mirror of
https://github.com/Lorenzooone/cc3dsfs.git
synced 2025-06-19 00:55:38 -04:00
510 lines
12 KiB
C++
Executable File
510 lines
12 KiB
C++
Executable File
#include "utils.hpp"
|
|
|
|
#if defined (__linux__) && defined(XLIB_BASED)
|
|
#include <X11/Xlib.h>
|
|
#endif
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
#include <mutex>
|
|
#include <condition_variable>
|
|
#include <chrono>
|
|
#include <queue>
|
|
#include <cmath>
|
|
|
|
#define xstr(a) str(a)
|
|
#define str(a) #a
|
|
|
|
#define APP_VERSION_MAJOR 1
|
|
#define APP_VERSION_MINOR 2
|
|
#define APP_VERSION_REVISION 0
|
|
#ifdef RASPI
|
|
#define APP_VERSION_LETTER R
|
|
#else
|
|
#define APP_VERSION_LETTER M
|
|
#endif
|
|
|
|
static bool checked_be_once = false;
|
|
static bool _is_be = false;
|
|
std::chrono::time_point<std::chrono::high_resolution_clock> clock_start_program;
|
|
|
|
bool is_big_endian(void) {
|
|
if(checked_be_once)
|
|
return _is_be;
|
|
union {
|
|
uint32_t i;
|
|
char c[4];
|
|
} value = {0x01020304};
|
|
|
|
checked_be_once = true;
|
|
_is_be = value.c[0] == 1;
|
|
return _is_be;
|
|
}
|
|
|
|
uint32_t reverse_endianness(uint32_t value) {
|
|
return ((value & 0xFF) << 24) | ((value & 0xFF00) << 8) | ((value & 0xFF0000) >> 8) | ((value & 0xFF000000) >> 24);
|
|
}
|
|
|
|
uint16_t reverse_endianness(uint16_t value) {
|
|
return ((value & 0xFF) << 8) | ((value & 0xFF00) >> 8);
|
|
}
|
|
|
|
uint32_t to_le(uint32_t value) {
|
|
if(is_big_endian())
|
|
value = reverse_endianness(value);
|
|
return value;
|
|
}
|
|
|
|
uint32_t to_be(uint32_t value) {
|
|
if(!is_big_endian())
|
|
value = reverse_endianness(value);
|
|
return value;
|
|
}
|
|
|
|
uint16_t to_le(uint16_t value) {
|
|
if(is_big_endian())
|
|
value = reverse_endianness(value);
|
|
return value;
|
|
}
|
|
|
|
uint16_t to_be(uint16_t value) {
|
|
if(!is_big_endian())
|
|
value = reverse_endianness(value);
|
|
return value;
|
|
}
|
|
|
|
uint32_t from_le(uint32_t value) {
|
|
if(is_big_endian())
|
|
value = reverse_endianness(value);
|
|
return value;
|
|
}
|
|
|
|
uint32_t from_be(uint32_t value) {
|
|
if(!is_big_endian())
|
|
value = reverse_endianness(value);
|
|
return value;
|
|
}
|
|
|
|
uint16_t from_le(uint16_t value) {
|
|
if(is_big_endian())
|
|
value = reverse_endianness(value);
|
|
return value;
|
|
}
|
|
|
|
uint16_t from_be(uint16_t value) {
|
|
if(!is_big_endian())
|
|
value = reverse_endianness(value);
|
|
return value;
|
|
}
|
|
|
|
uint16_t read_le16(const uint8_t* data, size_t count, size_t multiplier) {
|
|
data += count * multiplier;
|
|
return data[0] | (data[1] << 8);
|
|
}
|
|
|
|
uint16_t read_be16(const uint8_t* data, size_t count, size_t multiplier) {
|
|
data += count * multiplier;
|
|
return data[1] | (data[0] << 8);
|
|
}
|
|
|
|
uint32_t read_le32(const uint8_t* data, size_t count, size_t multiplier) {
|
|
data += count * multiplier;
|
|
return data[0] | (data[1] << 8) | (data[2] << 16) | (data[3] << 24);
|
|
}
|
|
|
|
uint32_t read_be32(const uint8_t* data, size_t count, size_t multiplier) {
|
|
data += count * multiplier;
|
|
return data[3] | (data[2] << 8) | (data[1] << 16) | (data[0] << 24);
|
|
}
|
|
|
|
void write_le16(uint8_t* data, uint16_t value, size_t count, size_t multiplier) {
|
|
data += count * multiplier;
|
|
data[0] = value & 0xFF;
|
|
data[1] = (value >> 8) & 0xFF;
|
|
}
|
|
|
|
void write_be16(uint8_t* data, uint16_t value, size_t count, size_t multiplier) {
|
|
data += count * multiplier;
|
|
data[0] = (value >> 8) & 0xFF;
|
|
data[1] = value & 0xFF;
|
|
}
|
|
|
|
void write_le32(uint8_t* data, uint32_t value, size_t count, size_t multiplier) {
|
|
data += count * multiplier;
|
|
data[0] = value & 0xFF;
|
|
data[1] = (value >> 8) & 0xFF;
|
|
data[2] = (value >> 16) & 0xFF;
|
|
data[3] = (value >> 24) & 0xFF;
|
|
}
|
|
|
|
void write_be32(uint8_t* data, uint32_t value, size_t count, size_t multiplier) {
|
|
data += count * multiplier;
|
|
data[0] = (value >> 24) & 0xFF;
|
|
data[1] = (value >> 16) & 0xFF;
|
|
data[2] = (value >> 8) & 0xFF;
|
|
data[3] = value & 0xFF;
|
|
}
|
|
|
|
void write_string(uint8_t* data, std::string text) {
|
|
for(int i = 0; i < text.size(); i++)
|
|
data[i] = (uint8_t)text[i];
|
|
}
|
|
|
|
std::string read_string(uint8_t* data, size_t size) {
|
|
std::string out_str = "";
|
|
out_str.reserve(size);
|
|
for(int i = 0; i < size; i++)
|
|
out_str[i] = (char)data[i];
|
|
return out_str;
|
|
}
|
|
|
|
uint32_t rotate_bits_left(uint32_t value) {
|
|
return (value << 1) | ((value & 0x80000000) >> 31);
|
|
}
|
|
|
|
uint32_t rotate_bits_right(uint32_t value) {
|
|
return (value >> 1) | ((value & 1) << 31);
|
|
}
|
|
|
|
void init_start_time() {
|
|
clock_start_program = std::chrono::high_resolution_clock::now();
|
|
}
|
|
|
|
uint32_t ms_since_start() {
|
|
const auto curr_time = std::chrono::high_resolution_clock::now();
|
|
std::chrono::duration<double>diff = curr_time - clock_start_program;
|
|
return (uint32_t)(diff.count() * 1000);
|
|
}
|
|
|
|
std::string to_hex(uint16_t value) {
|
|
const int num_digits = sizeof(value) * 2;
|
|
char digits[num_digits];
|
|
for(int i = 0; i < num_digits; i++) {
|
|
uint8_t subvalue = (value >> (4 * (num_digits - 1 - i))) & 0xF;
|
|
char digit = '0' + subvalue;
|
|
if(subvalue >= 0xA)
|
|
digit = 'A' + (subvalue - 0xA);
|
|
digits[i] = digit;
|
|
}
|
|
return static_cast<std::string>(digits);
|
|
}
|
|
|
|
void init_threads(void) {
|
|
#if defined(__linux__) && defined(XLIB_BASED)
|
|
XInitThreads();
|
|
#endif
|
|
}
|
|
|
|
std::string get_version_string(bool get_letter) {
|
|
std::string version_str = std::to_string(APP_VERSION_MAJOR) + "." + std::to_string(APP_VERSION_MINOR) + "." + std::to_string(APP_VERSION_REVISION);
|
|
if(get_letter)
|
|
return version_str + xstr(APP_VERSION_LETTER);
|
|
return version_str;
|
|
}
|
|
|
|
std::string get_float_str_decimals(float value, int decimals) {
|
|
float approx_factor = pow(0.1, decimals) * (0.5);
|
|
int int_part = (int)(value + approx_factor);
|
|
int dec_part = (int)((value + approx_factor - int_part) * pow(10, decimals));
|
|
std::string return_text = std::to_string(int_part);
|
|
|
|
if(decimals > 0) {
|
|
if(!dec_part) {
|
|
return_text += ".";
|
|
for(int i = 0; i < decimals; i++)
|
|
return_text += "0";
|
|
}
|
|
else {
|
|
return_text += ".";
|
|
for(int i = 0; i < decimals; i++)
|
|
return_text += std::to_string((dec_part % ((int)pow(10, decimals - i))) / ((int)pow(10, decimals - i - 1)));
|
|
}
|
|
}
|
|
|
|
return return_text;
|
|
}
|
|
|
|
std::string LayoutNameGenerator(int index) {
|
|
if(index == STARTUP_FILE_INDEX)
|
|
return std::string(NAME) + ".cfg";
|
|
return "layout" + std::to_string(index) + ".cfg";
|
|
}
|
|
|
|
std::string LayoutPathGenerator(int index, bool created_proper_folder) {
|
|
bool success = false;
|
|
std::string cfg_dir;
|
|
#if !(defined(_WIN32) || defined(_WIN64))
|
|
const char* env_p = std::getenv("HOME");
|
|
if(created_proper_folder && env_p) {
|
|
cfg_dir = std::string(env_p) + "/.config/" + std::string(NAME);
|
|
success = true;
|
|
}
|
|
#endif
|
|
if(!success)
|
|
cfg_dir = ".config/" + std::string(NAME);
|
|
if(index == STARTUP_FILE_INDEX)
|
|
return cfg_dir + "/";
|
|
return cfg_dir + "/presets/";
|
|
}
|
|
|
|
std::string load_layout_name(int index, bool created_proper_folder, bool &success) {
|
|
if(index == STARTUP_FILE_INDEX) {
|
|
success = true;
|
|
return "Initial";
|
|
}
|
|
std::string name = LayoutNameGenerator(index);
|
|
std::string path = LayoutPathGenerator(index, created_proper_folder);
|
|
|
|
std::ifstream file(path + name);
|
|
std::string line;
|
|
success = false;
|
|
|
|
if(!file.good()) {
|
|
return std::to_string(index);
|
|
}
|
|
|
|
success = true;
|
|
try {
|
|
while(std::getline(file, line)) {
|
|
std::istringstream kvp(line);
|
|
std::string key;
|
|
|
|
if(std::getline(kvp, key, '=')) {
|
|
std::string value;
|
|
if(std::getline(kvp, value)) {
|
|
|
|
if(key == "name") {
|
|
file.close();
|
|
return value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
catch(...) {
|
|
success = false;
|
|
}
|
|
|
|
file.close();
|
|
return std::to_string(index);
|
|
}
|
|
//============================================================================
|
|
|
|
ConsumerMutex::ConsumerMutex() {
|
|
count = 0;
|
|
}
|
|
|
|
void ConsumerMutex::update_time_multiplier(float time_multiplier) {
|
|
if (time_multiplier <= 0)
|
|
return;
|
|
this->time_multiplier = time_multiplier;
|
|
}
|
|
|
|
double ConsumerMutex::get_time_s() {
|
|
return 1.0 / ((base_time_fps) * (1.0 / this->time_multiplier));
|
|
}
|
|
|
|
void ConsumerMutex::lock() {
|
|
access_mutex.lock();
|
|
bool success = false;
|
|
while (!success) {
|
|
if (count) {
|
|
count--;
|
|
success = true;
|
|
}
|
|
else {
|
|
condition.wait(access_mutex);
|
|
}
|
|
}
|
|
access_mutex.unlock();
|
|
}
|
|
|
|
bool ConsumerMutex::timed_lock() {
|
|
std::chrono::duration<double>max_timed_wait = std::chrono::duration<double>(this->get_time_s());
|
|
access_mutex.lock();
|
|
bool success = false;
|
|
while (!success) {
|
|
if (count) {
|
|
count--;
|
|
success = true;
|
|
}
|
|
else {
|
|
auto result = condition.wait_for(access_mutex, max_timed_wait);
|
|
if ((result == std::cv_status::timeout) && (!count))
|
|
break;
|
|
}
|
|
}
|
|
access_mutex.unlock();
|
|
return success;
|
|
}
|
|
|
|
bool ConsumerMutex::try_lock() {
|
|
access_mutex.lock();
|
|
bool success = false;
|
|
if (count) {
|
|
count--;
|
|
success = true;
|
|
}
|
|
access_mutex.unlock();
|
|
return success;
|
|
}
|
|
|
|
void ConsumerMutex::unlock() {
|
|
access_mutex.lock();
|
|
// Enforce 1 max
|
|
count = 1;
|
|
condition.notify_all();
|
|
access_mutex.unlock();
|
|
}
|
|
|
|
//============================================================================
|
|
|
|
SharedConsumerMutex::SharedConsumerMutex(int num_elements) {
|
|
this->num_elements = num_elements;
|
|
if(this->num_elements <= 0)
|
|
this->num_elements = 1;
|
|
this->counts = new int[this->num_elements];
|
|
for(int i = 0; i < this->num_elements; i++)
|
|
this->counts[i] = 0;
|
|
}
|
|
|
|
SharedConsumerMutex::~SharedConsumerMutex() {
|
|
delete []this->counts;
|
|
}
|
|
|
|
void SharedConsumerMutex::update_time_multiplier(float time_multiplier) {
|
|
if (time_multiplier <= 0)
|
|
return;
|
|
this->time_multiplier = time_multiplier;
|
|
}
|
|
|
|
double SharedConsumerMutex::get_time_s() {
|
|
return 1.0 / ((base_time_fps) * (1.0 / this->time_multiplier));
|
|
}
|
|
|
|
void SharedConsumerMutex::general_lock(int* index) {
|
|
access_mutex.lock();
|
|
bool success = false;
|
|
while (!success) {
|
|
for (int i = 0; i < num_elements; i++)
|
|
if (counts[i]) {
|
|
counts[i]--;
|
|
success = true;
|
|
*index = i;
|
|
break;
|
|
}
|
|
if (!success)
|
|
condition.wait(access_mutex);
|
|
}
|
|
access_mutex.unlock();
|
|
}
|
|
|
|
bool SharedConsumerMutex::general_timed_lock(int* index) {
|
|
std::chrono::time_point<std::chrono::high_resolution_clock> clock_start = std::chrono::high_resolution_clock::now();
|
|
std::chrono::time_point<std::chrono::high_resolution_clock> clock_end = clock_start + std::chrono::microseconds((int)(this->get_time_s() * 1000 * 1000));
|
|
access_mutex.lock();
|
|
bool success = false;
|
|
auto result = std::cv_status::no_timeout;
|
|
while (!success) {
|
|
for (int i = 0; i < num_elements; i++)
|
|
if (counts[i]) {
|
|
counts[i]--;
|
|
success = true;
|
|
*index = i;
|
|
break;
|
|
}
|
|
if(!success) {
|
|
const auto curr_time = std::chrono::high_resolution_clock::now();
|
|
std::chrono::duration<double>timed_wait = clock_end - curr_time;
|
|
if (curr_time >= clock_end)
|
|
result = std::cv_status::timeout;
|
|
if (result == std::cv_status::timeout)
|
|
break;
|
|
result = condition.wait_for(access_mutex, timed_wait);
|
|
}
|
|
}
|
|
access_mutex.unlock();
|
|
return success;
|
|
}
|
|
|
|
bool SharedConsumerMutex::general_try_lock(int* index) {
|
|
access_mutex.lock();
|
|
bool success = false;
|
|
for (int i = 0; i < num_elements; i++)
|
|
if (counts[i]) {
|
|
counts[i]--;
|
|
success = true;
|
|
*index = i;
|
|
break;
|
|
}
|
|
access_mutex.unlock();
|
|
return success;
|
|
}
|
|
|
|
void SharedConsumerMutex::specific_unlock(int index) {
|
|
if ((index < 0) || (index >= num_elements))
|
|
return;
|
|
access_mutex.lock();
|
|
// Enforce 1 max
|
|
counts[index] = 1;
|
|
condition.notify_all();
|
|
access_mutex.unlock();
|
|
}
|
|
|
|
void SharedConsumerMutex::specific_lock(int index) {
|
|
if ((index < 0) || (index >= num_elements))
|
|
return;
|
|
access_mutex.lock();
|
|
bool success = false;
|
|
while (!success) {
|
|
if(counts[index]) {
|
|
counts[index]--;
|
|
success = true;
|
|
}
|
|
else
|
|
condition.wait(access_mutex);
|
|
}
|
|
access_mutex.unlock();
|
|
}
|
|
|
|
bool SharedConsumerMutex::specific_timed_lock(int index) {
|
|
if ((index < 0) || (index >= num_elements))
|
|
return false;
|
|
std::chrono::time_point<std::chrono::high_resolution_clock> clock_start = std::chrono::high_resolution_clock::now();
|
|
std::chrono::time_point<std::chrono::high_resolution_clock> clock_end = clock_start + std::chrono::microseconds((int)(this->get_time_s() * 1000 * 1000));
|
|
access_mutex.lock();
|
|
bool success = false;
|
|
auto result = std::cv_status::no_timeout;
|
|
while (!success) {
|
|
if (counts[index]) {
|
|
counts[index]--;
|
|
success = true;
|
|
break;
|
|
}
|
|
if (!success) {
|
|
const auto curr_time = std::chrono::high_resolution_clock::now();
|
|
std::chrono::duration<double>timed_wait = clock_end - curr_time;
|
|
if (curr_time >= clock_end)
|
|
result = std::cv_status::timeout;
|
|
if (result == std::cv_status::timeout)
|
|
break;
|
|
result = condition.wait_for(access_mutex, timed_wait);
|
|
}
|
|
}
|
|
access_mutex.unlock();
|
|
return success;
|
|
}
|
|
|
|
bool SharedConsumerMutex::specific_try_lock(int index) {
|
|
if((index < 0) || (index >= num_elements))
|
|
return false;
|
|
access_mutex.lock();
|
|
bool success = false;
|
|
if (counts[index]) {
|
|
counts[index]--;
|
|
success = true;
|
|
}
|
|
access_mutex.unlock();
|
|
return success;
|
|
}
|