest of the frame record contains a

table of block numbers. These are the block numbers on the volume

where the replacement blocks that immediately follow are to be copied

by the synchronize process.
Up to 121

blocks
Replacement block contents – Blocks following the frame record contain

raw replacement blocks. These blocks are copied to the offsets in the

volume stored in the replacement block index table.

Compile time configuration options

Several compile time constants in rtfsconf.h are used to configure Failsafe.

 INCLUDE_FAILSAFE_CODE – Rtfs must be compiled with this option

enabled to use Failsafe.

 INCLUDE_TRANSACTION_FILES This option must be enabled if the

transaction file feature of pc_efilio_open() is to be used. Disabling this

option will save a small amount of code space if transaction files are not being

used.

Run time configuration options

Memory for context structures and buffering are provided to Failsafe when a device is

inserted or enabled and pc_rtfs_media_insert() is called.

The rtfs_failsafe_callback() function provides additional run-time control. The

options are described below. Failsafe behavior may be changed by modifying the

actions of the callback handlers.

Application level API

The following API calls are provided for Failsafe users.

 fs_api_enable() – Manually enable Failsafe.

 fs_api_disable() – Manually disable Failsafe.

 fs_api_commit() - Manually flush the Journal file and optionally

synchronize the volume with the Journal.

 fs_api_commit_start() - Schedules a Journal flush and optional volume

synchronization for later completion by pc_async_continue().

 fs_api_restore() - Restore the volume from the Journal file.

 fs_api_info()- Retrieve information about the current active Failsafe session

or the current on disk Journal file.

 pc_diskio_failsafe_stats() - Retrieve information about the current active

Failsafe session or the current on disk Journal file.

fs_api_enable

FUNCTION

Enable or re-enable Failsafe for the specified drive.

SUMMARY

BOOLEAN fs_api_enable (drive_name, clear_journal)

byte * drive_name Drive identifier, A:, B: C: etc

BOOLEAN clear_journal Clear the current Journal contents

DESCRIPTION

Note: Except when clearing the journal file, fs_api_enable() should only be

used when the RTFS_CB_FS_CHECK_JOURNAL_BEGIN_NOT callback

handler is programmed to return TRUE or whne the drive operating policy

is set to DRVPOL_DISABLE_AUTOFAILSAFE. (see the documentation for

device_configure_volume() in the API reference guide.)

fs_api_enable manually enables Failsafe if it is not already enabled. If

clear_journal is TRUE the contents of the Journal file is cleared. If the Journal file

contains valid data to be restored the data is cleared, if the Journal file has errors

the errors are cleared.

If the drive is currently mounted, its buffers are flushed, and journaling is enabled

immediately. If the drive is not currently mounted, internal state variables are set

such that when the drive is next accessed, journaling will be enabled. If the drive is

not currently mounted and clear_journal is TRUE, internal state variables are set to

force Rtfs to bypass the auto-restore on mount procedure(if it is currently enabled).

If clear_journal is FALSE normal processing will occur on mount. This means auto-

restoring from the Journal, if that feature is enabled, and detecting Journal errors.

If journaling was automatically enabled for the drive by

pc_failsafe_callback(RTFS_CB_FS_CHECK_JOURNAL_BEGIN_NOT), it should

not be necessary to call fs_api_enable() except in the following case:

fs_api_enable() must be used to clear Journal errors that were detected by the

mount process or fs_api_restore(), or fs_api_info(). To clear these errors call

fs_api_enable() with clear_journal set to TRUE.

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEFSBUSY Failsafe already enabled. Call fs_api_disable() first

PENOINIT The drive was not configured to support Failsafe by

device_configure_volume.

An Rtfs system error See Appendix for a description of system errors

fs_api_disable

FUNCTION

Disable Failsafe for the specified drive.

SUMMARY

BOOLEAN fs_api_disable (drive_name, abort)

byte *drive_name Drive identifier, A:, B: C: etc

BOOLEAN abort If TRUE force an immediate shut-down

DESCRIPTION

Note: fs_api_disable() should only be used with the drive operating policy

set to DRVPOL_DISABLE_AUTOFAILSAFE. (see the documentation for

device_configure_volume() in the API reference guide.)

fs_api_disable() stops journaling for the specified drive and dismounts the device.

If abort is FALSE the Journal file is flushed and the volume is synchronized. If abort

is TRUE the Journal is not flushed and no volume synchronization is done, and all

recorded Journal session information is lost.

After fs_api_disable() is called, if journaling is automatically enabled, it will be

restarted the next time the volume is accessed, if it is not, fs_api_enable() must

be called to restart journaling.

RETURNS

TRUE If no errors were encountered

FALSE An error occurred

If an error occurred: errno is set to one of the following:

An RTFS system error See Appendix for a description of system errors

fs_api_commit

FUNCTION

Flush the Journal and optionally synchronize the volume.

SUMMARY

BOOLEAN fs_api_commit(drive_name, synch_volume)

byte *drive_name Drive identifier, A:, B: C: etc

BOOLEAN synch_volume If TRUE synchronize the volume after flushing the

Journal.

DESCRIPTION

Note: fs_api_commit() may be used in conjunction with schemes that use
the RTFS_CB_FS_RETRIEVE_FLUSH_STRATEGY callback handler to control the

journal algorithm so that journal flush and volume synchronization are not

performed on every API call. By default it will have no effect because the

journal is flushed and synchronized every time. Fs_api_commit() or

fs_api_async_commit_start() must be used if the drive operating policy is

set to DRVPOL_DISABLE_AUTOFAILSAFE. (see the documentation for

device_configure_volume() in the API reference guide.)

fs_api_commit() flushes the Journal file. When it returns, the Journal file is

guaranteed to be synchronized with the application’s view of the file system. If

synch_volume is TRUE the volume is synchronized from the volume structure.

Note: If synch_volume is TRUE and fs_api_commit() does not return because of

some power or removal event there is no way to tell if the journal file was flushed.

If this assurance is necessary call fs_api_commit() twice, once with synch_volume

set to FALSE, and the second time with synch_volume set to TRUE. If the first call

succeeds, the contents are guaranteed preserved. If the second call succeeds the

volume structure is guaranteed to be up to date. If the first call succeeded but the

second call did not, your application can restore the volume by calling

fs_api_restore().

Note: If the disk is configured with DRVPOL_ASYNC_AJFLUSH and

DRVPOL_ASYNC_AJRESTORE enabled, the functionality of fs_api_commit()

may also be achieved by calling pc_async_continue().

To emulate pc_api_commit() with no volume synchronization, execute:

 pc_async_continue(drive_number, DRV_ASYNC_DONE_JOURNALFLUSH, 0);

To emulate pc_api_commit() with volume synchronization, execute:

 pc_async_continue(drive_number, DRV_ASYNC_DONE_RESTORE, 0);

RETURNS

TRUE If no errors were encountered

FALSE An error occurred

If an error occurred: errno is set to one of the following:

An RTFS system error See Appendix for a description of system errors

fs_api_async_commit_start

FUNCTION

Schedule asynchronous Journal flush and volume synchronization.

SUMMARY

int fs_api_async_commit_start (drive_name)

byte *drive_name Drive identifier “A:”, “B:” etc.

DESCRIPTION

Note: fs_api_commit_start() may be used in conjunction with schemes that
use the RTFS_CB_FS_RETRIEVE_FLUSH_STRATEGY callback handler to control

the journal algorithm so that journal flush and volume synchronization are

not performed on every API call. By default it will have no effect because

the journal is flushed and synchronized every time. Fs_api_commit() or

fs_api_async_commit_start() must be used if the drive operating policy is

set to DRVPOL_DISABLE_AUTOFAILSAFE. (see the documentation for

device_configure_volume() in the API reference guide.)

fs_api_async_commit_start() – Schedules a Journal flush and volume

synchronization for later completion by pc_async_continue(). This function is

provided for rare cases when Failsafe is not configured to support asynchronous

completion, but a single instance of asynchronous completion is required. To

perform an asynchronous flush and synchronize when DRVPOL_ASYNC_AJFLUSH

and DRVPOL_ASYNC_AJRESTORE were not enabled in

device_configure_volume, execute the function and then call

pc_async_continue() with a target state of DRV_ASYNC_DONE_RESTORE.

Note: This function is deprecated and should not be used. A preferred

method is to configure the drive with DRVPOL_ASYNC_AJFLUSH and

DRVPOL_ASYNC_AJRESTORE enabled and control when the flush and restore

occur by controlling the target state when calling pc_async_continue(), setting

target_state to DRV_ASYNC_DONE_FLUSH to flush the journal and
DRV_ASYNC_DONE_RESTORE to synchronize the volume.

RETURNS

PC_ASYNC_CONTINUE Success, call pc_async_continue() to complete

processing

PC_ASYNC_ERROR Error, drive not valid or Failsafe is not active.

Application Level Error Return Codes

PENOINIT Failsafe is not active

An RTFS system error Invalid drive parameter, drive not available, etc.

fs_api_restore

FUNCTION

Restore the volume from the Journal file.

SUMMARY

BOOLEAN fs_api_restore (drive_name)

byte *drive_name Name of the volume “A:”, “B:” etc.

DESCRIPTION

Note: fs_api_restore() may be used in conjunction with schemes that

program the RTFS_CB_FS_RETRIEVE_RESTORE_STRATEGY callback handler

to return FS_CB_CONTINUE or FS_CB_ABORT. By default this routine will

have no effect because RTFS_CB_FS_RETRIEVE_RESTORE_STRATEGY

instructs Failsafe to automatically perform a restore when the volume is

mounted. Fs_api_restore must be used if the drive operating policy is set to

DRVPOL_DISABLE_AUTOFAILSAFE. (see the documentation for

device_configure_volume() in the API reference guide.)

fs_api_restore() checks the Journal file and if it is valid and contains data to be

restored, it restores the volume from the recorded Journal data.

If the Journal is valid but contains no data it returns TRUE immediately.

If the Journal file contains invalid data or an IO error occurs during processing, it

return FALSE. In this event the best strategy is to call fs_api_info() and check the

status values returned in the info structure to determine if the error is due to stale

or overwritten data in the Journal file or if the error is due to an actual error. If the

error is due to stale or overwritten data in the journal file you should call

fs_api_enable() with the clear_error parameter set to TRUE to clear the error

condition.

RETURNS

TRUE If no errors were encountered

FALSE An error occurred

If an error occurred: errno is set to one of the following:

0 Probably bad data in the journal, call fs_api_info

PENOINIT Failsafe is not active

PEEINPROGRESS Restore operation already in progress

An RTFS system error Some read, write, or drive not available condition

fs_api_info

FUNCTION

Return information about the current active Failsafe session or the current on disk

Journal file.

SUMMARY

BOOLEAN fs_api_info (drive_name, pfsinfo)

byte *drive_name Drive identifier, A:, B: C: etc

FSINFO *pinfo Address of a failsafe information structure to be filled

in by the function.

typedef struct fsinfo {

BOOLEAN journaling; TRUE if Journaling is currently enabled

BOOLEAN journal_file_valid; TRUE if a Journal file was found and the

master header contained a valid signature.

Dword version; Failsafe major and minor number (ie 0x31)

If Journaling, the current version, if not,

the version in the file.

Dword numblocksremapped; Number of volume replacement blocks

currently in the Journal file

Dword journaledfreespace; Volume of free-space when the Journal was

created

Dword currentfreespace; Current volume of free-space

Dword journal_block_number; Raw block number on the volume where

the Journal resides

Dword filesize; Size of the Journal file in blocks

BOOLEAN needsflush; TRUE if journaling is active and a flush is

required

BOOLEAN out_of_date; TRUE if journaling is inactive, the Journal

contains data, but the saved free-space

does not match the current free-space

BOOLEAN check_sum_fails; TRUE if journaling is inactive, the Journal

contains data, but a checksum indicates

that one or more Journal indices are

corrupted.

BOOLEAN restore_required; TRUE if journaling is inactive, the Journal

contains data, and a volume restore was

started at some point but not completed.

If this field is TRUE it indicates that the

volume is probably corrupted and

fs_api_restore() must be called to repair

it.

BOOLEAN restore_recommended; TRUE if journaling is inactive, the Journal

contains data, and a volume restore was

not started or completed.

If this field is TRUE it indicates that the

Journal file was flushed but the

synchronization never occurred.

fs_api_restore() may be called to

synchronize the volume with current

recorded Journal data.

} FSINFO;

DESCRIPTION

If automatic restore processing is enabled you may call this when a disk mount fails

because of a Journal file error (see the callback routine descriptions to learn how to

control this). One of the error fields should be set and fs_api_enable() must be

called with clear_journal set to TRUE to clear the condition.

If automatic restore processing is not enabled you may call this routine at power up

to determine if a call to fs_api_restore() is required or recommended. If the field

restore_required is TRUE this indicates a volume synchronization step was

interrupted and fs_api_restore() must be executed or you will see volume

corruption. If the field restore_recommened is TRUE this indicates that the Journal

file was flushed but the volume synchronization step was not executed. If

fs_api_restore() is not executed the recorded Journal information will be lost, but

you will see no volume corruption. If one of the error fields is set, the volume can

not be restored and fs_api_enable() must be called with clear_journal set to

TRUE to clear the condition.

If Failsafe Journaling is currently active this routine may be called to query the

number of blocks currently containing data, the size of the Journal file and whether

the Journal file needs to be flushed. This latter fact may be used by a background

process to periodically force a Journal flush based on that status information

RETURNS

TRUE No errors occurred and the information in the FSINFO

structure is valid.

FALSE Some error occurred and the information in the

FSINFO structure is not valid.

Application Level Error Return Codes

PEINVALIDDRIVEID Not a valid drive identifier

PENOINIT Drive is not configured for Failsafe use

An Rtfs system error See Appendix for a description of system errors

pc_diskio_failsafe_stats

FUNCTION

Return failsafe buffering and usage patterns for a drive.

Note: To get the full benefit of pc_diskio_failsafe_stats() you must compile the

RtfsProPlus library with INCLUDE_DEBUG_RUNTIME_STATS enabled. If it is not

enabled only some fields of the DRIVE_RUNTIME_STATS structure will populated.

SUMMARY

BOOLEAN pc_diskio_failsafe_stats (driveid, pstats)

byte *driveid Name of a mounted volume “A,”

“B,” etc.

FAILSAFE_RUNTIME_STATS *pstats Usage statistics are placed into this

structure.

See the function description for a detailed description of the

FAILSAFE_RUNTIME_STATS structure and the meaning of the fields.

DESCRIPTION

These statistics are provided for determining if you have optimally configured
Rtfs Failsafe and Journaling for your application. Please see the description of the

pstats structure below to learn how to interpret these statistics.

Detailed description of the stats structure fields.

All fields are of type dword.

Failsafe internal statistics. If Failsafe is not enabled these fields will all be zero

valued. Some of the information is obscure, some other fields contain information you

may wish to analyze.

journaling_active If this value is 1, journaling is enabled

sync_in_progress If this value is 1, an asynchronous Journal to volume

synchronization is in progress.

journal_file_size The size of the Journal file in blocks

journal_file_used The number of blocks in the Journal file, in blocks,

currently in use

journal_max_used The maximum number of blocks in the Journal that

have been used since the drive was initialized

restore_buffer_size The size of the restore buffer in blocks provided to

Failsafe by device_configure_volume.

num_blockmaps The number of block map structures provided to

Failsafe by device_configure_volume.

num_blockmaps_used The number of block map structures currently in use

max_blockmaps_used The maximum number of block map structures that

have ever been in use at one time.

reserved_free_clusters This is the total number of free clusters that are being

reserved for use by Failsafe. If the disk fills, this value

will be automatically reduced. If Journaling is disabled

these clusters will be available for allocation.

Note: This value will be zero if Failsafe has been

configured to place the Journal file in fixed sectors.

cluster_frees_pending This is the total number of clusters that were released

by file deletes and directory removals since the last

volume synchronization. The clusters are not released

to free-space until the volume is synchronized or

serious volume corruption would result.

Because of this, when Failsafe is journaling you will

not see an increase in free-space after file deletes. To

release the clusters for reuse you must synchronize.

frestore_pass_count Count of steps the restore state machine has made in

the current synchronize phase. If no synchronize is

occurring, the field contains the steps required to

complete the last synchronization.

frames_restored How many frames are being restored during the

current active synchronize.

frames_closed Number of frame index blocks that have been written

to the disk since the last flush. Each frame indexes

approximately 128 blocks of Metadata.

frames_flushed Number of frame index blocks that have been written

to the disk up to the last flush. These frames will be

synchronized the next time synchronization is

executed. They can be restored if a sudden system

halt occurs.

current_frame Current frame number where Metadata is being

recorded in the Journal.

current_index Current offset into the Frame where Metadata is being

recorded in the Journal.

flushed_blocks Total number of Metadata blocks contained within the

region in flushed_frames.

open_blocks Total number of Metadata blocks recorded to the

Journal since the last flush.

restoring_blocks Number of combined Metadata and index blocks that

will be restored during the current synchronize.

restored_blocks Number of combined Metadata and index blocks

restored so far during the current synchronize.

current_restoring_block The starting block of the last group of blocks read

during the current active synchronize

Journaling access statistics. These values will be zero if Failsafe Journaling is not

enabled for the drive. These fields are mainly informational and will track the various

directory block, and FAT table statistics in previous fields.

Note: journal_data_reads, journal_data_blocks_read, journal_data_writes and

journal_data_blocks_written log directory block, and FAT table accesses that are

recorded to the Journal and do not represent additional disk accesses because

Journaling is enabled.

These fields are valid only when INCLUDE_DEBUG_RUNTIME_STATS is enabled.

journal_data_reads Number of block read calls executed to access

remapped Meta-data from the Journal file.

journal_data_blocks_read Number of blocks of remapped Meta-data transferred

from the Journal file.

journal_data_writes Number of block write calls executed to place

remapped Meta-data in the Journal file.

journal_data_blocks_written Number of blocks of remapped Meta-data transferred

to the Journal file.

journal_index_writes Number of additional single block write calls made to

update Journal index blocks.

journal_index_reads Number of additional single block read calls made to

Journal index blocks.

These fields contain the number of additional disk blocks read from the Journal and

written to the volume during Journal to volume synchronizations. To achieve optimal

performance the ratio of blocks read, to the number of read calls should be

maximized. This can be achieved by adjusting the restore buffer size as explained in

the Failsafe User’s manual.

These fields are valid only when INCLUDE_DEBUG_RUNTIME_STATS is enabled.

restore_data_reads Number of block read calls executed to access Journal

index blocks and remapped Meta-data

restore_data_blocks_read Number of index blocks and remapped Meta-data

transferred from the Journal.

fat_synchronize_writes Number of writes made to the FAT region of the disk

by Failsafe.

fat_syncronize_blocks_written Total number of FAT blocks written Failsafe.

dir_synchronize_writes Number of writes made by Failsafe to regions of the

disk other than the FAT.

dir_syncronize_blocks_written Total number of blocks written by Failsafe to regions

of the disk other than the FAT.

Transaction file overwrite statistics.

RtfsProPlus provides a rollback mechanism for files opened in Transaction file mode to

restore the file to its previous state if the write call is interrupted. The rollback

mechanism is a “zero copy” algorithm if the file data being overwritten is aligned on

cluster boundaries. If the accesses are not cluster aligned, one and sometimes two,

clusters must be copied. The following fields provide statistics on the number of such

copies that are required by your application. The only way to optimize them is to

adjust application access patterns.

These fields are valid only when INCLUDE_DEBUG_RUNTIME_STATS is enabled.

transaction_buff_hits Number of unaligned file block read accesses that

were fulfilled by data caches during previous

unaligned transaction file overwrites.

transaction_buff_reads Number of unaligned file block disk reads that were

required during transaction file overwrites.

transaction_buff_writes Number of unaligned file block disk reads that were

required during transaction file overwrites.

RETURNS

TRUE The operation was a success

FALSE The operation failed consult errno

Application Level Error Return Codes

PEINVALIDPARMS Missing or invalid parameters

PEINVALIDDRIVEID Invalid drive specified in an argument

An RTFS system error See Appendix for a description of system errors

Failsafe Callback API

Failsafe uses a callback based interface for retrieving operating instructions and

configuration values from the application layer. The callback interface also provides

status updates to the application layer. When Failsafe has status changes to report

or it needs instructions it calls the function named rtfs_failsafe_callback() and

passes an operation code indicating what request or update it is performing.

rtfs_failsafe_callback() must be provided by the application because it is not part

of the Rtfs library. A sample file named rtfscallbacks.c is provided, this file contains

a version of rtfs_failsafe_callback() that may be used un-modified in most

environments. rtfs_failsafe_callback() contains case statements for each possible

request or status update.

rtfscallbacks.c provides default implementations for the operation codes listed below

the source code may be modified to change the default behavior and to implement

application extensions and diagnostics.

RTFS_CB_FS_RETRIEVE_FIXED_JOURNAL_LOCATION

rtfs_failsafe_callback() is called with this request when Failsafe is about to create

or re-open the Journal.

This callback may be used to place Journal data at a fixed location on the disk. This

may be in reserved sectors, on a separate partition, or in contiguous sectors within

a file.

 To use Failsafe’s default Journal file placement algorithm

o return 0

 To place the Journal in a fixed location:

o Return the start sector and size of the fixed region following the

example provided in the source code.

o return 1

RTFS_CB_FS_FAIL_ON_JOURNAL_RESIZE

rtfs_failsafe_callback() is called with this request when Rtfs detects that there

are not enough contiguous free space to hold a Journal file as large as the size

prescribed by the RTFS_CB_FS_RETRIEVE_JOURNAL_SIZE callback. This may

happen during a volume mount or when during cluster allocations when not enough

free clusters are available.

The default behavior is to automatically reduce the journal file if enough space can

be made available by doing so.

The RTFS_CB_FS_FAIL_ON_JOURNAL_RESIZE callback handler may be

changed to force Failsafe to abandon journaling when free space gets low. Rtfs then

call s rtfs_failsafe_callback(RTFS_CB_FS_FAIL_ON_JOURNAL_FULL..) to

determine it's next step.

Note: If the drive policy is set DRVPOL_DISABLE_AUTOFAILSAFE. (see

device_configure_volume()) This routine is not called and resizing is

allowed.

RTFS_CB_FS_FAIL_ON_JOURNAL_FULL

rtfs_failsafe_callback() is called with this request when it can’t resize or create a

journal file because the drive does not have enough space to hold a minimum sized

Journal file or it needed to free space by resizing the journal file but the

RTFS_CB_FS_FAIL_ON_JOURNAL_RESIZE callback instructed it to fail instead.

The default behavior for Failsafe file fills is to disable Journaling and continue

operating without journaling.

The RTFS_CB_FS_FAIL_ON_JOURNAL_FULL callback handler may be changed

to force Rtfs to report a disk full condition instead.

The RTFS_CB_FS_FAIL_ON_JOURNAL_FULL callback may be also be used to

monitor journal file full conditions without changing the default behavior.

Note: If the drive policy is set DRVPOL_DISABLE_AUTOFAILSAFE. (see

device_configure_volume()) This routine is not called and the default

behavior is to disable Journaling and continue operating without

journaling.

RTFS_CB_FS_RETRIEVE_JOURNAL_SIZE

rtfs_failsafe_callback() is called with this request when Failsafe is about to create

a Journal file. Failsafe passes the volume size in blocks, and the routine may

override default values and recommended Journal file.

Notes:

 The default method returns zero, which instructs Rtfs to calculate a size

using a default algorithm that creates a journal file that is 1 / 128th the size

of the volume or 0x100000 sectors, whichever is less.

 The RTFS_CB_FS_RETRIEVE_JOURNAL_SIZE callback handler may be

changed to assign a file size instead of using the default algorithm.

 Failsafe does not call this routine if

RTFS_CB_FS_RETRIEVE_FIXED_JOURNAL_LOCATION is being used to

place the journal at a fixed location and size.

 The default Journal file placement algorithm uses the returned size when

initializing the journal file. Journal size is reduced.

 If there are not enough free blocks available, the default Journal file

placement algorithm attempts to automatically reduce the Journal file size.

 If the RTFS_CB_FS_FAIL_ON_JOURNAL_RESIZE callback is selected the

file is not resized, the API call fails and errno is set to PENOSPC.

RTFS_CB_FS_RETRIEVE_RESTORE_STRATEGY

rtfs_failsafe_callback() is called with this request when Rfs is about to mount a

volume but it detects that the volume should be restored from the Journal file.

The default implementation instructs Failsafe to automatically restore the volumes

from the Journal.

The RTFS_CB_FS_RETRIEVE_RESTORE_STRATEGY callback handler may be

modified to change the behavior by returning one of the following:

FS_CB_CONTINUE - Tells Rtfs to proceed with the mount without restoring the

volume.

FS_CB_ABORT - Tells Rtfs to terminate the mount, report failure to the API and set

errno to PEFSRESTORENEEDED.

FS_CB_RESTORE - Tells Rtfs to restore the volume before it proceeds with the

mount.

Note: If the drive policy is set DRVPOL_DISABLE_AUTOFAILSAFE. (see

device_configure_volume()) This routine is not called and the default

behavior is to proceed as if FS_CB_CONTINUE was returned.

Note: If the automatic restore is disabled, fs_api_restore() may be called from

the application to perform the restore.

RTFS_CB_FS_FAIL_ON_JOURNAL_CHANGED

rtfs_failsafe_callback() is called with this request when the volume mount

procedure detects a that a restore from Journal file procedure is required but it also

detects that the volume was modified by a system not running Failsafe after the

Journal file was last flushed.

If this routine returns zero (o) no restore processing will be done and the mount

process will continue.

If this routine returns one (1) the mount will fail causing the API call to fail with

errno set to PEFSRESTOREERROR.

RTFS_CB_FS_CHECK_JOURNAL_BEGIN_NOT

rtfs_failsafe_callback() is called with this request when a volume has just been

mounted and it is configured for Failsafe operation.

The return value from this callback instructs Rtfs to either automatically start

journaling or to wait for the API to initiate journaling.

The default behavior is to automatically start journaling.

The RTFS_CB_FS_CHECK_JOURNAL_BEGIN_NOT callback may change this

behavior and instruct Rtfs to proceed with the mount, but not to automatically start

journaling.

Note: If the drive policy is set DRVPOL_DISABLE_AUTOFAILSAFE. (see

device_configure_volume()) This routine is not called and the default

behavior is to proceed as if TRUE was returned, instructing RTFS to not

automatically enable journaling and instead wait until fs_api_enable() is

called from the application.

fs_api_enable() may be called from the application to start journaling when

automatic journaling is disable.

RTFS_CB_FS_RETRIEVE_FLUSH_STRATEGY

rtfs_failsafe_callback() is called with this request when an API call has caused a

change in to the journal file and is about to return control to the user. The default

return value is FS_CB_SYNC. See below for a description of this option and the

other possible choices.

Auto-flush makes operations like file create, directory create, file delete, and

directory removal transactional application calls, but, it does not automatically make

file write operations transactional. Files must be opened with the

PCE_TRANSACTION_FILE option enabled for file write operations to be

transactional because additional special processing is required to implement

transactional file writes.

FS_CB_FLUSH - The Journal file is flushed before the API call will returns. If power

is lost before the API call returns to the application layer, it is guaranteed that the

transaction is lost as if it never executed. (note this is not true for file region

overwrites, this requires transaction files). If API does return to the

application, it may be assumed that if the power were lost, the operation is in the

journal file and may be completed when the system is restarted, and a restore

procedure is completed. FS_CB_FLUSH provides a means to quickly flush the

journal file and insure to the application that the transaction is completed, but the

application must at some point call fs_api_commit() to synchronize the FAT.

FS_CB_SYNC The Journal file is flushed and the FAT volume is synchronized with

the Journal. When control returns to the application it may be assumed that if power

were lost now the FAT volume contains the completed transaction. If power is lost

before the API call returns to the application the transaction may be either lost or

restorable, depending on when power was lost. If the Journal was not flushed when

power was lost it will appear as if the operation never occurred. If the Journal was

flushed when power was lost the transaction may be completed by executing a

restore procedure. If power was lost during the FAT synchronization step then the

FAT volume will be corrupted until a restore is executed.

FS_CB_CONTINUE The journal file is not flushed or synchronized, the application

must call fs_api_commit() to flush the Journal file and optionally synchronize the

volume.

Note: If the drive policy is set DRVPOL_DISABLE_AUTOFAILSAFE. (see

device_configure_volume()) This routine is not called and the default

behavior is to proceed as if FS_CB_CONTINUE was returned, instructing

RTFS to not perform any automatic journal file flush or synchronization and

instead wait until fs_api_commit() is called from the application.

Failsafe During Application Development

You can use the function named pc_diskio_failsafe_stats() during application

development and testing to check your configuration for both performance and

capacity. This section discusses how some of the returned values can be used to tune

your application. Please review the manual page for detailed information about what

other information is provided by this function.

Monitoring worst case Journal file block consumption – API calls will fail if the

amount of data written to the Journal ever exceeds the maximum number of free

contiguous clusters on the volume. You can monitor worst case consumption to

determine among other things, the largest amount of free space you will require to

host your application with Journaling enabled. Check the field journal_max_used to

determine the worst case number of blocks that have been allocated for journaling.

This indicates how many free contiguous blocks must be available to run the

application under these circumstances.

If journal_max_used is excessive you can modify your application to reduce Journal

block consumption in one of the following ways.

 Flush the Journal and synchronize the volume more often – The Journal file

continues to grow as API calls are made. The blocks are not released until the

volume is synchronized

 Synchronize more often – If you are flushing frequently but synchronizing

infrequently, the Journal file will grow by one or two additional blocks each

time it is flushed. These blocks are only re-usable after they have been

synchronized.

 Use pc_deltree() carefully – pc_deltree() can write large amounts of

modified Meta-data to the Journal file in a single operation. It will require a

Journal file at least as large as the total blocks in the FAT occupied by all

released cluster chains and all modified directory blocks.

Monitoring worst case block map consumption - API calls will fail if the number

of remapped (un-synchronized) block fragments ever exceeds the number of ram

based block map structures that are provided by device_configure_volume.

Check the field named max_blockmaps_used to verify that enough block map

structures have been provided. Compare this field with num_blockmaps to determine

if your default block map buffer is large enough.

Monitoring disk access patterns – Most of the additional IO overhead of Failsafe

is consumed during the synchronize state when blocks are copied from the Journal

file to the volume. This additional overhead may be reduced by:

 Decoupling the Journal flush and volume synchronize steps - You can perform

one synchronize after performing many Journal flushes. This reduces the

overhead but increases the likelihood that a restore will be needed if a power

outage occurs.

 Adjusting the restore buffer size - The data is transferred using the largest

multi-block transfers possible, constrained by the restore buffer size and how

contiguous the Meta-data is. Increasing the restore buffer size will generally

increase performance until other considerations dominate this effect. Sections

to follow discuss this relationship in greater detail.

The following fields are provided to help analyze disk access patterns during

synchronization:restore_data_reads, restore_data_blocks_read,

fat_synchronize_writes, fat_syncronize_blocks_written, dir_synchronize_writes, and

dir_syncronize_blocks_written

Failsafe Testing

Failsafe can be tested manually by running an application or simulated application

while forcing IO errors or manually forcing media removals.

Rtfs also provides full suite of automated tests to validate the operation of Failsafe.

These tests simulate data block corruptions, removal events and read and write

errors to validate Failsafe operation. In addition to this method a set of tests have

been devised that test boundary conditions, operating modes and recovery from

simulated errors. These tests are provided in the files name prfstest.c and

prasytest.c. The tests that are performed by these files are described below.

Basic Tests
The following basic tests are performed by source code in the file named

rtfscommon/apps/prfstest.c.

 Test that Journaling works correctly when the Journal file wraps due to

separately scheduled Journal flush and volume synchronization steps.

 Test the use of the

RTFS_CB_FS_RETRIEVE_FIXED_JOURNAL_LOCATION callback to place

the Journal at a fixed place and size. This test creates a contiguous file on a

volume and then sets the fixed Journal placement callback coordinates to the

file's extents. It then starts journaling and verifies the correct size and

location of the Journal.

 Test that Failsafe properly resizes the initial Journal file size when journaling is

started on a nearly full disk.

 Test that Failsafe properly resizes the active Journal file size when journaling

is active on a nearly full disk.

 Test Journal full conditions. Verify correct operation and proper error handling

when all records in the Journal file are consumed.

 Several tests are performed to check error conditions and correct operation

for simulated error conditions.

o Test out of date condition when a volume is changed with journaling

disabled but there are flushed records in the file.

o Test bad master record errors. Verify correct operation and error

conditions when fields in the master record are manually corrupted.

o Test bad frame record errors. Verify correct operation and error

conditions when fields in frame records are manually corrupted.

o Test that un-flushed volume changes are lost.

o Test that flushed but unsynchronized volume changes are restored

o Test that flushed volume changes can be synchronized

o Test that aborted synchronizes may be restored

o Test proper operation of separately scheduled Journal and synchronize

operations. Verify that volume changes can be recorded to the Journal

at one segment while another segment is being synchronized.

Unit Tests

The following tests are performed by source code in the file named

rtfspackages/apps/prasytest.c

 Test that interrupting after a Journal flush leaves the disk undamaged and

unchanged and that the recorded Journal changes can be restored to the

volume by a restore.

 Test that when a write IO error occurs during the first Journal flush of a

session, the Journal file is not valid.

 Test that volume corruption occurs when a write IO error occurs during a

synchronize. Verify that the volume can be restored and the error condition is

cleared.

 Test that Failsafe behaves properly when IO errors occur on all types of meta-

data reads and writes. This coverage test simulates an IO error on every

block that is read or written and verifies that Failsafe responds appropriately.

o A test sequence creates subdirectories, populates files, and issues

Journal flush and synchronize requests.

o The test is calibrated by capturing all blocks of IO activity.

o Benchmarks log the correct state of the volume after each

synchronization.

o The same operations are then performed in a repetitive loop.

o An IO error is simulated for every block read and write.

o For each simulated error it is verified that Failsafe is performing

correctly, by either leaving the volume unchanged if no flushes have

occurred, or by restoring the volume so it matches the benchmark

state associated with last successful flush operation.

Transaction File Tests

 The following tests are performed by source code in the file named

rtfspackages/apps/prtranstest.c.

 Tests argument handling for pc_efilio_open() with the

PCE_TRANSACTION_FILE option selected. Tests both 32 bit and 64 bit files.

 A set of tests verify correct behavior when reading, appending and

overwriting transaction file data.

 The tests simulate power interruptions and then verify that transaction file

data is in the correct state.

 The tests are performed using random write sizes at random offsets.

 The tests are also performed at various boundary conditions.

