mirror of
https://github.com/W3SLAV/micropython.git
synced 2025-06-19 12:05:32 -04:00

Only when dynamic USB devices are enabled. The issue here is that when the USB reset triggers, the dynamic USB device reset callback is called from inside the TinyUSB task. If that callback tries to print something then it'll call through to tud_cdc_write_flush(), but TinyUSB hasn't finished updating state yet to know it's no longer configured. Subsequently it may try to queue a transfer and then the low-level DCD layer panics. By explicitly stalling the endpoint first, usbd_edpt_claim() will fail and tud_cdc_write_flush() returns immediately. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton <angus@redyak.com.au>
566 lines
20 KiB
C
566 lines
20 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2022 Blake W. Felt
|
|
* Copyright (c) 2022-2023 Angus Gratton
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include <stdlib.h>
|
|
|
|
#include "mp_usbd.h"
|
|
#include "py/mpconfig.h"
|
|
#include "py/mperrno.h"
|
|
#include "py/mphal.h"
|
|
#include "py/obj.h"
|
|
#include "py/objarray.h"
|
|
#include "py/objstr.h"
|
|
#include "py/runtime.h"
|
|
|
|
#if MICROPY_HW_ENABLE_USB_RUNTIME_DEVICE
|
|
|
|
#ifndef NO_QSTR
|
|
#include "tusb.h" // TinyUSB is not available when running the string preprocessor
|
|
#include "device/dcd.h"
|
|
#include "device/usbd.h"
|
|
#include "device/usbd_pvt.h"
|
|
#endif
|
|
|
|
static bool in_usbd_task; // Flags if mp_usbd_task() is currently running
|
|
|
|
// Some top-level functions that manage global TinyUSB USBD state, not the
|
|
// singleton object visible to Python
|
|
static void mp_usbd_disconnect(mp_obj_usb_device_t *usbd);
|
|
static void mp_usbd_task_inner(void);
|
|
|
|
// Pend an exception raise in a USBD callback to print when safe.
|
|
//
|
|
// We can't raise any exceptions out of the TinyUSB task, as it may still need
|
|
// to do some state cleanup.
|
|
//
|
|
// The requirement for this becomes very similar to
|
|
// mp_call_function_x_protected() for interrupts, but it's more restrictive: if
|
|
// the C-based USB-CDC serial port is in use, we can't print from inside a
|
|
// TinyUSB callback as it might try to recursively call into TinyUSB to flush
|
|
// the CDC port and make room. Therefore, we have to store the exception and
|
|
// print it as we exit the TinyUSB task.
|
|
//
|
|
// (Worse, a single TinyUSB task can process multiple callbacks and therefore generate
|
|
// multiple exceptions...)
|
|
static void usbd_pend_exception(mp_obj_t exception) {
|
|
mp_obj_usb_device_t *usbd = MP_OBJ_TO_PTR(MP_STATE_VM(usbd));
|
|
assert(usbd != NULL);
|
|
if (usbd->num_pend_excs < MP_USBD_MAX_PEND_EXCS) {
|
|
usbd->pend_excs[usbd->num_pend_excs] = exception;
|
|
}
|
|
usbd->num_pend_excs++;
|
|
}
|
|
|
|
// Call a Python function from inside a TinyUSB callback.
|
|
//
|
|
// Handles any exception using usbd_pend_exception()
|
|
static mp_obj_t usbd_callback_function_n(mp_obj_t fun, size_t n_args, const mp_obj_t *args) {
|
|
nlr_buf_t nlr;
|
|
if (nlr_push(&nlr) == 0) {
|
|
mp_obj_t ret = mp_call_function_n_kw(fun, n_args, 0, args);
|
|
nlr_pop();
|
|
return ret;
|
|
} else {
|
|
usbd_pend_exception(MP_OBJ_FROM_PTR(nlr.ret_val));
|
|
return MP_OBJ_NULL;
|
|
}
|
|
}
|
|
|
|
// Return a pointer to the data inside a Python buffer provided in a callback
|
|
static void *usbd_get_buffer_in_cb(mp_obj_t obj, mp_uint_t flags) {
|
|
mp_buffer_info_t buf_info;
|
|
if (obj == mp_const_none) {
|
|
// This is only if the user somehow
|
|
return NULL;
|
|
} else if (mp_get_buffer(obj, &buf_info, flags)) {
|
|
return buf_info.buf;
|
|
} else {
|
|
mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_TypeError,
|
|
MP_ERROR_TEXT("object with buffer protocol required"));
|
|
usbd_pend_exception(exc);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
const uint8_t *tud_descriptor_device_cb(void) {
|
|
mp_obj_usb_device_t *usbd = MP_OBJ_TO_PTR(MP_STATE_VM(usbd));
|
|
const void *result = NULL;
|
|
if (usbd) {
|
|
result = usbd_get_buffer_in_cb(usbd->desc_dev, MP_BUFFER_READ);
|
|
}
|
|
return result ? result : &mp_usbd_builtin_desc_dev;
|
|
}
|
|
|
|
const uint8_t *tud_descriptor_configuration_cb(uint8_t index) {
|
|
(void)index;
|
|
mp_obj_usb_device_t *usbd = MP_OBJ_TO_PTR(MP_STATE_VM(usbd));
|
|
const void *result = NULL;
|
|
if (usbd) {
|
|
result = usbd_get_buffer_in_cb(usbd->desc_cfg, MP_BUFFER_READ);
|
|
}
|
|
return result ? result : &mp_usbd_builtin_desc_cfg;
|
|
}
|
|
|
|
const char *mp_usbd_runtime_string_cb(uint8_t index) {
|
|
mp_obj_usb_device_t *usbd = MP_OBJ_TO_PTR(MP_STATE_VM(usbd));
|
|
nlr_buf_t nlr;
|
|
|
|
if (usbd == NULL || usbd->desc_strs == mp_const_none) {
|
|
return NULL;
|
|
}
|
|
|
|
if (nlr_push(&nlr) == 0) {
|
|
mp_obj_t res = mp_obj_subscr(usbd->desc_strs, mp_obj_new_int(index), MP_OBJ_SENTINEL);
|
|
nlr_pop();
|
|
if (res != mp_const_none) {
|
|
return usbd_get_buffer_in_cb(res, MP_BUFFER_READ);
|
|
}
|
|
} else {
|
|
mp_obj_t exception = MP_OBJ_FROM_PTR(nlr.ret_val);
|
|
if (!(mp_obj_is_type(exception, &mp_type_KeyError) || mp_obj_is_type(exception, &mp_type_IndexError))) {
|
|
// Don't print KeyError or IndexError, allowing dicts or lists to have missing entries.
|
|
// but log any more exotic errors that pop up
|
|
usbd_pend_exception(exception);
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
bool tud_vendor_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const *request) {
|
|
return false; // Currently no support for Vendor control transfers on the Python side
|
|
}
|
|
|
|
// Generic "runtime device" TinyUSB class driver, delegates everything to Python callbacks
|
|
|
|
static void runtime_dev_init(void) {
|
|
}
|
|
|
|
static void runtime_dev_reset(uint8_t rhport) {
|
|
mp_obj_usb_device_t *usbd = MP_OBJ_TO_PTR(MP_STATE_VM(usbd));
|
|
if (!usbd) {
|
|
return;
|
|
}
|
|
|
|
for (int epnum = 0; epnum < CFG_TUD_ENDPPOINT_MAX; epnum++) {
|
|
for (int dir = 0; dir < 2; dir++) {
|
|
usbd->xfer_data[epnum][dir] = mp_const_none;
|
|
}
|
|
}
|
|
|
|
if (mp_obj_is_callable(usbd->reset_cb)) {
|
|
usbd_callback_function_n(usbd->reset_cb, 0, NULL);
|
|
}
|
|
}
|
|
|
|
// Calculate how many interfaces TinyUSB expects us to claim from
|
|
// driver open().
|
|
//
|
|
// Annoyingly, the calling function (process_set_config() in TinyUSB) knows
|
|
// this but doesn't pass the information to us.
|
|
//
|
|
// The answer is:
|
|
// - If an Interface Association Descriptor (IAD) is immediately before itf_desc
|
|
// in the configuration descriptor, then claim all of the associated interfaces.
|
|
// - Otherwise, claim exactly one interface
|
|
//
|
|
// Relying on the implementation detail that itf_desc is a pointer inside the
|
|
// tud_descriptor_configuration_cb() result. Therefore, we can iterate through
|
|
// from the beginning to check for an IAD immediately preceding it.
|
|
//
|
|
// Returns the number of associated interfaces to claim.
|
|
static uint8_t _runtime_dev_count_itfs(tusb_desc_interface_t const *itf_desc) {
|
|
const tusb_desc_configuration_t *cfg_desc = (const void *)tud_descriptor_configuration_cb(0);
|
|
const uint8_t *p_desc = (const void *)cfg_desc;
|
|
const uint8_t *p_end = p_desc + cfg_desc->wTotalLength;
|
|
assert(p_desc <= itf_desc && itf_desc < p_end);
|
|
while (p_desc != (const void *)itf_desc && p_desc < p_end) {
|
|
const uint8_t *next = tu_desc_next(p_desc);
|
|
|
|
if (tu_desc_type(p_desc) == TUSB_DESC_INTERFACE_ASSOCIATION
|
|
&& next == (const void *)itf_desc) {
|
|
const tusb_desc_interface_assoc_t *desc_iad = (const void *)p_desc;
|
|
return desc_iad->bInterfaceCount;
|
|
}
|
|
p_desc = next;
|
|
}
|
|
return 1; // No IAD found
|
|
}
|
|
|
|
// Scan the other descriptors after these interface(s) to find the total associated length to claim
|
|
// from driver open().
|
|
//
|
|
// Total number of interfaces to scan for is assoc_itf_count.
|
|
//
|
|
// Opens any associated endpoints so they can have transfers submitted against them.
|
|
//
|
|
// Returns the total number of descriptor bytes to claim.
|
|
static uint16_t _runtime_dev_claim_itfs(tusb_desc_interface_t const *itf_desc, uint8_t assoc_itf_count, uint16_t max_len) {
|
|
const uint8_t *p_desc = (const void *)itf_desc;
|
|
const uint8_t *p_end = p_desc + max_len;
|
|
while (p_desc < p_end) {
|
|
if (tu_desc_type(p_desc) == TUSB_DESC_INTERFACE) {
|
|
if (assoc_itf_count > 0) {
|
|
// Claim this interface descriptor
|
|
assoc_itf_count--;
|
|
} else {
|
|
// This is the end of the previous interface's associated descriptors
|
|
break;
|
|
}
|
|
} else if (tu_desc_type(p_desc) == TUSB_DESC_ENDPOINT) {
|
|
// Open any endpoints that we come across
|
|
if (tu_desc_type(p_desc) == TUSB_DESC_ENDPOINT) {
|
|
bool r = usbd_edpt_open(USBD_RHPORT, (const void *)p_desc);
|
|
if (!r) {
|
|
mp_obj_t exc = mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(MP_ENODEV));
|
|
usbd_pend_exception(exc);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
p_desc = tu_desc_next(p_desc);
|
|
}
|
|
return p_desc - (const uint8_t *)itf_desc;
|
|
}
|
|
|
|
// TinyUSB "Application driver" open callback. Called when the USB host sets
|
|
// configuration. Returns number of bytes to claim from descriptors pointed to
|
|
// by itf_desc.
|
|
//
|
|
// This is a little fiddly as it's called before any built-in TinyUSB drivers,
|
|
// but we don't want to override those.
|
|
//
|
|
// Also, TinyUSB expects us to know how many interfaces to claim for each time
|
|
// this function is called, and will behave unexpectedly if we claim the wrong
|
|
// number of interfaces. However, unlike a "normal" USB driver we don't know at
|
|
// compile time how many interfaces we've implemented. Instead, we have to look
|
|
// back through the configuration descriptor to figure this out.
|
|
static uint16_t runtime_dev_open(uint8_t rhport, tusb_desc_interface_t const *itf_desc, uint16_t max_len) {
|
|
mp_obj_usb_device_t *usbd = MP_OBJ_TO_PTR(MP_STATE_VM(usbd));
|
|
|
|
// Runtime USB isn't initialised
|
|
if (!usbd) {
|
|
return 0;
|
|
}
|
|
|
|
// If TinyUSB built-in drivers are enabled, don't claim any interface in the built-in range
|
|
if (mp_usb_device_builtin_enabled(usbd) && itf_desc->bInterfaceNumber < USBD_ITF_BUILTIN_MAX) {
|
|
return 0;
|
|
}
|
|
|
|
// Determine the total descriptor length of the interface(s) we are going to claim
|
|
uint8_t assoc_itf_count = _runtime_dev_count_itfs(itf_desc);
|
|
uint16_t claim_len = _runtime_dev_claim_itfs(itf_desc, assoc_itf_count, max_len);
|
|
|
|
// Call the Python callback to allow the driver to start working with these interface(s)
|
|
|
|
if (mp_obj_is_callable(usbd->open_itf_cb)) {
|
|
// Repurpose the control_data memoryview to point into itf_desc for this one call
|
|
usbd->control_data->items = (void *)itf_desc;
|
|
usbd->control_data->len = claim_len;
|
|
mp_obj_t args[] = { MP_OBJ_FROM_PTR(usbd->control_data) };
|
|
usbd_callback_function_n(usbd->open_itf_cb, 1, args);
|
|
usbd->control_data->len = 0;
|
|
usbd->control_data->items = NULL;
|
|
}
|
|
|
|
return claim_len;
|
|
}
|
|
|
|
static bool runtime_dev_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const *request) {
|
|
mp_obj_t cb_res = mp_const_false;
|
|
mp_obj_usb_device_t *usbd = MP_OBJ_TO_PTR(MP_STATE_VM(usbd));
|
|
tusb_dir_t dir = request->bmRequestType_bit.direction;
|
|
mp_buffer_info_t buf_info;
|
|
bool result;
|
|
|
|
if (!usbd) {
|
|
return false;
|
|
}
|
|
|
|
if (mp_obj_is_callable(usbd->control_xfer_cb)) {
|
|
usbd->control_data->items = (void *)request;
|
|
usbd->control_data->len = sizeof(tusb_control_request_t);
|
|
mp_obj_t args[] = {
|
|
mp_obj_new_int(stage),
|
|
MP_OBJ_FROM_PTR(usbd->control_data),
|
|
};
|
|
cb_res = usbd_callback_function_n(usbd->control_xfer_cb, MP_ARRAY_SIZE(args), args);
|
|
usbd->control_data->items = NULL;
|
|
usbd->control_data->len = 0;
|
|
|
|
if (cb_res == MP_OBJ_NULL) {
|
|
// Exception occurred in the callback handler, stall this transfer
|
|
cb_res = mp_const_false;
|
|
}
|
|
}
|
|
|
|
// Check if callback returned any data to submit
|
|
if (mp_get_buffer(cb_res, &buf_info, dir == TUSB_DIR_IN ? MP_BUFFER_READ : MP_BUFFER_RW)) {
|
|
result = tud_control_xfer(USBD_RHPORT,
|
|
request,
|
|
buf_info.buf,
|
|
buf_info.len);
|
|
|
|
if (result) {
|
|
// Keep buffer object alive until the transfer completes
|
|
usbd->xfer_data[0][dir] = cb_res;
|
|
}
|
|
} else {
|
|
// Expect True or False to stall or continue
|
|
result = mp_obj_is_true(cb_res);
|
|
|
|
if (stage == CONTROL_STAGE_SETUP && result) {
|
|
// If no additional data but callback says to continue transfer then
|
|
// queue a status response.
|
|
tud_control_status(rhport, request);
|
|
} else if (stage == CONTROL_STAGE_ACK) {
|
|
// Allow data to be GCed once it's no longer in use
|
|
usbd->xfer_data[0][dir] = mp_const_none;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static bool runtime_dev_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) {
|
|
mp_obj_t ep = mp_obj_new_int(ep_addr);
|
|
mp_obj_t cb_res = mp_const_false;
|
|
mp_obj_usb_device_t *usbd = MP_OBJ_TO_PTR(MP_STATE_VM(usbd));
|
|
if (!usbd) {
|
|
return false;
|
|
}
|
|
|
|
if (mp_obj_is_callable(usbd->xfer_cb)) {
|
|
mp_obj_t args[] = {
|
|
ep,
|
|
MP_OBJ_NEW_SMALL_INT(result),
|
|
MP_OBJ_NEW_SMALL_INT(xferred_bytes),
|
|
};
|
|
cb_res = usbd_callback_function_n(usbd->xfer_cb, MP_ARRAY_SIZE(args), args);
|
|
}
|
|
|
|
// Clear any xfer_data for this endpoint
|
|
usbd->xfer_data[tu_edpt_number(ep_addr)][tu_edpt_dir(ep_addr)] = mp_const_none;
|
|
|
|
return cb_res != MP_OBJ_NULL && mp_obj_is_true(cb_res);
|
|
}
|
|
|
|
static usbd_class_driver_t const _runtime_dev_driver =
|
|
{
|
|
#if CFG_TUSB_DEBUG >= 2
|
|
.name = "runtime_dev",
|
|
#endif
|
|
.init = runtime_dev_init,
|
|
.reset = runtime_dev_reset,
|
|
.open = runtime_dev_open,
|
|
.control_xfer_cb = runtime_dev_control_xfer_cb,
|
|
.xfer_cb = runtime_dev_xfer_cb,
|
|
.sof = NULL
|
|
};
|
|
|
|
usbd_class_driver_t const *usbd_app_driver_get_cb(uint8_t *driver_count) {
|
|
*driver_count = 1;
|
|
return &_runtime_dev_driver;
|
|
}
|
|
|
|
|
|
// Functions below here (named mp_usbd_xyz) apply to the whole TinyUSB C-based subsystem
|
|
// and not necessarily the USBD singleton object (named usbd_xyz).
|
|
|
|
// To support soft reset clearing USB runtime state, we manage three TinyUSB states:
|
|
//
|
|
// - "Not initialised" - tusb_inited() returns false, no USB at all). Only way
|
|
// back to this state is hard reset.
|
|
//
|
|
// - "Activated" - tusb_inited() returns true, USB device "connected" at device
|
|
// end and available to host.
|
|
//
|
|
// - "Deactivated" - tusb_inited() returns true, but USB device "disconnected"
|
|
// at device end and host can't see it.
|
|
|
|
|
|
// Top-level USB device subsystem init.
|
|
//
|
|
// Initialises TinyUSB and/or re-activates it, provided USB is needed.
|
|
//
|
|
// This is called on any soft reset after boot.py runs, or on demand if the
|
|
// user activates USB and it hasn't activated yet.
|
|
void mp_usbd_init(void) {
|
|
mp_obj_usb_device_t *usbd = MP_OBJ_TO_PTR(MP_STATE_VM(usbd));
|
|
bool need_usb;
|
|
|
|
if (usbd == NULL) {
|
|
// No runtime USB device
|
|
#if CFG_TUD_CDC || CFG_TUD_MSC
|
|
// Builtin drivers are available, so initialise as defaults
|
|
need_usb = true;
|
|
#else
|
|
// No builtin drivers, nothing to initialise
|
|
need_usb = false;
|
|
#endif
|
|
} else {
|
|
// Otherwise, initialise based on whether runtime USB is active
|
|
need_usb = usbd->active;
|
|
}
|
|
|
|
if (need_usb) {
|
|
tusb_init(); // Safe to call redundantly
|
|
tud_connect(); // Reconnect if mp_usbd_deinit() has disconnected
|
|
}
|
|
}
|
|
|
|
// Top-level USB device deinit.
|
|
//
|
|
// This variant is called from soft reset, NULLs out the USB device
|
|
// singleton instance from MP_STATE_VM, and disconnects the port if a
|
|
// runtime device was active.
|
|
void mp_usbd_deinit(void) {
|
|
mp_obj_usb_device_t *usbd = MP_OBJ_TO_PTR(MP_STATE_VM(usbd));
|
|
MP_STATE_VM(usbd) = MP_OBJ_NULL;
|
|
if (usbd && usbd->active) {
|
|
// Disconnect if a runtime USB device was active
|
|
mp_usbd_disconnect(usbd);
|
|
}
|
|
}
|
|
|
|
// Thin wrapper around tud_disconnect() that tells TinyUSB all endpoints
|
|
// have stalled, to prevent it getting confused if a transfer is in progress.
|
|
static void mp_usbd_disconnect(mp_obj_usb_device_t *usbd) {
|
|
if (!tusb_inited()) {
|
|
return; // TinyUSB hasn't initialised
|
|
}
|
|
|
|
if (usbd) {
|
|
// There might be USB transfers in progress right now, so need to stall any live
|
|
// endpoints
|
|
//
|
|
// TODO: figure out if we really need this
|
|
for (int epnum = 0; epnum < CFG_TUD_ENDPPOINT_MAX; epnum++) {
|
|
for (int dir = 0; dir < 2; dir++) {
|
|
if (usbd->xfer_data[epnum][dir] != mp_const_none) {
|
|
usbd_edpt_stall(USBD_RHPORT, tu_edpt_addr(epnum, dir));
|
|
usbd->xfer_data[epnum][dir] = mp_const_none;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if MICROPY_HW_USB_CDC
|
|
// Ensure no pending static CDC writes, as these can cause TinyUSB to crash
|
|
tud_cdc_write_clear();
|
|
// Prevent cdc write flush from initiating any new transfers while disconnecting
|
|
usbd_edpt_stall(USBD_RHPORT, USBD_CDC_EP_IN);
|
|
#endif
|
|
|
|
bool was_connected = tud_connected();
|
|
tud_disconnect();
|
|
if (was_connected) {
|
|
// Need to ensure a long enough delay before TinyUSB re-connects that
|
|
// the host triggers a bus reset. This may happen anyway, but delaying here
|
|
// lets us be "belt and braces" sure.
|
|
mp_hal_delay_ms(50);
|
|
}
|
|
}
|
|
|
|
// Thjs callback is queued by mp_usbd_schedule_task() to process USB later.
|
|
void mp_usbd_task_callback(mp_sched_node_t *node) {
|
|
if (tud_inited() && !in_usbd_task) {
|
|
mp_usbd_task_inner();
|
|
}
|
|
// If in_usbd_task is set, it means something else has already manually called
|
|
// mp_usbd_task() (most likely: C-based USB-CDC serial port). Now the MP
|
|
// scheduler is running inside there and triggering this callback. It's OK
|
|
// to skip, the already-running outer TinyUSB task will process all pending
|
|
// events before it returns.
|
|
}
|
|
|
|
// Task function can be called manually to force processing of USB events
|
|
// (mostly from USB-CDC serial port when blocking.)
|
|
void mp_usbd_task(void) {
|
|
if (in_usbd_task) {
|
|
// If this exception triggers, it means a USB callback tried to do
|
|
// something that itself became blocked on TinyUSB (most likely: read or
|
|
// write from a C-based USB-CDC serial port.)
|
|
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("TinyUSB callback can't recurse"));
|
|
}
|
|
|
|
mp_usbd_task_inner();
|
|
}
|
|
|
|
static void mp_usbd_task_inner(void) {
|
|
in_usbd_task = true;
|
|
|
|
tud_task_ext(0, false);
|
|
|
|
mp_obj_usb_device_t *usbd = MP_OBJ_TO_PTR(MP_STATE_VM(usbd));
|
|
|
|
// Check for a triggered change to/from active state
|
|
if (usbd && usbd->trigger) {
|
|
if (usbd->active) {
|
|
if (tud_connected()) {
|
|
// If a SETUP packet has been received, first disconnect
|
|
// and wait for the host to recognise this and trigger a bus reset.
|
|
//
|
|
// Effectively this forces it to re-enumerate the device.
|
|
mp_usbd_disconnect(usbd);
|
|
}
|
|
tud_connect();
|
|
} else {
|
|
mp_usbd_disconnect(usbd);
|
|
}
|
|
usbd->trigger = false;
|
|
}
|
|
|
|
in_usbd_task = false;
|
|
|
|
if (usbd) {
|
|
// Print any exceptions that were raised by Python callbacks
|
|
// inside tud_task_ext(). See usbd_callback_function_n.
|
|
|
|
// As printing exceptions to USB-CDC may recursively call mp_usbd_task(),
|
|
// first copy out the pending data to the local stack
|
|
mp_uint_t num_pend_excs = usbd->num_pend_excs;
|
|
mp_obj_t pend_excs[MP_USBD_MAX_PEND_EXCS];
|
|
for (mp_uint_t i = 0; i < MIN(MP_USBD_MAX_PEND_EXCS, num_pend_excs); i++) {
|
|
pend_excs[i] = usbd->pend_excs[i];
|
|
usbd->pend_excs[i] = mp_const_none;
|
|
}
|
|
usbd->num_pend_excs = 0;
|
|
|
|
// Now print the exceptions stored from this mp_usbd_task() call
|
|
for (mp_uint_t i = 0; i < MIN(MP_USBD_MAX_PEND_EXCS, num_pend_excs); i++) {
|
|
mp_obj_print_exception(&mp_plat_print, pend_excs[i]);
|
|
}
|
|
if (num_pend_excs > MP_USBD_MAX_PEND_EXCS) {
|
|
mp_printf(&mp_plat_print, "%u additional exceptions in USB callbacks\n",
|
|
num_pend_excs - MP_USBD_MAX_PEND_EXCS);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // MICROPY_HW_ENABLE_USB_RUNTIME_DEVICE
|