PicoGB/microcode.c
SonoSooS 136f4c1cfe Hack back flat ROM pointer support
It was present in prerelease alpha version, but when porting to the RP2040, it was converted to double indirection, as it worked with the shitty LRU algo that I used at the time.
However, double indirection is not only slower just by requiring an extra load instruction, it's also slower by trashing the cache. On Windows, I get a 10% performance decrease with double indirection, which is pretty wild.
2024-06-03 06:05:03 +02:00

2120 lines
66 KiB
C

#include <stdio.h>
#include "microcode.h"
#include "dbg.h"
#define self mb_state* __restrict
#if GBA
#define IR_F_COL (IR & 7)
#define IR_F_ROW ((IR >> 3) & 7)
#else
#define IR_F_COL IR_column
#define IR_F_ROW IR_row
#endif
#define MB_AF_R ((mb->reg.A << 8) | mb->reg.F)
#define MB_AF_W(v) {mb->reg.A = ((v) >> 8) & 0xFF; mb->reg.F = (v) & MB_FLAG_BITS;}
#define MB_CC_CHECK (mbh_cc_check(IR, mb->reg.F))
#define USE_MIC struct mb_mi_cache* __restrict mic = &mb->micache;
#define USE_MI struct mi_dispatch* __restrict mi = mb->mi;
#pragma region Microcode I/O
#pragma region Resolve uncached region + fabric interface
#if CONFIG_ENABLE_LRU
// Resolve an aligned(!) pointer to a ROM bank,
// based on an input address and current banking settings.
// addr < 0x8000
//TODO: get rid of this
PGB_FUNC static inline const r8* __restrict mch_resolve_mic_bank_internal(const self mb, word r_addr)
{
USE_MI;
const r8* __restrict ret = mi->dispatch_ROM_Bank(mi->userdata, r_addr << MICACHE_R_BITS, mi->BANK_ROM);
return ret;
}
#endif
// Uncached resolve aligned readable const memory area, based on address
PGB_FUNC ATTR_FORCE_NOINLINE __attribute__((optimize("Os"))) static const r8* __restrict mch_resolve_mic_r_direct_read(const self mb, word r_addr)
{
USE_MI;
const r8* __restrict ret = NULL;
if(r_addr < MICACHE_R_VALUE(0x8000))
{
//TODO: optimize this for LRU
#if CONFIG_ENABLE_LRU
if(mi->ROM != NULL)
#endif
{
if(r_addr < MICACHE_R_VALUE(0x4000))
{
#if CONFIG_USE_FLAT_ROM
ret = &mi->ROM[0];
return &ret[r_addr << MICACHE_R_BITS];
#else
ret = mi->ROM[0];
if(ret != NULL)
return &ret[r_addr << MICACHE_R_BITS];
#endif
}
else
{
#if CONFIG_USE_FLAT_ROM
r_addr &= MICACHE_R_VALUE(0x3FFF);
ret = &mi->ROM[mi->BANK_ROM << 14];
return &ret[r_addr << MICACHE_R_BITS];
#else
ret = mi->ROM[mi->BANK_ROM];
if(ret != NULL)
{
r_addr &= MICACHE_R_VALUE(0x3FFF);
return &ret[r_addr << MICACHE_R_BITS];
}
#endif
}
}
#if CONFIG_ENABLE_LRU
ret = mch_resolve_mic_bank_internal(mb, r_addr);
#endif
return ret;
}
else if(r_addr < MICACHE_R_VALUE(0xA000))
{
const r8* __restrict ptr = &mi->VRAM[mi->BANK_VRAM << 13];
r_addr &= MICACHE_R_VALUE(0x1FFF);
return &(ptr[r_addr << MICACHE_R_BITS]);
}
else if(r_addr < MICACHE_R_VALUE(0xC000))
{
const r8* __restrict ptr = &mi->SRAM[mi->BANK_SRAM << 13];
r_addr &= MICACHE_R_VALUE(0x1FFF);
return &(ptr[r_addr << MICACHE_R_BITS]);
}
else // WRAM only [$C000; $FFFF] for OAMDMA
{
if(!(r_addr & MICACHE_R_VALUE(0x1000)))
{
r_addr &= MICACHE_R_VALUE(0x0FFF);
return &(mi->WRAM[r_addr << MICACHE_R_BITS]);
}
else
{
var bank = mi->BANK_WRAM;
if(!bank)
bank = 1;
r_addr &= MICACHE_R_VALUE(0x0FFF);
return &(mi->WRAM[(bank << 12) + (r_addr << MICACHE_R_BITS)]);
}
}
}
PGB_FUNC ATTR_FORCE_NOINLINE __attribute__((optimize("Os"))) static r8* __restrict mch_resolve_mic_r_direct_write(const self mb, word r_addr)
{
USE_MI;
if(r_addr < MICACHE_R_VALUE(0x8000))
{
// ROM is *Read-Only* Memory, can't write to it normally
return NULL;
}
else if(r_addr < MICACHE_R_VALUE(0xA000))
{
r8* __restrict ptr = &mi->VRAM[mi->BANK_VRAM << 13];
r_addr &= MICACHE_R_VALUE(0x1FFF);
return &(ptr[r_addr << MICACHE_R_BITS]);
}
else if(r_addr < MICACHE_R_VALUE(0xC000))
{
r8* __restrict ptr = &mi->SRAM[mi->BANK_SRAM << 13];
r_addr &= MICACHE_R_VALUE(0x1FFF);
return &(ptr[r_addr << MICACHE_R_BITS]);
}
else // WRAM only [$C000; $FFFF] for OAMDMA
{
if(!(r_addr & MICACHE_R_VALUE(0x1000)))
{
r_addr &= MICACHE_R_VALUE(0x0FFF);
return &(mi->WRAM[r_addr << MICACHE_R_BITS]);
}
else
{
var bank = mi->BANK_WRAM;
if(!bank)
bank = 1;
r_addr &= MICACHE_R_VALUE(0x0FFF);
return &(mi->WRAM[(bank << 12) + (r_addr << MICACHE_R_BITS)]);
}
}
}
#pragma endregion
#pragma region Resolve cached memory region (by address)
/*
All functions in this region: cached memory resolve
- addr < 0xE000
*/
#pragma region Resolve (read)
PGB_FUNC ATTR_FORCE_NOINLINE __attribute__((optimize("Os"))) static const r8* __restrict mch_resolve_mic_read_slow(self mb, word addr)
{
const r8* __restrict ptr;
var r_addr = MICACHE_R_VALUE(addr);
ptr = mch_resolve_mic_r_direct_read(mb, r_addr);
if(COMPILER_LIKELY(ptr != NULL))
{
#if !CONFIG_MIC_CACHE_BYPASS
USE_MIC;
mic->mc_read[r_addr] = ptr;
#endif
return &ptr[addr & MICACHE_R_SEL];
}
return NULL;
}
PGB_FUNC ATTR_HOT ATTR_FORCE_INLINE __attribute__((optimize("O2"))) static inline const r8* __restrict mch_resolve_mic_read(self mb, word addr)
{
#if !CONFIG_MIC_CACHE_BYPASS
var r_addr = MICACHE_R_VALUE(addr);
const r8* __restrict ptr;
ptr = mb->micache.mc_read[r_addr];
if(COMPILER_LIKELY(ptr != NULL))
return &ptr[addr & MICACHE_R_SEL];
#endif
return mch_resolve_mic_read_slow(mb, addr);
}
PGB_FUNC ATTR_FORCE_NOINLINE __attribute__((optimize("Os"))) static word mch_resolve_mic_read_slow_deref(self mb, word addr)
{
return *mch_resolve_mic_read_slow(mb, addr);
}
PGB_FUNC ATTR_HOT ATTR_FORCE_INLINE __attribute__((optimize("O2"))) static inline word mch_resolve_mic_read_deref(self mb, word addr)
{
#if !CONFIG_MIC_CACHE_BYPASS
var r_addr = MICACHE_R_VALUE(addr);
const r8* __restrict ptr;
ptr = mb->micache.mc_read[r_addr];
if(COMPILER_LIKELY(ptr != NULL))
return ptr[addr & MICACHE_R_SEL];
else
#endif
return mch_resolve_mic_read_slow_deref(mb, addr);
}
#pragma endregion
#pragma region Resolve (write)
PGB_FUNC ATTR_FORCE_NOINLINE __attribute__((optimize("Os"))) static void mch_resolve_mic_write_slow_deref(self mb, word addr, word data)
{
USE_MIC;
var r_addr = MICACHE_R_VALUE(addr);
r8* __restrict ptr;
ptr = mch_resolve_mic_r_direct_write(mb, r_addr);
if(COMPILER_LIKELY(ptr != NULL))
{
mic->mc_write[r_addr] = ptr;
ptr[addr & MICACHE_R_SEL] = data;
return;
}
*ptr = data;
}
PGB_FUNC ATTR_HOT __attribute__((optimize("Os"))) static void mch_resolve_write_deref(r8* __restrict ptr, word addr, word data)
{
addr &= MICACHE_R_SEL;
COMPILER_VARIABLE_BARRIER(addr);
ptr[addr] = data;
}
PGB_FUNC ATTR_HOT ATTR_FORCE_NOINLINE __attribute__((optimize("O2"))) static void mch_resolve_mic_write_deref(self mb, word addr, word data)
{
#if !CONFIG_MIC_CACHE_BYPASS
var r_addr = MICACHE_R_VALUE(addr);
r8* __restrict ptr;
ptr = mb->micache.mc_write[r_addr];
COMPILER_VARIABLE_BARRIER(ptr);
if(ptr != NULL)
{
mch_resolve_write_deref(ptr, addr, data); // prevent register allocator spill, as it's slower than a tail call
return;
}
else
#endif
mch_resolve_mic_write_slow_deref(mb, addr, data);
}
#pragma endregion
#pragma region Resolve (execute)
PGB_FUNC ATTR_FORCE_NOINLINE __attribute__((optimize("Os"))) static const r8* __restrict mch_resolve_mic_execute_slow(self mb, word addr)
{
const r8* __restrict ptr;
var r_addr = MICACHE_R_VALUE(addr);
ptr = mch_resolve_mic_r_direct_read(mb, r_addr);
if(COMPILER_LIKELY(ptr != NULL))
{
#if !CONFIG_MIC_CACHE_BYPASS
USE_MIC;
mic->mc_execute[r_addr] = ptr;
#endif
return &ptr[addr & MICACHE_R_SEL];
}
return NULL;
}
PGB_FUNC ATTR_HOT ATTR_FORCE_INLINE __attribute__((optimize("O2"))) static inline const r8* __restrict mch_resolve_mic_execute(self mb, word addr)
{
#if !CONFIG_MIC_CACHE_BYPASS
var r_addr = MICACHE_R_VALUE(addr);
const r8* __restrict ptr;
ptr = mb->micache.mc_execute[r_addr];
if(COMPILER_LIKELY(ptr != NULL))
return &ptr[addr & MICACHE_R_SEL];
#endif
return mch_resolve_mic_execute_slow(mb, addr);
}
PGB_FUNC ATTR_HOT ATTR_FORCE_NOINLINE __attribute__((optimize("Os"))) static const r8* __restrict mch_resolve_mic_execute_noinline(self mb, word addr)
{
return mch_resolve_mic_execute(mb, addr);
}
PGB_FUNC ATTR_FORCE_NOINLINE __attribute__((optimize("Os"))) static word mch_resolve_mic_execute_slow_deref(self mb, word addr)
{
return *mch_resolve_mic_execute_slow(mb, addr);
}
PGB_FUNC ATTR_HOT ATTR_FORCE_INLINE __attribute__((optimize("O2"))) static inline word mch_resolve_mic_execute_deref(self mb, word addr)
{
#if !CONFIG_MIC_CACHE_BYPASS
var r_addr = MICACHE_R_VALUE(addr);
const r8* __restrict ptr;
ptr = mb->micache.mc_execute[r_addr];
if(COMPILER_LIKELY(ptr != NULL))
return ptr[addr & MICACHE_R_SEL];
else
#endif
return mch_resolve_mic_execute_slow_deref(mb, addr);
}
#pragma endregion
#pragma endregion
#pragma region Dispatch special (IO + ROM)
PGB_FUNC static word mch_memory_dispatch_read_fexx_ffxx(const self mb, word addr)
{
if(addr >= 0xFF80) // HRAM + IE
{
var hm = addr & 0xFF;
if(hm != 0xFF)
{
return mb->mi->HRAM[hm - 0x80];
}
else
{
return mb->IE;
}
}
// Handle IO by fabric
return mb->mi->dispatch_IO(mb->mi->userdata, addr, MB_DATA_DONTCARE, MB_TYPE_READ);
}
PGB_FUNC static void mch_memory_dispatch_write_fexx_ffxx(self mb, word addr, word data)
{
if(addr >= 0xFF80) // HRAM + IE
{
var hm = addr & 0xFF;
if(hm != 0xFF)
{
mb->mi->HRAM[hm - 0x80] = data;
}
else
{
mb->IE = data & 0xFF;
}
return;
}
// Handle IO by fabric
mb->mi->dispatch_IO(mb->mi->userdata, addr, data, MB_TYPE_WRITE);
}
PGB_FUNC ATTR_FORCE_NOINLINE static void mch_memory_dispatch_write_ROM(const self mb, word addr, word data)
{
// Write to ROM has special meaning, handle by fabric
mb->mi->dispatch_ROM(mb->mi->userdata, addr, data, MB_TYPE_WRITE);
}
#pragma endregion
#pragma region Dispatch
// Handle read from memory by microcode, including ECHO RAM
PGB_FUNC ATTR_HOT ATTR_FORCE_NOINLINE __attribute__((optimize("Os"))) static word mch_memory_dispatch_read_(self mb, word addr)
{
if(COMPILER_LIKELY(addr < 0xFE00))
return mch_resolve_mic_read_deref(mb, addr);
else
return mch_memory_dispatch_read_fexx_ffxx(mb, addr);
}
#if CONFIG_DBG
PGB_FUNC static word mch_memory_dispatch_read(self, word addr)
{
DBGF("- /RD %04X -> ", addr);
word res = mch_memory_dispatch_read_(mb, addr);
DBGF("%02X\n", res);
return res;
}
#else
#define mch_memory_dispatch_read mch_memory_dispatch_read_
#endif
// Handle write to address from microcode, including ECHO RAM support
PGB_FUNC ATTR_HOT ATTR_FORCE_NOINLINE __attribute__((optimize("Os"))) static void mch_memory_dispatch_write(self mb, word addr, word data)
{
DBGF("- /WR %04X <- %02X\n", addr, data);
if(COMPILER_LIKELY(addr >= 0x8000))
{
if(COMPILER_LIKELY(addr < 0xFE00))
mch_resolve_mic_write_deref(mb, addr, data);
else
mch_memory_dispatch_write_fexx_ffxx(mb, addr, data);
}
else
mch_memory_dispatch_write_ROM(mb, addr, data);
}
// Fetch one byte as part of an instruction
PGB_FUNC ATTR_HOT ATTR_FORCE_INLINE __attribute__((optimize("Os"))) static word mch_memory_fetch_decode_1(self mb, word addr)
{
if(COMPILER_LIKELY(addr < 0xFE00))
return mch_resolve_mic_execute_deref(mb, addr);
else
return mch_memory_dispatch_read_fexx_ffxx(mb, addr);
}
PGB_FUNC ATTR_HOT ATTR_FORCE_NOINLINE static word mch_memory_fetch_decode_1_noinline(self mb, word addr)
{
return mch_memory_fetch_decode_1(mb, addr);
}
PGB_FUNC ATTR_FORCE_NOINLINE __attribute__((optimize("O2"))) static word mch_memory_fetch_decode_2_slow(self mb, word addr)
{
word addr2 = (addr + 1) & 0xFFFF;
word res1 = mch_memory_fetch_decode_1_noinline(mb, addr);
word res2 = mch_memory_fetch_decode_1_noinline(mb, addr2);
var res = res1;
res |= (res2) << 8;
return res;
}
PGB_FUNC ATTR_HOT ATTR_FORCE_NOINLINE __attribute__((optimize("O2"))) static word mch_resolve_mic_execute_deref_2_HRAM(self mb, word addr)
{
addr = (addr - 0x80) & 0xFF;
const volatile r8* __restrict ptr = &mb->mi->HRAM[addr];
var nres = ptr[0];
nres |= ptr[1] << 8;
return nres;
}
PGB_FUNC ATTR_HOT ATTR_FORCE_NOINLINE __attribute__((optimize("O2"))) static word mch_resolve_mic_execute_deref_2(self mb, word addr)
{
// This has to be volatile, otherwise
// an LDRH is emitted, which is no cool, as
// the pointer will very likely be not aligned.
// This sadly wastes precious CPU cycles,
// but it's necessary to avoid unaligned data abort.
const volatile r8* __restrict ptr = mch_resolve_mic_execute(mb, addr);
word nres = ptr[0];
nres |= ptr[1] << 8;
return nres;
}
// Fetch two bytes as part of an instruction
PGB_FUNC ATTR_HOT ATTR_FORCE_NOINLINE __attribute__((optimize("Os"))) static word mch_memory_fetch_decode_2(self mb, word addr)
{
#if !CONFIG_MIC_CACHE_BYPASS
if(COMPILER_LIKELY(addr < 0xFE00)) // yeah, this is an off-by-one error, and I don't care
{
//word r1 = MICACHE_R_VALUE(addr);
//word r2 = MICACHE_R_VALUE(addr + 1);
//if(COMPILER_LIKELY(r1 == r2))
word tmp = ~addr;
COMPILER_VARIABLE_BARRIER(tmp);
tmp &= MICACHE_R_SEL;
COMPILER_VARIABLE_BARRIER(tmp);
if(COMPILER_LIKELY(tmp)) // same as above commented code
{
return mch_resolve_mic_execute_deref_2(mb, addr);
}
}
else if(addr >= 0xFF80) // This is off by 2, but let's be honest, if this triggers, we're already lost
{
return mch_resolve_mic_execute_deref_2_HRAM(mb, addr);
}
#endif
return mch_memory_fetch_decode_2_slow(mb, addr);
}
// Fetch one byte from PC, incrementing it as well
PGB_FUNC ATTR_HOT static word mch_memory_fetch_PC(self mb)
{
word addr = mb->PC;
mb->PC = (addr + 1) & 0xFFFF;
var res = mch_memory_fetch_decode_1(mb, addr);
DBGF("- /M1 %04X <> %02X\n", addr, res);
return res;
}
PGB_FUNC ATTR_HOT static word mch_memory_fetch_PC_op_1(self mb)
{
word addr = mb->PC;
mb->PC = (addr + 1) & 0xFFFF;
var res = mch_memory_fetch_decode_1(mb, addr);
DBGF("- /O1 %04X <> %02X\n", addr, res);
return res;
}
// Fetch two bytes from PC, incrementing it both times as well
PGB_FUNC ATTR_HOT static word mch_memory_fetch_PC_op_2(self mb)
{
word addr = mb->PC;
mb->PC = (addr + 2) & 0xFFFF;
word resp = mch_memory_fetch_decode_2(mb, addr);
DBGF("- /O2 %04X <> %04X\n", addr, resp);
return resp;
}
#pragma endregion
#pragma endregion
#pragma region Flag mode control
PGB_FUNC static inline void mbh_fr_set_r8_add(self mb, word left, word right)
{
mb->FR1 = left;
mb->FR2 = right;
mb->FMC_MODE = MB_FMC_MODE_ADD_r8;
}
PGB_FUNC static inline void mbh_fr_set_r8_adc(self mb, word left, word right)
{
mb->FR1 = left;
mb->FR2 = right;
mb->FMC_MODE = MB_FMC_MODE_ADC_r8;
}
PGB_FUNC static inline void mbh_fr_set_r8_sub(self mb, word left, word right)
{
mb->FR1 = left;
mb->FR2 = right;
mb->FMC_MODE = MB_FMC_MODE_SUB_r8;
}
PGB_FUNC static inline void mbh_fr_set_r8_sbc(self mb, word left, word right)
{
mb->FR1 = left;
mb->FR2 = right;
mb->FMC_MODE = MB_FMC_MODE_SBC_r8;
}
PGB_FUNC static inline void mbh_fr_set_r16_add(self mb, word left, word right)
{
mb->FR1 = left;
mb->FR2 = right;
mb->FMC_MODE = MB_FMC_MODE_ADD_r16;
}
PGB_FUNC static inline void mbh_fr_set_r16_add_r8(self mb, word left, word right)
{
mb->FR1 = left;
mb->FR2 = right;
mb->FMC_MODE = MB_FMC_MODE_ADD_r16_r8;
}
PGB_FUNC word mbh_fr_get(self mb, word Fin)
{
if(mb->FMC_MODE == MB_FMC_MODE_NONE)
return Fin;
var n1 = mb->FR1;
var n2 = mb->FR2;
Fin &= ~MB_FLAG_H; //TODO: why clear HC here? explain.
switch(mb->FMC_MODE & 0xF)
{
default:
return Fin;
case MB_FMC_MODE_ADD_r16_r8:
{
//if(((n1 & 0xF00) + (n2 & 0xF00)) > 0xFFF)
if(((n1 & 0xF) + (n2 & 0xF)) > 0xF) // ???
Fin |= MB_FLAG_H;
break;
}
case MB_FMC_MODE_ADD_r16:
{
if(((n1 & 0xFFF) + (n2 & 0xFFF)) > 0xFFF)
Fin |= MB_FLAG_H;
break;
}
case MB_FMC_MODE_ADD_r8:
{
if(((n1 & 0xF) + (n2 & 0xF)) > 0xF)
Fin |= MB_FLAG_H;
break;
}
case MB_FMC_MODE_ADC_r8:
{
if(((n1 & 0xF) + (n2 & 0xF) + 1) > 0xF)
Fin |= MB_FLAG_H;
break;
}
case MB_FMC_MODE_SUB_r8:
{
if((n1 & 0xF) < (n2 & 0xF))
Fin |= MB_FLAG_H;
break;
}
case MB_FMC_MODE_SBC_r8:
{
if((n1 & 0xF) < ((n2 & 0xF) + 1))
Fin |= MB_FLAG_H;
break;
}
}
mb->FMC_MODE = MB_FMC_MODE_NONE;
return Fin;
}
PGB_FUNC static inline wbool mbh_cc_check_0(word F)
{
return ~F & MB_FLAG_Z; // NZ
}
PGB_FUNC static inline wbool mbh_cc_check_1(word F)
{
return F & MB_FLAG_Z; // Z
}
PGB_FUNC static inline wbool mbh_cc_check_2(word F)
{
return ~F & MB_FLAG_C; // NC
}
PGB_FUNC static inline wbool mbh_cc_check_3(word F)
{
return F & MB_FLAG_C; // C
}
PGB_FUNC static wbool mbh_cc_check(word IR, word F)
{
register word IR_r = (IR >> 3) & 3;
if(IR_r == MB_CC_NZ)
return mbh_cc_check_0(F); // NZ
else if(IR_r == MB_CC_Z)
return mbh_cc_check_1(F); // Z
else if(IR_r == MB_CC_NC)
return mbh_cc_check_2(F); // NC
else if(IR_r == MB_CC_C)
return mbh_cc_check_3(F); // C
__builtin_unreachable();
}
#pragma endregion
#pragma region disasm (unfinished)
#if CONFIG_DBG
static const char* str_r8[8] = {"B", "C", "D", "E", "H", "L", "[HL]", "A"};
static const char* str_aluop[8] = {"ADD", "ADC", "SUB", "SBC", "AND", "XOR", "ORR", "CMP"};
void mb_disasm(const struct mb_state* __restrict mb)
{
var IR = mb->IR.low;
switch(IR >> 6)
{
case 1:
printf("LD %s, %s", str_r8[(IR >> 3) & 7], str_r8[IR & 7]);
break;
case 2:
printf("%s A, %s", str_aluop[(IR >> 3) & 7], str_r8[IR & 7]);
break;
}
puts("");
}
static const char* str_cbop[4] = {0, "BIT", "SET", "RES"};
static const char* str_cbop0[8] = {"ROL", "ROR", "RCL", "RCR", "LSL", "ASR", "SWAP", "LSR"};
void mb_disasm_CB(const struct mb_state* __restrict mb, word CBIR)
{
var IR = CBIR;
if(IR >> 6)
{
printf("%s %s.%u", str_cbop[(IR >> 6) & 3], str_r8[IR & 7], (IR >> 3) & 7);
}
else
{
printf("%s %s", str_cbop0[(IR >> 3) & 7], str_r8[IR & 7]);
}
puts("");
}
#endif
#pragma endregion
PGB_FUNC ATTR_HOT word mb_exec(self mb)
{
register var IR = mb->IR.low;
r16* __restrict p_reg16_ptr;
// Instruction column left to right
var IR_column = IR & 7;
// Instruction row top to bottom
var IR_row = (IR >> 3) & 7;
// Cycle count
var ncycles = 0;
// Index of source or read-only register
var i_src;
// Index of destination or read-modify-write register index
var i_dst;
// Data for 8bit registers
var data_reg;
// Data for 16bit registers
var data_wide;
// Contains flags where necessary
var data_flags;
// Contains result data to be written back eventually
var data_result;
if(mb->IME) // Interrupts are enabled
{
var F = mbh_irq_get_pending(mb);
if(F) // Handle IREQ if there is any
{
++ncycles; // IDU decrement PC penalty cycle
data_wide = (mb->PC - 1) & 0xFFFF;
var i = 0;
for(;;)
{
if(F & (1 << i))
{
mb->PC = 0x40 | (i << 3);
break;
}
++i;
}
mb->IME = 0;
mb->IME_ASK = 0;
mb->IF &= ~(1 << i);
#if CONFIG_DBG
DBGF("IRQ #%u\n", i);
#endif
goto generic_push;
}
}
else if(mb->IME_ASK) // IME was asked to be turned on
{
mb->IME = 1;
mb->IME_ASK = 0;
}
#if CONFIG_DBG
if(_IS_DBG)
{
DBGF("Instruction %02X (%01o:%01o:%01o) ", IR, IR >> 6, IR & 7, (IR >> 3) & 7);
mb_disasm(mb);
}
#endif
// BROKEN, DO NOT USE YET
#if 0
switch(IR)
{
case 0x00: goto instr_00;
case 0x10: goto instr_10;
case 0x08: goto instr_08;
case 0x18: goto instr_18;
case 0x20: if(mbh_cc_check_0(mb->reg.F)) goto generic_jr; else goto instr_JNR_cc_e8_fail;
case 0x28: if(mbh_cc_check_1(mb->reg.F)) goto generic_jr; else goto instr_JNR_cc_e8_fail;
case 0x30: if(mbh_cc_check_2(mb->reg.F)) goto generic_jr; else goto instr_JNR_cc_e8_fail;
case 0x38: if(mbh_cc_check_3(mb->reg.F)) goto generic_jr; else goto instr_JNR_cc_e8_fail;
case 0x01:
p_reg16_ptr = &mb->reg.raw16[0];
goto instr_0x1_0;
case 0x11:
p_reg16_ptr = &mb->reg.raw16[1];
goto instr_0x1_0;
case 0x21:
p_reg16_ptr = &mb->reg.raw16[2];
goto instr_0x1_0;
case 0x31:
p_reg16_ptr = &mb->SP;
goto instr_0x1_0;
case 0x09:
p_reg16_ptr = &mb->reg.raw16[0];
goto instr_0x1_1;
case 0x19:
p_reg16_ptr = &mb->reg.raw16[1];
goto instr_0x1_1;
case 0x29:
p_reg16_ptr = &mb->reg.raw16[2];
goto instr_0x1_1;
case 0x39:
p_reg16_ptr = &mb->SP;
goto instr_0x1_1;
case 0x02:
case 0x12:
case 0x22:
case 0x32:
case 0x0A:
case 0x1A:
case 0x2A:
case 0x3A:
goto instr_0x2;
case 0x03:
case 0x13:
case 0x23:
case 0x33:
case 0x0B:
case 0x1B:
case 0x2B:
case 0x3B:
goto instr_0x3;
case 0x04:
case 0x14:
case 0x24:
case 0x34:
case 0x05:
case 0x15:
case 0x25:
case 0x35:
case 0x0C:
case 0x1C:
case 0x2C:
case 0x3C:
case 0x0D:
case 0x1D:
case 0x2D:
case 0x3D:
goto instr_0x45;
case 0x06:
case 0x16:
case 0x26:
case 0x36:
case 0x0E:
case 0x1E:
case 0x2E:
case 0x3E:
goto instr_0x6;
case 0x07: goto instr_007;
case 0x0F: goto instr_017;
case 0x17: goto instr_027;
case 0x1F: goto instr_037;
case 0x27: goto instr_047;
case 0x2F: goto instr_057;
case 0x37: goto instr_067;
case 0x3F: goto instr_077;
case 0x76: goto instr_0x76;
case 0x40:case 0x41:case 0x42:case 0x43:case 0x44:case 0x45:case 0x46:case 0x47:
case 0x48:case 0x49:case 0x4A:case 0x4B:case 0x4C:case 0x4D:case 0x4E:case 0x4F:
case 0x50:case 0x51:case 0x52:case 0x53:case 0x54:case 0x55:case 0x56:case 0x57:
case 0x58:case 0x59:case 0x5A:case 0x5B:case 0x5C:case 0x5D:case 0x5E:case 0x5F:
case 0x60:case 0x61:case 0x62:case 0x63:case 0x64:case 0x65:case 0x66:case 0x67:
case 0x68:case 0x69:case 0x6A:case 0x6B:case 0x6C:case 0x6D:case 0x6E:case 0x6F:
case 0x70:case 0x71:case 0x72:case 0x73:case 0x74:case 0x75: case 0x77:
case 0x78:case 0x79:case 0x7A:case 0x7B:case 0x7C:case 0x7D:case 0x7E:case 0x7F:
goto instr_MOV;
case 0x80:case 0x81:case 0x82:case 0x83:case 0x84:case 0x85:case 0x86:case 0x87:
case 0x88:case 0x89:case 0x8A:case 0x8B:case 0x8C:case 0x8D:case 0x8E:case 0x8F:
case 0x90:case 0x91:case 0x92:case 0x93:case 0x94:case 0x95:case 0x96:case 0x97:
case 0x98:case 0x99:case 0x9A:case 0x9B:case 0x9C:case 0x9D:case 0x9E:case 0x9F:
case 0xA0:case 0xA1:case 0xA2:case 0xA3:case 0xA4:case 0xA5:case 0xA6:case 0xA7:
case 0xA8:case 0xA9:case 0xAA:case 0xAB:case 0xAC:case 0xAD:case 0xAE:case 0xAF:
case 0xB0:case 0xB1:case 0xB2:case 0xB3:case 0xB4:case 0xB5:case 0xB6:case 0xB7:
case 0xB8:case 0xB9:case 0xBA:case 0xBB:case 0xBC:case 0xBD:case 0xBE:case 0xBF:
goto instr_ALU;
case 0xC0:
case 0xD0:
case 0xC8:
case 0xD8:
goto instr_RET_cc; // could be MB_CC_CHECK optimized, but the extra cycle is too much work to count
case 0xE0:
data_wide = 0xFF00 | mch_memory_fetch_PC_op_1(mb);
goto instr_340;
case 0xF0:
data_wide = 0xFF00 | mch_memory_fetch_PC_op_1(mb);
goto instr_360;
case 0xE8:
case 0xF8:
goto instr_weird_r16_r8;
case 0xC9: goto instr_311;
case 0xD9: goto instr_331;
case 0xE9: goto instr_351;
case 0xF9: goto instr_371;
case 0xC1:
case 0xD1:
case 0xE1:
case 0xF1:
goto instr_POP_r16;
case 0xEA:
data_wide = mch_memory_fetch_PC_op_2(mb);
goto instr_352;
case 0xFA:
data_wide = mch_memory_fetch_PC_op_2(mb);
goto instr_372;
case 0xE2:
data_wide = 0xFF00 | mb->reg.C;
goto instr_342;
case 0xF2:
data_wide = 0xFF00 | mb->reg.C;
goto instr_362;
case 0xC2: if(mbh_cc_check_0(mb->reg.F)) goto generic_jp_abs; else goto instr_JP_cc_n16_fail;
case 0xD2: if(mbh_cc_check_1(mb->reg.F)) goto generic_jp_abs; else goto instr_JP_cc_n16_fail;
case 0xCA: if(mbh_cc_check_2(mb->reg.F)) goto generic_jp_abs; else goto instr_JP_cc_n16_fail;
case 0xDA: if(mbh_cc_check_3(mb->reg.F)) goto generic_jp_abs; else goto instr_JP_cc_n16_fail;
case 0xC3: goto instr_303;
case 0xCB: goto instr_313;
case 0xF3: goto instr_363;
case 0xFB: goto instr_373;
case 0xC4: if(mbh_cc_check_0(mb->reg.F)) goto generic_call; else goto instr_CALL_cc_n16;
case 0xCC: if(mbh_cc_check_1(mb->reg.F)) goto generic_call; else goto instr_CALL_cc_n16;
case 0xD4: if(mbh_cc_check_2(mb->reg.F)) goto generic_call; else goto instr_CALL_cc_n16;
case 0xDC: if(mbh_cc_check_3(mb->reg.F)) goto generic_call; else goto instr_CALL_cc_n16;
case 0xC5:
data_wide = mb->reg.raw16[0];
goto generic_push;
case 0xD5:
data_wide = mb->reg.raw16[1];
goto generic_push;
case 0xE5:
data_wide = mb->reg.raw16[2];
goto generic_push;
case 0xF5:
mb->reg.F = mbh_fr_get(mb, mb->reg.F);
data_wide = MB_AF_R;
goto generic_push;
case 0xCD: goto generic_call;
case 0xC6:
case 0xD6:
case 0xE6:
case 0xF6:
case 0xCE:
case 0xDE:
case 0xEE:
case 0xFE:
goto instr_3x6;
case 0xC7:
case 0xCF:
case 0xD7:
case 0xDF:
case 0xE7:
case 0xEF:
case 0xF7:
case 0xFF:
goto instr_3x7;
case 0xD3:
case 0xDB:
case 0xDD:
case 0xE3:
case 0xE4:
case 0xEB:
case 0xED:
case 0xEC:
case 0xF4:
case 0xFC:
case 0xFD:
// HCF
return 0;
default:
__builtin_unreachable();
}
#endif
#if 1
if(IR >= 0xC0)
{
if(IR == 0xF0)
{
data_wide = 0xFF00 | mch_memory_fetch_PC_op_1(mb);
goto instr_360;
}
else if(IR == 0xFA)
{
data_wide = mch_memory_fetch_PC_op_2(mb);
goto instr_372;
}
else
goto IR_case_3;
}
else if(IR >= 0x80)
goto IR_case_2;
else if(IR < 0x40)
{
if(IR_F_COL == 0)
goto instr_0x0;
else
goto IR_case_0;
}
else
goto IR_case_1;
#endif
switch((IR >> 6) & 3)
{
IR_case_0:
case 0: // Top bullshit
switch(IR_column)
{
instr_0x0:
case 0: // whatever
if(0)
{
instr_JNR_cc_e8: // JR cc, e8
IR_row = (IR_F_ROW & 3) | 4;
}
switch(IR_row)
{
instr_00:
case 0: // NOP
instr_10:
case 2: // STOP
goto generic_fetch; // STOP is just bugged NOP, lol
instr_08:
case 1: // LD a16, SP
{
data_wide = mch_memory_fetch_PC_op_2(mb);
var SP = mb->SP;
mch_memory_dispatch_write(mb, data_wide + 0, SP & 0xFF);
mch_memory_dispatch_write(mb, (data_wide + 1) & 0xFFFF, SP >> 8);
ncycles += 2 + 2;
goto generic_fetch;
}
instr_18:
case 3: // JR e8
generic_jr:
{
var PC = mb->PC;
data_wide = mch_memory_fetch_PC_op_1(mb);
// Wedge if unbreakable spinloop is detected
// TODO: unfuck this statement
if(data_wide == 0xFE && ((!mb->IME && !mb->IME_ASK) || (!mb->IE && !(mb->IF & 0x1F))))
return 0; // wedge until NMI
if(data_wide >= 0x80)
data_wide |= 0xFF00;
mb->PC = (data_wide + PC + 1) & 0xFFFF;
ncycles += 2; // parallel add + fetch
goto generic_fetch;
}
case 4: if(mbh_cc_check_0(mb->reg.F)) goto generic_jr; else goto instr_JNR_cc_e8_fail;
case 5: if(mbh_cc_check_1(mb->reg.F)) goto generic_jr; else goto instr_JNR_cc_e8_fail;
case 6: if(mbh_cc_check_2(mb->reg.F)) goto generic_jr; else goto instr_JNR_cc_e8_fail;
case 7: if(mbh_cc_check_3(mb->reg.F)) goto generic_jr; else goto instr_JNR_cc_e8_fail;
{
instr_JNR_cc_e8_fail:
mb->PC = (mb->PC + 1) & 0xFFFF;
ncycles += 1;
goto generic_fetch;
}
default:
__builtin_unreachable();
}
case 1: // random r16 bullshit
{
i_dst = (IR >> 4) & 3;
if(i_dst != 3)
p_reg16_ptr = &mb->reg.raw16[i_dst];
else
p_reg16_ptr = &mb->SP;
if(!(IR & 8)) // LD r16, n16
{
instr_0x1_0:
data_wide = mch_memory_fetch_PC_op_2(mb);
*p_reg16_ptr = data_wide;
ncycles += 2;
goto generic_fetch;
}
else // ADD HL, r16
{
instr_0x1_1:
data_reg = *p_reg16_ptr;
data_flags = mb->reg.F & MB_FLAG_Z;
data_result = mb->reg.HL;
word mres = data_result + data_reg;
if(mres >> 16)
data_flags |= MB_FLAG_C;
mb->reg.HL = mres;
mb->reg.F = data_flags;
mbh_fr_set_r16_add(mb, data_result, data_reg);
ncycles += 2 - 1; // 2nd ALU cycle parallel with fetch
goto generic_fetch;
}
}
case 2: // LD r16 ptr
{
instr_0x2:
i_dst = (IR >> 4) & 3;
if(i_dst < 2)
p_reg16_ptr = &mb->reg.raw16[i_dst];
else
p_reg16_ptr = &mb->reg.HL;
if(IR & 8) // load ptr
{
mb->reg.A = mch_memory_dispatch_read(mb, *p_reg16_ptr);
}
else // store ptr
{
mch_memory_dispatch_write(mb, *p_reg16_ptr, mb->reg.A);
}
if(i_dst < 2)
;
else
{
if(!(i_dst & 1))
++*p_reg16_ptr;
else
--*p_reg16_ptr;
}
++ncycles;
goto generic_fetch;
}
case 3: // INCDEC r16
{
instr_0x3:
i_dst = (IR >> 4) & 3;
if(i_dst != 3)
p_reg16_ptr = &mb->reg.raw16[i_dst];
else
p_reg16_ptr = &mb->SP;
if(!(IR & 8)) // INC r16
{
++*p_reg16_ptr;
}
else // DEC r16
{
--*p_reg16_ptr;
}
++ncycles; // IDU busy penalty cycle
goto generic_fetch;
}
case 4: // INC r8
case 5: // DEC r8
{
instr_0x45:
// Z1H-
i_dst = IR_F_ROW ^ 1;
data_flags = mb->reg.F & MB_FLAG_C;
if(i_dst != 7)
data_reg = mb->reg.raw8[i_dst];
else
{
data_reg = mch_memory_dispatch_read(mb, mb->reg.HL);
++ncycles;
}
if(IR & 1) // DEC
{
data_flags |= MB_FLAG_N;
if((data_reg & 0xF) == 0)
data_flags |= MB_FLAG_H;
data_reg = (data_reg - 1) & 0xFF;
}
else // INC
{
data_reg = (data_reg + 1) & 0xFF;
if((data_reg & 0xF) == 0)
data_flags |= MB_FLAG_H;
}
if(!data_reg)
data_flags |= MB_FLAG_Z;
mb->reg.F = data_flags;
mb->FMC_MODE = MB_FMC_MODE_NONE; // we calculate flags in-place
if(i_dst != 7)
mb->reg.raw8[i_dst] = data_reg;
else
{
++ncycles;
mch_memory_dispatch_write(mb, mb->reg.HL, data_reg);
}
goto generic_fetch;
}
case 6: // LD r8, n8
{
instr_0x6:
data_reg = mch_memory_fetch_PC_op_1(mb);
i_dst = IR_F_ROW ^ 1;
++ncycles;
goto generic_r8_write;
}
case 7: // generic bullshit
// just reimpl $CB func here, too much hassle to use goto
switch(IR_row)
{
instr_007:
case 0: // RLCA
data_reg = mb->reg.A;
data_flags = mb->reg.F;
data_flags &= MB_FLAG_C;
data_reg = (data_reg << 1) | (data_reg >> 7);
data_flags = (data_reg >> 4) & 0x10; // Cy flag
mb->reg.A = data_reg & 0xFF;
mb->reg.F = data_flags;
mb->FMC_MODE = MB_FMC_MODE_NONE;
goto generic_fetch;
instr_017:
case 1: // RRCA
data_reg = mb->reg.A;
data_flags = mb->reg.F;
data_flags &= MB_FLAG_C;
data_reg = (data_reg << 7) | (data_reg >> 1);
data_flags = (data_reg >> 3) & 0x10; // Cy flag
mb->reg.A = data_reg & 0xFF;
mb->reg.F = data_flags;
mb->FMC_MODE = MB_FMC_MODE_NONE;
goto generic_fetch;
instr_027:
case 2: // RLA
data_reg = mb->reg.A;
data_flags = mb->reg.F;
data_flags &= MB_FLAG_C;
data_reg = (data_reg << 1) | ((data_flags >> 4) & 1);
data_flags = (data_reg >> 4) & 0x10; // Cy flag
mb->reg.A = data_reg & 0xFF;
mb->reg.F = data_flags;
mb->FMC_MODE = MB_FMC_MODE_NONE;
goto generic_fetch;
instr_037:
case 3: // RRA
data_reg = mb->reg.A;
data_flags = mb->reg.F;
data_flags &= MB_FLAG_C;
data_reg = (data_reg << 8) | (data_reg >> 1) | ((data_flags & 0x10) << 3);
data_flags = (data_reg >> 4) & 0x10; // Cy flag
mb->reg.A = data_reg & 0xFF;
mb->reg.F = data_flags;
mb->FMC_MODE = MB_FMC_MODE_NONE;
goto generic_fetch;
instr_047:
case 4: // fuck DAA
data_reg = mb->reg.A;
data_flags = mb->reg.F;
data_flags &= ~MB_FLAG_Z;
data_flags = mbh_fr_get(mb, data_flags);
if(!(data_flags & MB_FLAG_N))
{
if((data_flags & MB_FLAG_H) || ((data_reg & 0xF) > 9))
{
data_reg += 6;
data_flags |= MB_FLAG_H;
}
if((data_flags & MB_FLAG_C) || (((data_reg >> 4) & 0x1F) > 9))
{
data_reg += 6 << 4;
data_flags |= MB_FLAG_C;
}
}
else
{
// why the assymmetry???
if((data_flags & MB_FLAG_H))// || ((wdat & 0xF) > 9))
{
data_reg -= 6;
data_flags |= MB_FLAG_H;
}
if((data_flags & MB_FLAG_C))// || (((wdat >> 4) & 0x1F) > 9))
{
data_reg -= 6 << 4;
data_flags |= MB_FLAG_C;
}
}
data_flags &= (MB_FLAG_C | MB_FLAG_N);
data_reg &= 0xFF;
if(!data_reg)
data_flags |= MB_FLAG_Z;
mb->reg.A = data_reg;
mb->reg.F = data_flags;
goto generic_fetch;
instr_057:
case 5: // CPL A
mb->reg.F |= MB_FLAG_N | MB_FLAG_H;
mb->reg.A = ~mb->reg.A;
mb->FMC_MODE = MB_FMC_MODE_NONE;
goto generic_fetch;
instr_067:
case 6: // SET Cy
mb->reg.F = (mb->reg.F & MB_FLAG_Z) | MB_FLAG_C;
mb->FMC_MODE = MB_FMC_MODE_NONE;
goto generic_fetch;
instr_077:
case 7: // CPL Cy
mb->reg.F = (mb->reg.F ^ MB_FLAG_C) & (MB_FLAG_C | MB_FLAG_Z);
mb->FMC_MODE = MB_FMC_MODE_NONE;
goto generic_fetch;
default:
__builtin_unreachable();
}
}
return 0;
IR_case_1:
case 1: // MOV
if(COMPILER_LIKELY(IR != 0x76))
{
instr_MOV:
{
#if GBA
var vIR = IR ^ 9;
isrc = vIR & 7;
idst = (vIR >> 3) & 7;
#else
i_src = IR_column ^ 1;
i_dst = IR_row ^ 1;
#endif
}
if(i_src != 7)
{
data_reg = mb->reg.raw8[i_src];
}
else
{
++ncycles;
data_reg = mch_memory_dispatch_read(mb, mb->reg.HL);
}
generic_r8_write:
if(i_dst != 7)
{
mb->reg.raw8[i_dst] = data_reg;
}
else
{
mch_memory_dispatch_write(mb, mb->reg.HL, data_reg);
++ncycles;
}
goto generic_fetch;
}
else
{
instr_0x76:
goto generic_fetch_halt;
}
IR_case_2:
case 2: // ALU r8
{
// A is always the src and dst, thank fuck
instr_ALU:
i_src = IR_F_COL ^ 1;
if(i_src != 7)
{
data_reg = mb->reg.raw8[i_src];
}
else
{
++ncycles;
data_reg = mch_memory_dispatch_read(mb, mb->reg.HL);
}
alu_op_begin:
data_result = mb->reg.A;
switch(IR_F_ROW)
{
instr_ALU_0:
case 0: // ADD Z0HC
mbh_fr_set_r8_add(mb, data_result, data_reg);
instr_ALU_0_cont:
data_result = data_result + data_reg;
if(data_result >> 8)
data_flags = MB_FLAG_C;
else
data_flags = 0;
break;
//instr_ALU_1:
case 1: // ADC Z0HC
if(mb->reg.F & 0x10)
{
mbh_fr_set_r8_adc(mb, data_result, data_reg);
data_reg += 1;
goto instr_ALU_0_cont;
}
else
{
goto instr_ALU_0;
}
instr_ALU_2:
case 2: // SUB Z1HC
mbh_fr_set_r8_sub(mb, data_result, data_reg);
instr_ALU_2_cont:
data_result = data_result - data_reg;
if(data_result >> 8)
data_flags = MB_FLAG_N | MB_FLAG_C;
else
data_flags = MB_FLAG_N;
break;
//instr_ALU_3:
case 3: // SBC Z1HC
if(mb->reg.F & MB_FLAG_C)
{
mbh_fr_set_r8_sbc(mb, data_result, data_reg);
data_reg += 1;
goto instr_ALU_2_cont;
}
else
{
goto instr_ALU_2;
}
//instr_ALU_7:
case 7: // CMP Z1HC
mbh_fr_set_r8_sub(mb, data_result, data_reg);
data_result = data_result - data_reg;
if(data_result >> 8)
data_flags = MB_FLAG_N | MB_FLAG_C;
else
data_flags = MB_FLAG_N;
if(!(data_result & 0xFF))
data_flags |= MB_FLAG_Z;
mb->reg.F = data_flags;
goto generic_fetch;
//instr_ALU_4:
case 4: // AND Z010
mb->FMC_MODE = MB_FMC_MODE_NONE;
data_flags = MB_FLAG_H;
data_result &= data_reg;
break;
//instr_ALU_5:
case 5: // XOR Z000
mb->FMC_MODE = MB_FMC_MODE_NONE;
data_flags = 0;
data_result ^= data_reg;
break;
//instr_ALU_6:
case 6: // ORR Z000
mb->FMC_MODE = MB_FMC_MODE_NONE;
data_flags = 0;
data_result |= data_reg;
break;
default:
__builtin_unreachable();
}
if(!(data_result & 0xFF))
data_flags |= MB_FLAG_Z;
{
hilow16_t sta;
sta.low = data_result;
sta.high = data_flags;
mb->reg.hilo16[3] = sta;
}
goto generic_fetch;
}
IR_case_3:
case 3: // Bottom bullshit
switch(IR_column)
{
case 0: // misc junk and RET cc
{
if(IR & 0x20) // misc junk (bottom 4)
{
if(!(IR & 8)) // LDH n8
{
data_wide = 0xFF00 | mch_memory_fetch_PC_op_1(mb);
if(IR & 0x10)
{
instr_360:
DBGF("- /HR %04X -> ", data_wide);
mb->reg.A = mch_memory_dispatch_read_fexx_ffxx(mb, data_wide);
DBGF("%02X\n", mb->reg.A);
}
else
{
instr_340:
DBGF("- /HW %04X <- %02X\n", data_wide, mb->reg.A);
mch_memory_dispatch_write_fexx_ffxx(mb, data_wide, mb->reg.A);
}
ncycles += 2;
goto generic_fetch;
}
else
{
instr_weird_r16_r8:
data_wide = mch_memory_fetch_PC_op_1(mb);
if(data_wide >= 0x80)
data_wide |= 0xFF00;
data_reg = mb->SP;
//mbh_fr_set_r16_add_r8(mb, data_reg, data_wide);
mb->FMC_MODE = MB_FMC_MODE_NONE; // fuck this, the call rate is so low that it's cheaper to do this in-place
data_flags = 0;
if(((data_wide & 0xFF) + (data_reg & 0xFF)) >> 8)
data_flags |= MB_FLAG_C;
if(((data_wide & 0xF) + (data_reg & 0xF)) >> 4)
data_flags |= MB_FLAG_H;
data_wide = (data_wide + data_reg) & 0xFFFF;
mb->reg.F = data_flags;
if(IR & 0x10) // HL = SP + e8
{
mb->reg.HL = data_wide;
ncycles += 2; // ???
}
else // SP = SP + e8
{
mb->SP = data_wide;
ncycles += 3; // ???
}
goto generic_fetch;
}
}
else // RET cc
{
instr_RET_cc:
ncycles += 1; // cc_check penalty cycle
if(!MB_CC_CHECK)
{
goto generic_fetch;
}
else
{
goto generic_ret;
}
}
}
case 1: // POP r16 and junk
{
if(IR & 8) // junk
{
switch((IR >> 4) & 3)
{
instr_311:
case 0: // RET
generic_ret:
{
var SP = mb->SP;
data_wide = mch_memory_dispatch_read(mb, SP++);
data_wide |= mch_memory_dispatch_read(mb, (SP++) & 0xFFFF) << 8;
mb->SP = SP;
mb->PC = data_wide;
ncycles += 2 + 1; // idk why penalty cycle
goto generic_fetch;
}
instr_331:
case 1: // IRET
mb->IME = 1;
mb->IME_ASK = 1;
goto generic_ret;
instr_351:
case 2: // JP HL
mb->PC = mb->reg.HL;
goto generic_fetch; // no cycle penalty, IDU magic
instr_371:
case 3: // MOV SP, HL
mb->SP = mb->reg.HL;
++ncycles; // wide bus penalty
goto generic_fetch;
default:
__builtin_unreachable();
}
}
else // POP r16
{
var SP;
instr_POP_r16:
SP = mb->SP;
data_wide = mch_memory_dispatch_read(mb, SP++);
data_wide |= mch_memory_dispatch_read(mb, (SP++) & 0xFFFF) << 8;
mb->SP = SP;
i_src = (IR >> 4) & 3;
if(i_src != 3)
{
mb->reg.raw16[i_src] = data_wide;
}
else
{
MB_AF_W(data_wide);
mb->FMC_MODE = MB_FMC_MODE_NONE; // overwritten manually from stack
}
goto generic_fetch;
}
}
case 2: // LD mem or JP cc, n16
{
if(IR & 0x20) // LD mem
{
if(IR & 8)
{
data_wide = mch_memory_fetch_PC_op_2(mb);
if(IR & 0x10)
{
instr_372:
mb->reg.A = mch_memory_dispatch_read(mb, data_wide);
}
else
{
instr_352:
mch_memory_dispatch_write(mb, data_wide, mb->reg.A);
}
ncycles += 2 + 1;
}
else
{
data_wide = 0xFF00 | mb->reg.C;
if(!(IR & 0x10))
{
instr_342:
DBGF("- /HW %04X <- %02X\n", data_wide, mb->reg.A);
mch_memory_dispatch_write_fexx_ffxx(mb, data_wide, mb->reg.A);
}
else
{
instr_362:
DBGF("- /HR %04X -> ", data_wide);
mb->reg.A = mch_memory_dispatch_read_fexx_ffxx(mb, data_wide);
DBGF("%02X\n", mb->reg.A);
}
ncycles += 1;
}
goto generic_fetch;
}
else // JP cc, n16
{
instr_JP_cc_n16: //TODO: optimize this if possible
// small optimization, no imm fetch if no match
if(MB_CC_CHECK)
goto generic_jp_abs;
else
{
instr_JP_cc_n16_fail:
mb->PC = (mb->PC + 2) & 0xFFFF;
ncycles += 2;
goto generic_fetch;
}
}
}
case 3: // junk
{
switch(IR_F_ROW)
{
instr_303:
case 0: // JP n16
generic_jp_abs:
{
data_wide = mch_memory_fetch_PC_op_2(mb);
mb->PC = data_wide;
ncycles += 2 + 1; // idk why penalty cycle
goto generic_fetch;
}
instr_313:
case 1: // $CB
goto handle_cb;
instr_363:
case 6: // DI
mb->IME = 0;
mb->IME_ASK = 0;
goto generic_fetch;
instr_373:
case 7: // EI
mb->IME_ASK = 1;
goto generic_fetch;
default:
return 0; //ILL
}
}
case 4: // CALL cc, n16
{
// small optimization, do not fetch imm unless match
if(!(IR & 32))
{
instr_CALL_cc_n16: //TODO: optimize
if(MB_CC_CHECK)
goto generic_call;
else
{
instr_CALL_cc_n16_fail:
mb->PC = (mb->PC + 2) & 0xFFFF;
ncycles += 2;
goto generic_fetch;
}
}
else
{
return 0; //ILL
}
}
case 5: // PUSH r16 / CALL n16
{
if(!(IR & 8)) // PUSH r16
{
i_src = (IR >> 4) & 3;
if(i_src != 3)
{
data_wide = mb->reg.raw16[i_src];
}
else
{
mb->reg.F = mbh_fr_get(mb, mb->reg.F);
data_wide = MB_AF_R;
}
generic_push:
if(1)
{
var SP = mb->SP;
mch_memory_dispatch_write(mb, (--SP) & 0xFFFF, data_wide >> 8);
mch_memory_dispatch_write(mb, (--SP) & 0xFFFF, data_wide & 0xFF);
mb->SP = SP;
ncycles += 2 + 1; // IDU can't pre-decrement, one penalty cycle
}
goto generic_fetch;
}
else
{
if(IR_row == 1) // CALL n16
{
generic_call:
{
var PC = mb->PC;
data_wide = mch_memory_fetch_PC_op_2(mb);
mb->PC = data_wide;
data_wide = (PC + 2) & 0xFFFF;
ncycles += 2;
goto generic_push;
}
}
else
{
return 0; // ILL
}
}
}
case 6: // ALU n8
{
instr_3x6:
++ncycles;
data_reg = mch_memory_fetch_PC_op_1(mb);
goto alu_op_begin;
}
case 7: // RST
{
instr_3x7:
data_wide = mb->PC;
mb->PC = IR & (7 << 3);
goto generic_push;
}
}
return 0;
}
//goto generic_fetch;
return 0; // WTF
generic_fetch:
mb->IR.raw = mch_memory_fetch_PC(mb);
return ncycles + 1;
generic_fetch_halt:
{
//mb->HALTING = !(mb->IE & mb->IF & 0x1F);
mb->HALTING = 1;
//var PC = mb->PC;
mb->IR.raw = mch_memory_fetch_PC(mb);
/*
mb->PC = PC;
if(mb->HALTING)
mb->IR.raw = 0x00; // NOP
*/
return ncycles + 1;
}
handle_cb:
if(1)
{
++ncycles;
var CBIR = mch_memory_fetch_PC_op_1(mb);
#if CONFIG_DBG
if(_IS_DBG)
{
printf(" (%01o:%01o:%01o) ", CBIR >> 6, CBIR & 7, (CBIR >> 3) & 7);
mb_disasm_CB(mb, CBIR);
}
#endif
i_src = (CBIR >> 3) & 7;
i_dst = (CBIR & 7) ^ 1;
if(i_dst != 7)
data_reg = mb->reg.raw8[i_dst];
else
{
++ncycles;
data_reg = mch_memory_dispatch_read(mb, mb->reg.HL);
}
switch(CBIR >> 6)
{
case 0: // CB OP
data_flags = mb->reg.F;
data_flags &= MB_FLAG_C;
switch(i_src)
{
case 0: // RLC
data_reg = (data_reg << 1) | (data_reg >> 7);
data_flags = (data_reg >> 4) & 0x10; // Cy flag
break;
case 1: // RRC
data_reg = (data_reg << 7) | (data_reg >> 1);
data_flags = (data_reg >> 3) & 0x10; // Cy flag
break;
case 2: // RL
data_reg = (data_reg << 1) | ((data_flags >> 4) & 1);
data_flags = (data_reg >> 4) & 0x10; // Cy flag
break;
case 3: // RR
data_reg = (data_reg << 8) | (data_reg >> 1) | ((data_flags & 0x10) << 3);
data_flags = (data_reg >> 4) & 0x10; // Cy flag
break;
case 4: // LSL
data_reg = (data_reg << 1);
data_flags = (data_reg >> 4) & 0x10; // Cy flag
break;
case 5: // ASR
data_flags = (data_reg & 1) << 4; // Cy flag
data_reg = (data_reg >> 1) | (data_reg & 0x80);
break;
case 6: // SWAP
data_flags = 0;
data_reg = (data_reg >> 4) | (data_reg << 4);
break;
case 7: // LSR
data_flags = (data_reg & 1) << 4; // Cy flag
data_reg = (data_reg >> 1);
break;
}
data_reg &= 0xFF;
if(!data_reg)
data_flags |= MB_FLAG_Z;
mb->reg.F = data_flags;
goto cb_writeback;
case 1: // BTT
data_flags = mb->reg.F;
if(data_reg & (1 << i_src))
data_flags = (data_flags & MB_FLAG_C) | (MB_FLAG_H);
else
data_flags = (data_flags & MB_FLAG_C) | (MB_FLAG_H | MB_FLAG_Z);
mb->reg.F = data_flags;
goto generic_fetch;
case 2: // RES
data_reg &= ~(1 << i_src);
goto cb_writeback;
case 3: // SET
data_reg |= (1 << i_src);
goto cb_writeback;
}
return 0; // WTF
cb_writeback:
if(i_dst != 7)
mb->reg.raw8[i_dst] = data_reg;
else
{
mch_memory_dispatch_write(mb, mb->reg.HL, data_reg);
++ncycles;
}
goto generic_fetch;
}
return 0; // WTF
}