mirror of
https://github.com/W3SLAV/micropython.git
synced 2025-06-20 04:25:34 -04:00

This patch changes how most of the plain math functions are implemented: there are now two generic math wrapper functions that take a pointer to a math function (like sin, cos) and perform the necessary conversion to and from MicroPython types. This helps to reduce code size. The generic functions can also check for math domain errors in a generic way, by testing if the result is NaN or infinity combined with finite inputs. The result is that, with this patch, all math functions now have full domain error checking (even gamma and lgamma) and code size has decreased for most ports. Code size changes in bytes for those with the math module are: unix x64: -432 unix nanbox: -792 stm32: -88 esp8266: +12 Tests are also added to check domain errors are handled correctly.
289 lines
11 KiB
C
289 lines
11 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013-2017 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "py/builtin.h"
|
|
#include "py/runtime.h"
|
|
|
|
#if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
|
|
|
|
#include <math.h>
|
|
|
|
// M_PI is not part of the math.h standard and may not be defined
|
|
// And by defining our own we can ensure it uses the correct const format.
|
|
#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
|
|
|
|
STATIC NORETURN void math_error(void) {
|
|
mp_raise_ValueError("math domain error");
|
|
}
|
|
|
|
STATIC mp_obj_t math_generic_1(mp_obj_t x_obj, mp_float_t (*f)(mp_float_t)) {
|
|
mp_float_t x = mp_obj_get_float(x_obj);
|
|
mp_float_t ans = f(x);
|
|
if ((isnan(ans) && !isnan(x)) || (isinf(ans) && !isinf(x))) {
|
|
math_error();
|
|
}
|
|
return mp_obj_new_float(ans);
|
|
}
|
|
|
|
STATIC mp_obj_t math_generic_2(mp_obj_t x_obj, mp_obj_t y_obj, mp_float_t (*f)(mp_float_t, mp_float_t)) {
|
|
mp_float_t x = mp_obj_get_float(x_obj);
|
|
mp_float_t y = mp_obj_get_float(y_obj);
|
|
mp_float_t ans = f(x, y);
|
|
if ((isnan(ans) && !isnan(x) && !isnan(y)) || (isinf(ans) && !isinf(x))) {
|
|
math_error();
|
|
}
|
|
return mp_obj_new_float(ans);
|
|
}
|
|
|
|
#define MATH_FUN_1(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { \
|
|
return math_generic_1(x_obj, MICROPY_FLOAT_C_FUN(c_name)); \
|
|
} \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_1_TO_BOOL(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_1_TO_INT(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj) { return mp_obj_new_int_from_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_2(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \
|
|
return math_generic_2(x_obj, y_obj, MICROPY_FLOAT_C_FUN(c_name)); \
|
|
} \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#define MATH_FUN_2_FLT_INT(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_ ## py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \
|
|
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_int(y_obj))); \
|
|
} \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_## py_name ## _obj, mp_math_ ## py_name);
|
|
|
|
#if MP_NEED_LOG2
|
|
// 1.442695040888963407354163704 is 1/_M_LN2
|
|
#define log2(x) (log(x) * 1.442695040888963407354163704)
|
|
#endif
|
|
|
|
// sqrt(x): returns the square root of x
|
|
MATH_FUN_1(sqrt, sqrt)
|
|
// pow(x, y): returns x to the power of y
|
|
MATH_FUN_2(pow, pow)
|
|
// exp(x)
|
|
MATH_FUN_1(exp, exp)
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
// expm1(x)
|
|
MATH_FUN_1(expm1, expm1)
|
|
// log2(x)
|
|
MATH_FUN_1(log2, log2)
|
|
// log10(x)
|
|
MATH_FUN_1(log10, log10)
|
|
// cosh(x)
|
|
MATH_FUN_1(cosh, cosh)
|
|
// sinh(x)
|
|
MATH_FUN_1(sinh, sinh)
|
|
// tanh(x)
|
|
MATH_FUN_1(tanh, tanh)
|
|
// acosh(x)
|
|
MATH_FUN_1(acosh, acosh)
|
|
// asinh(x)
|
|
MATH_FUN_1(asinh, asinh)
|
|
// atanh(x)
|
|
MATH_FUN_1(atanh, atanh)
|
|
#endif
|
|
// cos(x)
|
|
MATH_FUN_1(cos, cos)
|
|
// sin(x)
|
|
MATH_FUN_1(sin, sin)
|
|
// tan(x)
|
|
MATH_FUN_1(tan, tan)
|
|
// acos(x)
|
|
MATH_FUN_1(acos, acos)
|
|
// asin(x)
|
|
MATH_FUN_1(asin, asin)
|
|
// atan(x)
|
|
MATH_FUN_1(atan, atan)
|
|
// atan2(y, x)
|
|
MATH_FUN_2(atan2, atan2)
|
|
// ceil(x)
|
|
MATH_FUN_1_TO_INT(ceil, ceil)
|
|
// copysign(x, y)
|
|
STATIC mp_float_t MICROPY_FLOAT_C_FUN(copysign_func)(mp_float_t x, mp_float_t y) {
|
|
return MICROPY_FLOAT_C_FUN(copysign)(x, y);
|
|
}
|
|
MATH_FUN_2(copysign, copysign_func)
|
|
// fabs(x)
|
|
STATIC mp_float_t MICROPY_FLOAT_C_FUN(fabs_func)(mp_float_t x) {
|
|
return MICROPY_FLOAT_C_FUN(fabs)(x);
|
|
}
|
|
MATH_FUN_1(fabs, fabs_func)
|
|
// floor(x)
|
|
MATH_FUN_1_TO_INT(floor, floor) //TODO: delegate to x.__floor__() if x is not a float
|
|
// fmod(x, y)
|
|
MATH_FUN_2(fmod, fmod)
|
|
// isfinite(x)
|
|
MATH_FUN_1_TO_BOOL(isfinite, isfinite)
|
|
// isinf(x)
|
|
MATH_FUN_1_TO_BOOL(isinf, isinf)
|
|
// isnan(x)
|
|
MATH_FUN_1_TO_BOOL(isnan, isnan)
|
|
// trunc(x)
|
|
MATH_FUN_1_TO_INT(trunc, trunc)
|
|
// ldexp(x, exp)
|
|
MATH_FUN_2_FLT_INT(ldexp, ldexp)
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
// erf(x): return the error function of x
|
|
MATH_FUN_1(erf, erf)
|
|
// erfc(x): return the complementary error function of x
|
|
MATH_FUN_1(erfc, erfc)
|
|
// gamma(x): return the gamma function of x
|
|
MATH_FUN_1(gamma, tgamma)
|
|
// lgamma(x): return the natural logarithm of the gamma function of x
|
|
MATH_FUN_1(lgamma, lgamma)
|
|
#endif
|
|
//TODO: factorial, fsum
|
|
|
|
// Function that takes a variable number of arguments
|
|
|
|
// log(x[, base])
|
|
STATIC mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) {
|
|
mp_float_t x = mp_obj_get_float(args[0]);
|
|
if (x <= (mp_float_t)0.0) {
|
|
math_error();
|
|
}
|
|
mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x);
|
|
if (n_args == 1) {
|
|
return mp_obj_new_float(l);
|
|
} else {
|
|
mp_float_t base = mp_obj_get_float(args[1]);
|
|
if (base <= (mp_float_t)0.0) {
|
|
math_error();
|
|
} else if (base == (mp_float_t)1.0) {
|
|
mp_raise_msg(&mp_type_ZeroDivisionError, "division by zero");
|
|
}
|
|
return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base));
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log);
|
|
|
|
// Functions that return a tuple
|
|
|
|
// frexp(x): converts a floating-point number to fractional and integral components
|
|
STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
|
|
int int_exponent = 0;
|
|
mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent);
|
|
mp_obj_t tuple[2];
|
|
tuple[0] = mp_obj_new_float(significand);
|
|
tuple[1] = mp_obj_new_int(int_exponent);
|
|
return mp_obj_new_tuple(2, tuple);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp);
|
|
|
|
// modf(x)
|
|
STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) {
|
|
mp_float_t int_part = 0.0;
|
|
mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part);
|
|
mp_obj_t tuple[2];
|
|
tuple[0] = mp_obj_new_float(fractional_part);
|
|
tuple[1] = mp_obj_new_float(int_part);
|
|
return mp_obj_new_tuple(2, tuple);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf);
|
|
|
|
// Angular conversions
|
|
|
|
// radians(x)
|
|
STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) {
|
|
return mp_obj_new_float(mp_obj_get_float(x_obj) * (MP_PI / MICROPY_FLOAT_CONST(180.0)));
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians);
|
|
|
|
// degrees(x)
|
|
STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) {
|
|
return mp_obj_new_float(mp_obj_get_float(x_obj) * (MICROPY_FLOAT_CONST(180.0) / MP_PI));
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees);
|
|
|
|
STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = {
|
|
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) },
|
|
{ MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
|
|
{ MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
|
|
{ MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) },
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) },
|
|
#endif
|
|
{ MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) },
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) },
|
|
#endif
|
|
{ MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) },
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) },
|
|
#endif
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table);
|
|
|
|
const mp_obj_module_t mp_module_math = {
|
|
.base = { &mp_type_module },
|
|
.globals = (mp_obj_dict_t*)&mp_module_math_globals,
|
|
};
|
|
|
|
#endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
|