teak-llvm/clang/lib/Parse/ParseExprCXX.cpp
Chris Lattner f6d1c9c7f0 This is a pretty big cleanup for how invalid decl/type are handle.
This gets rid of a bunch of random InvalidDecl bools in sema, changing
us to use the following approach:

1. When analyzing a declspec or declarator, if an error is found, we 
   set a bit in Declarator saying that it is invalid.
2. Once the Decl is created by sema, we immediately set the isInvalid
   bit on it from what is in the declarator.  From this point on, sema
   consistently looks at and sets the bit on the decl.

This gives a very clear separation of concerns and simplifies a bunch
of code.  In addition to this, this patch makes these changes:

1. it renames DeclSpec::getInvalidType() -> isInvalidType().
2. various "merge" functions no longer return bools: they just set the
   invalid bit on the dest decl if invalid.
3. The ActOnTypedefDeclarator/ActOnFunctionDeclarator/ActOnVariableDeclarator
   methods now set invalid on the decl returned instead of returning an
   invalid bit byref.
4. In SemaType, refering to a typedef that was invalid now propagates the
   bit into the resultant type.  Stuff declared with the invalid typedef
   will now be marked invalid.
5. Various methods like CheckVariableDeclaration now return void and set the
   invalid bit on the decl they check.


There are a few minor changes to tests with this, but the only major bad
result is test/SemaCXX/constructor-recovery.cpp.  I'll take a look at this
next.

llvm-svn: 70020
2009-04-25 08:06:05 +00:00

1033 lines
35 KiB
C++

//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expression parsing implementation for C++.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/DeclSpec.h"
#include "AstGuard.h"
using namespace clang;
/// ParseOptionalCXXScopeSpecifier - Parse global scope or
/// nested-name-specifier if present. Returns true if a nested-name-specifier
/// was parsed from the token stream. Note that this routine will not parse
/// ::new or ::delete, it will just leave them in the token stream.
///
/// '::'[opt] nested-name-specifier
/// '::'
///
/// nested-name-specifier:
/// type-name '::'
/// namespace-name '::'
/// nested-name-specifier identifier '::'
/// nested-name-specifier 'template'[opt] simple-template-id '::' [TODO]
///
bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS) {
assert(getLang().CPlusPlus &&
"Call sites of this function should be guarded by checking for C++");
if (Tok.is(tok::annot_cxxscope)) {
SS.setScopeRep(Tok.getAnnotationValue());
SS.setRange(Tok.getAnnotationRange());
ConsumeToken();
return true;
}
bool HasScopeSpecifier = false;
if (Tok.is(tok::coloncolon)) {
// ::new and ::delete aren't nested-name-specifiers.
tok::TokenKind NextKind = NextToken().getKind();
if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
return false;
// '::' - Global scope qualifier.
SourceLocation CCLoc = ConsumeToken();
SS.setBeginLoc(CCLoc);
SS.setScopeRep(Actions.ActOnCXXGlobalScopeSpecifier(CurScope, CCLoc));
SS.setEndLoc(CCLoc);
HasScopeSpecifier = true;
}
while (true) {
// nested-name-specifier:
// type-name '::'
// namespace-name '::'
// nested-name-specifier identifier '::'
if (Tok.is(tok::identifier) && NextToken().is(tok::coloncolon)) {
// We have an identifier followed by a '::'. Lookup this name
// as the name in a nested-name-specifier.
IdentifierInfo *II = Tok.getIdentifierInfo();
SourceLocation IdLoc = ConsumeToken();
assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
SourceLocation CCLoc = ConsumeToken();
if (!HasScopeSpecifier) {
SS.setBeginLoc(IdLoc);
HasScopeSpecifier = true;
}
if (SS.isInvalid())
continue;
SS.setScopeRep(
Actions.ActOnCXXNestedNameSpecifier(CurScope, SS, IdLoc, CCLoc, *II));
SS.setEndLoc(CCLoc);
continue;
}
// nested-name-specifier:
// type-name '::'
// nested-name-specifier 'template'[opt] simple-template-id '::'
if ((Tok.is(tok::identifier) && NextToken().is(tok::less)) ||
Tok.is(tok::kw_template)) {
// Parse the optional 'template' keyword, then make sure we have
// 'identifier <' after it.
if (Tok.is(tok::kw_template)) {
SourceLocation TemplateKWLoc = ConsumeToken();
if (Tok.isNot(tok::identifier)) {
Diag(Tok.getLocation(),
diag::err_id_after_template_in_nested_name_spec)
<< SourceRange(TemplateKWLoc);
break;
}
if (NextToken().isNot(tok::less)) {
Diag(NextToken().getLocation(),
diag::err_less_after_template_name_in_nested_name_spec)
<< Tok.getIdentifierInfo()->getName()
<< SourceRange(TemplateKWLoc, Tok.getLocation());
break;
}
TemplateTy Template
= Actions.ActOnDependentTemplateName(TemplateKWLoc,
*Tok.getIdentifierInfo(),
Tok.getLocation(),
SS);
AnnotateTemplateIdToken(Template, TNK_Dependent_template_name,
&SS, TemplateKWLoc, false);
continue;
}
TemplateTy Template;
TemplateNameKind TNK = Actions.isTemplateName(*Tok.getIdentifierInfo(),
CurScope, Template, &SS);
if (TNK) {
// We have found a template name, so annotate this this token
// with a template-id annotation. We do not permit the
// template-id to be translated into a type annotation,
// because some clients (e.g., the parsing of class template
// specializations) still want to see the original template-id
// token.
AnnotateTemplateIdToken(Template, TNK, &SS, SourceLocation(), false);
continue;
}
}
if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
// We have
//
// simple-template-id '::'
//
// So we need to check whether the simple-template-id is of the
// right kind (it should name a type or be dependent), and then
// convert it into a type within the nested-name-specifier.
TemplateIdAnnotation *TemplateId
= static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
if (TemplateId->Kind == TNK_Type_template ||
TemplateId->Kind == TNK_Dependent_template_name) {
AnnotateTemplateIdTokenAsType(&SS);
SS.clear();
assert(Tok.is(tok::annot_typename) &&
"AnnotateTemplateIdTokenAsType isn't working");
Token TypeToken = Tok;
ConsumeToken();
assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
SourceLocation CCLoc = ConsumeToken();
if (!HasScopeSpecifier) {
SS.setBeginLoc(TypeToken.getLocation());
HasScopeSpecifier = true;
}
if (TypeToken.getAnnotationValue())
SS.setScopeRep(
Actions.ActOnCXXNestedNameSpecifier(CurScope, SS,
TypeToken.getAnnotationValue(),
TypeToken.getAnnotationRange(),
CCLoc));
else
SS.setScopeRep(0);
SS.setEndLoc(CCLoc);
continue;
} else
assert(false && "FIXME: Only type template names supported here");
}
// We don't have any tokens that form the beginning of a
// nested-name-specifier, so we're done.
break;
}
return HasScopeSpecifier;
}
/// ParseCXXIdExpression - Handle id-expression.
///
/// id-expression:
/// unqualified-id
/// qualified-id
///
/// unqualified-id:
/// identifier
/// operator-function-id
/// conversion-function-id [TODO]
/// '~' class-name [TODO]
/// template-id [TODO]
///
/// qualified-id:
/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
/// '::' identifier
/// '::' operator-function-id
/// '::' template-id [TODO]
///
/// nested-name-specifier:
/// type-name '::'
/// namespace-name '::'
/// nested-name-specifier identifier '::'
/// nested-name-specifier 'template'[opt] simple-template-id '::' [TODO]
///
/// NOTE: The standard specifies that, for qualified-id, the parser does not
/// expect:
///
/// '::' conversion-function-id
/// '::' '~' class-name
///
/// This may cause a slight inconsistency on diagnostics:
///
/// class C {};
/// namespace A {}
/// void f() {
/// :: A :: ~ C(); // Some Sema error about using destructor with a
/// // namespace.
/// :: ~ C(); // Some Parser error like 'unexpected ~'.
/// }
///
/// We simplify the parser a bit and make it work like:
///
/// qualified-id:
/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
/// '::' unqualified-id
///
/// That way Sema can handle and report similar errors for namespaces and the
/// global scope.
///
/// The isAddressOfOperand parameter indicates that this id-expression is a
/// direct operand of the address-of operator. This is, besides member contexts,
/// the only place where a qualified-id naming a non-static class member may
/// appear.
///
Parser::OwningExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
// qualified-id:
// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
// '::' unqualified-id
//
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS);
// unqualified-id:
// identifier
// operator-function-id
// conversion-function-id
// '~' class-name [TODO]
// template-id [TODO]
//
switch (Tok.getKind()) {
default:
return ExprError(Diag(Tok, diag::err_expected_unqualified_id));
case tok::identifier: {
// Consume the identifier so that we can see if it is followed by a '('.
IdentifierInfo &II = *Tok.getIdentifierInfo();
SourceLocation L = ConsumeToken();
return Actions.ActOnIdentifierExpr(CurScope, L, II, Tok.is(tok::l_paren),
&SS, isAddressOfOperand);
}
case tok::kw_operator: {
SourceLocation OperatorLoc = Tok.getLocation();
if (OverloadedOperatorKind Op = TryParseOperatorFunctionId())
return Actions.ActOnCXXOperatorFunctionIdExpr(
CurScope, OperatorLoc, Op, Tok.is(tok::l_paren), SS,
isAddressOfOperand);
if (TypeTy *Type = ParseConversionFunctionId())
return Actions.ActOnCXXConversionFunctionExpr(CurScope, OperatorLoc, Type,
Tok.is(tok::l_paren), SS,
isAddressOfOperand);
// We already complained about a bad conversion-function-id,
// above.
return ExprError();
}
} // switch.
assert(0 && "The switch was supposed to take care everything.");
}
/// ParseCXXCasts - This handles the various ways to cast expressions to another
/// type.
///
/// postfix-expression: [C++ 5.2p1]
/// 'dynamic_cast' '<' type-name '>' '(' expression ')'
/// 'static_cast' '<' type-name '>' '(' expression ')'
/// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
/// 'const_cast' '<' type-name '>' '(' expression ')'
///
Parser::OwningExprResult Parser::ParseCXXCasts() {
tok::TokenKind Kind = Tok.getKind();
const char *CastName = 0; // For error messages
switch (Kind) {
default: assert(0 && "Unknown C++ cast!"); abort();
case tok::kw_const_cast: CastName = "const_cast"; break;
case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
case tok::kw_static_cast: CastName = "static_cast"; break;
}
SourceLocation OpLoc = ConsumeToken();
SourceLocation LAngleBracketLoc = Tok.getLocation();
if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
return ExprError();
TypeResult CastTy = ParseTypeName();
SourceLocation RAngleBracketLoc = Tok.getLocation();
if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
if (Tok.isNot(tok::l_paren))
return ExprError(Diag(Tok, diag::err_expected_lparen_after) << CastName);
OwningExprResult Result(ParseSimpleParenExpression(RParenLoc));
if (!Result.isInvalid() && !CastTy.isInvalid())
Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
LAngleBracketLoc, CastTy.get(),
RAngleBracketLoc,
LParenLoc, move(Result), RParenLoc);
return move(Result);
}
/// ParseCXXTypeid - This handles the C++ typeid expression.
///
/// postfix-expression: [C++ 5.2p1]
/// 'typeid' '(' expression ')'
/// 'typeid' '(' type-id ')'
///
Parser::OwningExprResult Parser::ParseCXXTypeid() {
assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
SourceLocation OpLoc = ConsumeToken();
SourceLocation LParenLoc = Tok.getLocation();
SourceLocation RParenLoc;
// typeid expressions are always parenthesized.
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"typeid"))
return ExprError();
OwningExprResult Result(Actions);
if (isTypeIdInParens()) {
TypeResult Ty = ParseTypeName();
// Match the ')'.
MatchRHSPunctuation(tok::r_paren, LParenLoc);
if (Ty.isInvalid())
return ExprError();
Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
Ty.get(), RParenLoc);
} else {
Result = ParseExpression();
// Match the ')'.
if (Result.isInvalid())
SkipUntil(tok::r_paren);
else {
MatchRHSPunctuation(tok::r_paren, LParenLoc);
Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
Result.release(), RParenLoc);
}
}
return move(Result);
}
/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
///
/// boolean-literal: [C++ 2.13.5]
/// 'true'
/// 'false'
Parser::OwningExprResult Parser::ParseCXXBoolLiteral() {
tok::TokenKind Kind = Tok.getKind();
return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
}
/// ParseThrowExpression - This handles the C++ throw expression.
///
/// throw-expression: [C++ 15]
/// 'throw' assignment-expression[opt]
Parser::OwningExprResult Parser::ParseThrowExpression() {
assert(Tok.is(tok::kw_throw) && "Not throw!");
SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
// If the current token isn't the start of an assignment-expression,
// then the expression is not present. This handles things like:
// "C ? throw : (void)42", which is crazy but legal.
switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
case tok::semi:
case tok::r_paren:
case tok::r_square:
case tok::r_brace:
case tok::colon:
case tok::comma:
return Actions.ActOnCXXThrow(ThrowLoc, ExprArg(Actions));
default:
OwningExprResult Expr(ParseAssignmentExpression());
if (Expr.isInvalid()) return move(Expr);
return Actions.ActOnCXXThrow(ThrowLoc, move(Expr));
}
}
/// ParseCXXThis - This handles the C++ 'this' pointer.
///
/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
/// a non-lvalue expression whose value is the address of the object for which
/// the function is called.
Parser::OwningExprResult Parser::ParseCXXThis() {
assert(Tok.is(tok::kw_this) && "Not 'this'!");
SourceLocation ThisLoc = ConsumeToken();
return Actions.ActOnCXXThis(ThisLoc);
}
/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
///
/// postfix-expression: [C++ 5.2p1]
/// simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
/// typename-specifier '(' expression-list[opt] ')' [TODO]
///
Parser::OwningExprResult
Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
TypeTy *TypeRep = Actions.ActOnTypeName(CurScope, DeclaratorInfo).get();
assert(Tok.is(tok::l_paren) && "Expected '('!");
SourceLocation LParenLoc = ConsumeParen();
ExprVector Exprs(Actions);
CommaLocsTy CommaLocs;
if (Tok.isNot(tok::r_paren)) {
if (ParseExpressionList(Exprs, CommaLocs)) {
SkipUntil(tok::r_paren);
return ExprError();
}
}
// Match the ')'.
SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
"Unexpected number of commas!");
return Actions.ActOnCXXTypeConstructExpr(DS.getSourceRange(), TypeRep,
LParenLoc, move_arg(Exprs),
&CommaLocs[0], RParenLoc);
}
/// ParseCXXCondition - if/switch/while/for condition expression.
///
/// condition:
/// expression
/// type-specifier-seq declarator '=' assignment-expression
/// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
/// '=' assignment-expression
///
Parser::OwningExprResult Parser::ParseCXXCondition() {
if (!isCXXConditionDeclaration())
return ParseExpression(); // expression
SourceLocation StartLoc = Tok.getLocation();
// type-specifier-seq
DeclSpec DS;
ParseSpecifierQualifierList(DS);
// declarator
Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
ParseDeclarator(DeclaratorInfo);
// simple-asm-expr[opt]
if (Tok.is(tok::kw_asm)) {
SourceLocation Loc;
OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
if (AsmLabel.isInvalid()) {
SkipUntil(tok::semi);
return ExprError();
}
DeclaratorInfo.setAsmLabel(AsmLabel.release());
DeclaratorInfo.SetRangeEnd(Loc);
}
// If attributes are present, parse them.
if (Tok.is(tok::kw___attribute)) {
SourceLocation Loc;
AttributeList *AttrList = ParseAttributes(&Loc);
DeclaratorInfo.AddAttributes(AttrList, Loc);
}
// '=' assignment-expression
if (Tok.isNot(tok::equal))
return ExprError(Diag(Tok, diag::err_expected_equal_after_declarator));
SourceLocation EqualLoc = ConsumeToken();
OwningExprResult AssignExpr(ParseAssignmentExpression());
if (AssignExpr.isInvalid())
return ExprError();
return Actions.ActOnCXXConditionDeclarationExpr(CurScope, StartLoc,
DeclaratorInfo,EqualLoc,
move(AssignExpr));
}
/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
/// This should only be called when the current token is known to be part of
/// simple-type-specifier.
///
/// simple-type-specifier:
/// '::'[opt] nested-name-specifier[opt] type-name
/// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
/// char
/// wchar_t
/// bool
/// short
/// int
/// long
/// signed
/// unsigned
/// float
/// double
/// void
/// [GNU] typeof-specifier
/// [C++0x] auto [TODO]
///
/// type-name:
/// class-name
/// enum-name
/// typedef-name
///
void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
DS.SetRangeStart(Tok.getLocation());
const char *PrevSpec;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
case tok::identifier: // foo::bar
case tok::coloncolon: // ::foo::bar
assert(0 && "Annotation token should already be formed!");
default:
assert(0 && "Not a simple-type-specifier token!");
abort();
// type-name
case tok::annot_typename: {
DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
Tok.getAnnotationValue());
break;
}
// builtin types
case tok::kw_short:
DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
break;
case tok::kw_long:
DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
break;
case tok::kw_signed:
DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
break;
case tok::kw_unsigned:
DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
break;
case tok::kw_void:
DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
break;
case tok::kw_char:
DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
break;
case tok::kw_int:
DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
break;
case tok::kw_float:
DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
break;
case tok::kw_double:
DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
break;
case tok::kw_wchar_t:
DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
break;
case tok::kw_bool:
DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
break;
// GNU typeof support.
case tok::kw_typeof:
ParseTypeofSpecifier(DS);
DS.Finish(Diags, PP);
return;
}
if (Tok.is(tok::annot_typename))
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
else
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
DS.Finish(Diags, PP);
}
/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
/// [dcl.name]), which is a non-empty sequence of type-specifiers,
/// e.g., "const short int". Note that the DeclSpec is *not* finished
/// by parsing the type-specifier-seq, because these sequences are
/// typically followed by some form of declarator. Returns true and
/// emits diagnostics if this is not a type-specifier-seq, false
/// otherwise.
///
/// type-specifier-seq: [C++ 8.1]
/// type-specifier type-specifier-seq[opt]
///
bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
DS.SetRangeStart(Tok.getLocation());
const char *PrevSpec = 0;
int isInvalid = 0;
// Parse one or more of the type specifiers.
if (!ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec)) {
Diag(Tok, diag::err_operator_missing_type_specifier);
return true;
}
while (ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec)) ;
return false;
}
/// TryParseOperatorFunctionId - Attempts to parse a C++ overloaded
/// operator name (C++ [over.oper]). If successful, returns the
/// predefined identifier that corresponds to that overloaded
/// operator. Otherwise, returns NULL and does not consume any tokens.
///
/// operator-function-id: [C++ 13.5]
/// 'operator' operator
///
/// operator: one of
/// new delete new[] delete[]
/// + - * / % ^ & | ~
/// ! = < > += -= *= /= %=
/// ^= &= |= << >> >>= <<= == !=
/// <= >= && || ++ -- , ->* ->
/// () []
OverloadedOperatorKind
Parser::TryParseOperatorFunctionId(SourceLocation *EndLoc) {
assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
SourceLocation Loc;
OverloadedOperatorKind Op = OO_None;
switch (NextToken().getKind()) {
case tok::kw_new:
ConsumeToken(); // 'operator'
Loc = ConsumeToken(); // 'new'
if (Tok.is(tok::l_square)) {
ConsumeBracket(); // '['
Loc = Tok.getLocation();
ExpectAndConsume(tok::r_square, diag::err_expected_rsquare); // ']'
Op = OO_Array_New;
} else {
Op = OO_New;
}
if (EndLoc)
*EndLoc = Loc;
return Op;
case tok::kw_delete:
ConsumeToken(); // 'operator'
Loc = ConsumeToken(); // 'delete'
if (Tok.is(tok::l_square)) {
ConsumeBracket(); // '['
Loc = Tok.getLocation();
ExpectAndConsume(tok::r_square, diag::err_expected_rsquare); // ']'
Op = OO_Array_Delete;
} else {
Op = OO_Delete;
}
if (EndLoc)
*EndLoc = Loc;
return Op;
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
case tok::Token: Op = OO_##Name; break;
#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
#include "clang/Basic/OperatorKinds.def"
case tok::l_paren:
ConsumeToken(); // 'operator'
ConsumeParen(); // '('
Loc = Tok.getLocation();
ExpectAndConsume(tok::r_paren, diag::err_expected_rparen); // ')'
if (EndLoc)
*EndLoc = Loc;
return OO_Call;
case tok::l_square:
ConsumeToken(); // 'operator'
ConsumeBracket(); // '['
Loc = Tok.getLocation();
ExpectAndConsume(tok::r_square, diag::err_expected_rsquare); // ']'
if (EndLoc)
*EndLoc = Loc;
return OO_Subscript;
default:
return OO_None;
}
ConsumeToken(); // 'operator'
Loc = ConsumeAnyToken(); // the operator itself
if (EndLoc)
*EndLoc = Loc;
return Op;
}
/// ParseConversionFunctionId - Parse a C++ conversion-function-id,
/// which expresses the name of a user-defined conversion operator
/// (C++ [class.conv.fct]p1). Returns the type that this operator is
/// specifying a conversion for, or NULL if there was an error.
///
/// conversion-function-id: [C++ 12.3.2]
/// operator conversion-type-id
///
/// conversion-type-id:
/// type-specifier-seq conversion-declarator[opt]
///
/// conversion-declarator:
/// ptr-operator conversion-declarator[opt]
Parser::TypeTy *Parser::ParseConversionFunctionId(SourceLocation *EndLoc) {
assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
ConsumeToken(); // 'operator'
// Parse the type-specifier-seq.
DeclSpec DS;
if (ParseCXXTypeSpecifierSeq(DS))
return 0;
// Parse the conversion-declarator, which is merely a sequence of
// ptr-operators.
Declarator D(DS, Declarator::TypeNameContext);
ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
if (EndLoc)
*EndLoc = D.getSourceRange().getEnd();
// Finish up the type.
Action::TypeResult Result = Actions.ActOnTypeName(CurScope, D);
if (Result.isInvalid())
return 0;
else
return Result.get();
}
/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
/// memory in a typesafe manner and call constructors.
///
/// This method is called to parse the new expression after the optional :: has
/// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
/// is its location. Otherwise, "Start" is the location of the 'new' token.
///
/// new-expression:
/// '::'[opt] 'new' new-placement[opt] new-type-id
/// new-initializer[opt]
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
/// new-initializer[opt]
///
/// new-placement:
/// '(' expression-list ')'
///
/// new-type-id:
/// type-specifier-seq new-declarator[opt]
///
/// new-declarator:
/// ptr-operator new-declarator[opt]
/// direct-new-declarator
///
/// new-initializer:
/// '(' expression-list[opt] ')'
/// [C++0x] braced-init-list [TODO]
///
Parser::OwningExprResult
Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
assert(Tok.is(tok::kw_new) && "expected 'new' token");
ConsumeToken(); // Consume 'new'
// A '(' now can be a new-placement or the '(' wrapping the type-id in the
// second form of new-expression. It can't be a new-type-id.
ExprVector PlacementArgs(Actions);
SourceLocation PlacementLParen, PlacementRParen;
bool ParenTypeId;
DeclSpec DS;
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
if (Tok.is(tok::l_paren)) {
// If it turns out to be a placement, we change the type location.
PlacementLParen = ConsumeParen();
if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
PlacementRParen = MatchRHSPunctuation(tok::r_paren, PlacementLParen);
if (PlacementRParen.isInvalid()) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
if (PlacementArgs.empty()) {
// Reset the placement locations. There was no placement.
PlacementLParen = PlacementRParen = SourceLocation();
ParenTypeId = true;
} else {
// We still need the type.
if (Tok.is(tok::l_paren)) {
SourceLocation LParen = ConsumeParen();
ParseSpecifierQualifierList(DS);
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
ParseDeclarator(DeclaratorInfo);
MatchRHSPunctuation(tok::r_paren, LParen);
ParenTypeId = true;
} else {
if (ParseCXXTypeSpecifierSeq(DS))
DeclaratorInfo.setInvalidType(true);
else {
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
ParseDeclaratorInternal(DeclaratorInfo,
&Parser::ParseDirectNewDeclarator);
}
ParenTypeId = false;
}
}
} else {
// A new-type-id is a simplified type-id, where essentially the
// direct-declarator is replaced by a direct-new-declarator.
if (ParseCXXTypeSpecifierSeq(DS))
DeclaratorInfo.setInvalidType(true);
else {
DeclaratorInfo.SetSourceRange(DS.getSourceRange());
ParseDeclaratorInternal(DeclaratorInfo,
&Parser::ParseDirectNewDeclarator);
}
ParenTypeId = false;
}
if (DeclaratorInfo.isInvalidType()) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
ExprVector ConstructorArgs(Actions);
SourceLocation ConstructorLParen, ConstructorRParen;
if (Tok.is(tok::l_paren)) {
ConstructorLParen = ConsumeParen();
if (Tok.isNot(tok::r_paren)) {
CommaLocsTy CommaLocs;
if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
}
ConstructorRParen = MatchRHSPunctuation(tok::r_paren, ConstructorLParen);
if (ConstructorRParen.isInvalid()) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
}
return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
move_arg(PlacementArgs), PlacementRParen,
ParenTypeId, DeclaratorInfo, ConstructorLParen,
move_arg(ConstructorArgs), ConstructorRParen);
}
/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
/// passed to ParseDeclaratorInternal.
///
/// direct-new-declarator:
/// '[' expression ']'
/// direct-new-declarator '[' constant-expression ']'
///
void Parser::ParseDirectNewDeclarator(Declarator &D) {
// Parse the array dimensions.
bool first = true;
while (Tok.is(tok::l_square)) {
SourceLocation LLoc = ConsumeBracket();
OwningExprResult Size(first ? ParseExpression()
: ParseConstantExpression());
if (Size.isInvalid()) {
// Recover
SkipUntil(tok::r_square);
return;
}
first = false;
SourceLocation RLoc = MatchRHSPunctuation(tok::r_square, LLoc);
D.AddTypeInfo(DeclaratorChunk::getArray(0, /*static=*/false, /*star=*/false,
Size.release(), LLoc),
RLoc);
if (RLoc.isInvalid())
return;
}
}
/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
/// This ambiguity appears in the syntax of the C++ new operator.
///
/// new-expression:
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
/// new-initializer[opt]
///
/// new-placement:
/// '(' expression-list ')'
///
bool Parser::ParseExpressionListOrTypeId(ExprListTy &PlacementArgs,
Declarator &D) {
// The '(' was already consumed.
if (isTypeIdInParens()) {
ParseSpecifierQualifierList(D.getMutableDeclSpec());
D.SetSourceRange(D.getDeclSpec().getSourceRange());
ParseDeclarator(D);
return D.isInvalidType();
}
// It's not a type, it has to be an expression list.
// Discard the comma locations - ActOnCXXNew has enough parameters.
CommaLocsTy CommaLocs;
return ParseExpressionList(PlacementArgs, CommaLocs);
}
/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
/// to free memory allocated by new.
///
/// This method is called to parse the 'delete' expression after the optional
/// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
/// and "Start" is its location. Otherwise, "Start" is the location of the
/// 'delete' token.
///
/// delete-expression:
/// '::'[opt] 'delete' cast-expression
/// '::'[opt] 'delete' '[' ']' cast-expression
Parser::OwningExprResult
Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
ConsumeToken(); // Consume 'delete'
// Array delete?
bool ArrayDelete = false;
if (Tok.is(tok::l_square)) {
ArrayDelete = true;
SourceLocation LHS = ConsumeBracket();
SourceLocation RHS = MatchRHSPunctuation(tok::r_square, LHS);
if (RHS.isInvalid())
return ExprError();
}
OwningExprResult Operand(ParseCastExpression(false));
if (Operand.isInvalid())
return move(Operand);
return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, move(Operand));
}
static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind)
{
switch(kind) {
default: assert(false && "Not a known unary type trait.");
case tok::kw___has_nothrow_assign: return UTT_HasNothrowAssign;
case tok::kw___has_nothrow_copy: return UTT_HasNothrowCopy;
case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
case tok::kw___has_trivial_assign: return UTT_HasTrivialAssign;
case tok::kw___has_trivial_copy: return UTT_HasTrivialCopy;
case tok::kw___has_trivial_constructor: return UTT_HasTrivialConstructor;
case tok::kw___has_trivial_destructor: return UTT_HasTrivialDestructor;
case tok::kw___has_virtual_destructor: return UTT_HasVirtualDestructor;
case tok::kw___is_abstract: return UTT_IsAbstract;
case tok::kw___is_class: return UTT_IsClass;
case tok::kw___is_empty: return UTT_IsEmpty;
case tok::kw___is_enum: return UTT_IsEnum;
case tok::kw___is_pod: return UTT_IsPOD;
case tok::kw___is_polymorphic: return UTT_IsPolymorphic;
case tok::kw___is_union: return UTT_IsUnion;
}
}
/// ParseUnaryTypeTrait - Parse the built-in unary type-trait
/// pseudo-functions that allow implementation of the TR1/C++0x type traits
/// templates.
///
/// primary-expression:
/// [GNU] unary-type-trait '(' type-id ')'
///
Parser::OwningExprResult Parser::ParseUnaryTypeTrait()
{
UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
SourceLocation Loc = ConsumeToken();
SourceLocation LParen = Tok.getLocation();
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen))
return ExprError();
// FIXME: Error reporting absolutely sucks! If the this fails to parse a type
// there will be cryptic errors about mismatched parentheses and missing
// specifiers.
TypeResult Ty = ParseTypeName();
SourceLocation RParen = MatchRHSPunctuation(tok::r_paren, LParen);
if (Ty.isInvalid())
return ExprError();
return Actions.ActOnUnaryTypeTrait(UTT, Loc, LParen, Ty.get(), RParen);
}