nds_nflib/examples/demo/zoomx2/source/main.c

237 lines
7.4 KiB
C

// SPDX-License-Identifier: CC0-1.0
//
// SPDX-FileContributor: NightFox & Co., 2009-2011
//
// Example of applying a x2 zoom with interpolation to a 16 bit image.
// http://www.nightfoxandco.com
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <nds.h>
#include <filesystem.h>
#include <nf_lib.h>
int main(int argc, char **argv)
{
// Prepare a NitroFS initialization screen
NF_Set2D(0, 0);
NF_Set2D(1, 0);
consoleDemoInit();
printf("\n NitroFS init. Please wait.\n\n");
printf(" Iniciando NitroFS,\n por favor, espere.\n\n");
swiWaitForVBlank();
// Initialize NitroFS and set it as the root folder of the filesystem
nitroFSInit(NULL);
NF_SetRootFolder("NITROFS");
// Initialize 2D engine in both screens and use mode 5
NF_Set2D(0, 5);
NF_Set2D(1, 5);
// Initialize bitmap backgrounds system
NF_InitBitmapBgSys(0, 1);
NF_InitBitmapBgSys(1, 1);
// Initialize storage buffers
NF_Init16bitsBgBuffers();
// Initialize backbuffers
NF_Init16bitsBackBuffer(0);
NF_Init16bitsBackBuffer(1);
// Enable backbuffers
NF_Enable16bitsBackBuffer(0);
NF_Enable16bitsBackBuffer(1);
// Load bitmap files from NitroFS
NF_Load16bitsBg("bmp/img16_c", 0);
// Tranfer image to the backbuffer of the bottom screen
NF_Copy16bitsBuffer(1, 1, 0);
// Window location
s16 square_x = 0;
s16 square_y = 0;
while (1)
{
// Copy original image
NF_Copy16bitsBuffer(1, 1, 0);
// Read keys and touchscreen
scanKeys();
touchPosition touchscreen;
touchRead(&touchscreen);
u16 keys = keysHeld();
if (keys & KEY_TOUCH)
{
square_x = touchscreen.px - 64;
square_y = touchscreen.py - 48;
}
// Restrict coordinates of the window
if (square_x < 0)
square_x = 0;
if (square_x > 127)
square_x = 127;
if (square_y < 0)
square_y = 0;
if (square_y > 95)
square_y = 95;
// Zoom read coordinate pointers
int zoom_x = 0;
int zoom_y = 0;
// Fill buffer
for (int y = square_y; y < square_y + 96; y++)
{
for (int x = square_x; x < square_x + 128; x++)
{
u32 rgb;
u32 red, green, blue;
if (zoom_x < 128)
{
// The left part of the screen has bilinear interpolation
u32 r[4], g[4], b[4];
// Color matrix:
// 0 1
// 2 3
// 0: Get color of (X, Y)
rgb = NF_16BITS_BACKBUFFER[1][(y << 8) + x];
r[0] = rgb & 0x1F;
g[0] = (rgb >> 5) & 0x1F;
b[0] = (rgb >> 10) & 0x1F;
// 1: Get color of (X + 1, Y)
if (x < 255)
rgb = NF_16BITS_BACKBUFFER[1][(y << 8) + (x + 1)];
else
rgb = 0;
r[1] = rgb & 0x1F;
g[1] = (rgb >> 5) & 0x1F;
b[1] = (rgb >> 10) & 0x1F;
// 2: Get color of (X, Y + 1)
if (y < 191)
rgb = NF_16BITS_BACKBUFFER[1][((y + 1) << 8) + x];
else
rgb = 0;
r[2] = rgb & 0x1F;
g[2] = (rgb >> 5) & 0x1F;
b[2] = (rgb >> 10) & 0x1F;
// 3: Get color of (X + 1, Y + 1)
if ((x < 255) && (y < 191))
rgb = NF_16BITS_BACKBUFFER[1][((y + 1) << 8) + (x + 1)];
else
rgb = 0;
r[3] = rgb & 0x1F;
g[3] = (rgb >> 5) & 0x1F;
b[3] = (rgb >> 10) & 0x1F;
// Draw the vertical line that splits both halves
if (zoom_x == 126)
{
for (int i = 0; i < 4; i++)
{
r[i] = 5;
g[i] = 10;
b[i] = 15;
}
}
// Calculate value of (X, Y)
rgb = r[0] | (g[0] << 5) | (b[0] << 10) | BIT(15);
NF_16BITS_BACKBUFFER[0][(zoom_y << 8) + zoom_x] = rgb;
// Calculate value of (X + 1, Y)
red = (r[0] + r[1]) >> 1;
green = (g[0] + g[1]) >> 1;
blue = (b[0] + b[1]) >> 1;
rgb = red | (green << 5) | (blue << 10) | BIT(15);
NF_16BITS_BACKBUFFER[0][(zoom_y << 8) + (zoom_x + 1)] = rgb;
// Calculate value of (X, Y + 1)
red = (r[0] + r[2]) >> 1;
green = (g[0] + g[2]) >> 1;
blue = (b[0] + b[2]) >> 1;
rgb = red | (green << 5) | (blue << 10) | BIT(15);
NF_16BITS_BACKBUFFER[0][((zoom_y + 1) << 8) + zoom_x] = rgb;
// Calculate value of (X + 1, Y + 1)
red = ((r[0] + r[3]) >> 1);
green = ((g[0] + g[3]) >> 1);
blue = ((b[0] + b[3]) >> 1);
rgb = red | (green << 5) | (blue << 10) | BIT(15);
NF_16BITS_BACKBUFFER[0][((zoom_y + 1) << 8) + (zoom_x + 1)] = rgb;
}
else
{
// The right half of the screen uses the nearest pixel
rgb = NF_16BITS_BACKBUFFER[1][(y << 8) + x];
// Write pixels in the backbuffer of the top screen.
NF_16BITS_BACKBUFFER[0][(zoom_y << 8) + zoom_x] = rgb;
NF_16BITS_BACKBUFFER[0][(zoom_y << 8) + (zoom_x + 1)] = rgb;
NF_16BITS_BACKBUFFER[0][((zoom_y + 1) << 8) + zoom_x] = rgb;
NF_16BITS_BACKBUFFER[0][((zoom_y + 1) << 8) + (zoom_x + 1)] = rgb;
}
// Get RGB components
rgb = NF_16BITS_BACKBUFFER[1][(y << 8) + x];
red = rgb & 0x1F;
green = (rgb >> 5) & 0x1F;
blue = (rgb >> 10) & 0x1F;
// Generate a grayscale value based on the RGB components
u32 composite = ((red + green + blue) / 3) + 3;
if (composite > 31)
composite = 31;
// Replace the RGB values by the grayscale value (this shows up
// as a rectangular window on the screen)
red = composite >> 1;
green = composite >> 2;
blue = composite;
// Pack the components as a RGB value
rgb = red | (green << 5) | (blue << 10) | BIT(15);
// Write RGB value in the backbuffer
NF_16BITS_BACKBUFFER[1][(y << 8) + x] = rgb;
// Increment X coordinate pointer
zoom_x += 2;
}
// Set X coordinate from the beginning
zoom_x = 0;
// Increment Y coordinate pointer
zoom_y += 2;
}
// Wait for the screen refresh
swiWaitForVBlank();
// Swap backbuffers and visible buffers
NF_Flip16bitsBackBuffer(0);
NF_Flip16bitsBackBuffer(1);
}
return 0;
}