teak-llvm/llvm/lib/Transforms/Instrumentation/HWAddressSanitizer.cpp
Evgeniy Stepanov 43271b1803 [hwasan] Fix inline instrumentation.
This patch changes hwasan inline instrumentation:

Fixes address untagging for shadow address calculation (use 0xFF instead of 0x00 for the top byte).
Emits brk instruction instead of hlt for the kernel and user space.
Use 0x900 instead of 0x100 for brk immediate (0x100 - 0x800 are unavailable in the kernel).
Fixes and adds appropriate tests.

Patch by Andrey Konovalov.

Differential Revision: https://reviews.llvm.org/D43135

llvm-svn: 325711
2018-02-21 19:52:23 +00:00

591 lines
22 KiB
C++

//===- HWAddressSanitizer.cpp - detector of uninitialized reads -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file is a part of HWAddressSanitizer, an address sanity checker
/// based on tagged addressing.
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
using namespace llvm;
#define DEBUG_TYPE "hwasan"
static const char *const kHwasanModuleCtorName = "hwasan.module_ctor";
static const char *const kHwasanInitName = "__hwasan_init";
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
static const size_t kNumberOfAccessSizes = 5;
static const size_t kShadowScale = 4;
static const unsigned kAllocaAlignment = 1U << kShadowScale;
static const unsigned kPointerTagShift = 56;
static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
"hwasan-memory-access-callback-prefix",
cl::desc("Prefix for memory access callbacks"), cl::Hidden,
cl::init("__hwasan_"));
static cl::opt<bool>
ClInstrumentWithCalls("hwasan-instrument-with-calls",
cl::desc("instrument reads and writes with callbacks"),
cl::Hidden, cl::init(false));
static cl::opt<bool> ClInstrumentReads("hwasan-instrument-reads",
cl::desc("instrument read instructions"),
cl::Hidden, cl::init(true));
static cl::opt<bool> ClInstrumentWrites(
"hwasan-instrument-writes", cl::desc("instrument write instructions"),
cl::Hidden, cl::init(true));
static cl::opt<bool> ClInstrumentAtomics(
"hwasan-instrument-atomics",
cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
cl::init(true));
static cl::opt<bool> ClRecover(
"hwasan-recover",
cl::desc("Enable recovery mode (continue-after-error)."),
cl::Hidden, cl::init(false));
static cl::opt<bool> ClInstrumentStack("hwasan-instrument-stack",
cl::desc("instrument stack (allocas)"),
cl::Hidden, cl::init(true));
static cl::opt<bool> ClGenerateTagsWithCalls(
"hwasan-generate-tags-with-calls",
cl::desc("generate new tags with runtime library calls"), cl::Hidden,
cl::init(false));
static cl::opt<unsigned long long> ClMappingOffset(
"hwasan-mapping-offset",
cl::desc("offset of hwasan shadow mapping [EXPERIMENTAL]"), cl::Hidden,
cl::init(0));
static cl::opt<bool> ClEnableKhwasan(
"hwasan-kernel", cl::desc("Enable KernelHWAddressSanitizer instrumentation"),
cl::Hidden, cl::init(false));
namespace {
/// \brief An instrumentation pass implementing detection of addressability bugs
/// using tagged pointers.
class HWAddressSanitizer : public FunctionPass {
public:
// Pass identification, replacement for typeid.
static char ID;
HWAddressSanitizer(bool Recover = false)
: FunctionPass(ID), Recover(Recover || ClRecover) {}
StringRef getPassName() const override { return "HWAddressSanitizer"; }
bool runOnFunction(Function &F) override;
bool doInitialization(Module &M) override;
void initializeCallbacks(Module &M);
void instrumentMemAccessInline(Value *PtrLong, bool IsWrite,
unsigned AccessSizeIndex,
Instruction *InsertBefore);
bool instrumentMemAccess(Instruction *I);
Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
uint64_t *TypeSize, unsigned *Alignment,
Value **MaybeMask);
bool isInterestingAlloca(const AllocaInst &AI);
bool tagAlloca(IRBuilder<> &IRB, AllocaInst *AI, Value *Tag);
Value *tagPointer(IRBuilder<> &IRB, Type *Ty, Value *PtrLong, Value *Tag);
Value *untagPointer(IRBuilder<> &IRB, Value *PtrLong);
bool instrumentStack(SmallVectorImpl<AllocaInst *> &Allocas,
SmallVectorImpl<Instruction *> &RetVec);
Value *getNextTagWithCall(IRBuilder<> &IRB);
Value *getStackBaseTag(IRBuilder<> &IRB);
Value *getAllocaTag(IRBuilder<> &IRB, Value *StackTag, AllocaInst *AI,
unsigned AllocaNo);
Value *getUARTag(IRBuilder<> &IRB, Value *StackTag);
private:
LLVMContext *C;
Type *IntptrTy;
Type *Int8Ty;
bool Recover;
Function *HwasanCtorFunction;
Function *HwasanMemoryAccessCallback[2][kNumberOfAccessSizes];
Function *HwasanMemoryAccessCallbackSized[2];
Function *HwasanTagMemoryFunc;
Function *HwasanGenerateTagFunc;
};
} // end anonymous namespace
char HWAddressSanitizer::ID = 0;
INITIALIZE_PASS_BEGIN(
HWAddressSanitizer, "hwasan",
"HWAddressSanitizer: detect memory bugs using tagged addressing.", false, false)
INITIALIZE_PASS_END(
HWAddressSanitizer, "hwasan",
"HWAddressSanitizer: detect memory bugs using tagged addressing.", false, false)
FunctionPass *llvm::createHWAddressSanitizerPass(bool Recover) {
return new HWAddressSanitizer(Recover);
}
/// \brief Module-level initialization.
///
/// inserts a call to __hwasan_init to the module's constructor list.
bool HWAddressSanitizer::doInitialization(Module &M) {
DEBUG(dbgs() << "Init " << M.getName() << "\n");
auto &DL = M.getDataLayout();
Triple TargetTriple(M.getTargetTriple());
C = &(M.getContext());
IRBuilder<> IRB(*C);
IntptrTy = IRB.getIntPtrTy(DL);
Int8Ty = IRB.getInt8Ty();
HwasanCtorFunction = nullptr;
if (!ClEnableKhwasan) {
std::tie(HwasanCtorFunction, std::ignore) =
createSanitizerCtorAndInitFunctions(M, kHwasanModuleCtorName,
kHwasanInitName,
/*InitArgTypes=*/{},
/*InitArgs=*/{});
appendToGlobalCtors(M, HwasanCtorFunction, 0);
}
return true;
}
void HWAddressSanitizer::initializeCallbacks(Module &M) {
IRBuilder<> IRB(*C);
for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
const std::string TypeStr = AccessIsWrite ? "store" : "load";
const std::string EndingStr = Recover ? "_noabort" : "";
HwasanMemoryAccessCallbackSized[AccessIsWrite] =
checkSanitizerInterfaceFunction(M.getOrInsertFunction(
ClMemoryAccessCallbackPrefix + TypeStr + "N" + EndingStr,
FunctionType::get(IRB.getVoidTy(), {IntptrTy, IntptrTy}, false)));
for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
AccessSizeIndex++) {
HwasanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] =
checkSanitizerInterfaceFunction(M.getOrInsertFunction(
ClMemoryAccessCallbackPrefix + TypeStr +
itostr(1ULL << AccessSizeIndex) + EndingStr,
FunctionType::get(IRB.getVoidTy(), {IntptrTy}, false)));
}
}
HwasanTagMemoryFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
"__hwasan_tag_memory", IRB.getVoidTy(), IntptrTy, Int8Ty, IntptrTy));
HwasanGenerateTagFunc = checkSanitizerInterfaceFunction(
M.getOrInsertFunction("__hwasan_generate_tag", Int8Ty));
}
Value *HWAddressSanitizer::isInterestingMemoryAccess(Instruction *I,
bool *IsWrite,
uint64_t *TypeSize,
unsigned *Alignment,
Value **MaybeMask) {
// Skip memory accesses inserted by another instrumentation.
if (I->getMetadata("nosanitize")) return nullptr;
Value *PtrOperand = nullptr;
const DataLayout &DL = I->getModule()->getDataLayout();
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (!ClInstrumentReads) return nullptr;
*IsWrite = false;
*TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
*Alignment = LI->getAlignment();
PtrOperand = LI->getPointerOperand();
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
if (!ClInstrumentWrites) return nullptr;
*IsWrite = true;
*TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
*Alignment = SI->getAlignment();
PtrOperand = SI->getPointerOperand();
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
if (!ClInstrumentAtomics) return nullptr;
*IsWrite = true;
*TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
*Alignment = 0;
PtrOperand = RMW->getPointerOperand();
} else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
if (!ClInstrumentAtomics) return nullptr;
*IsWrite = true;
*TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
*Alignment = 0;
PtrOperand = XCHG->getPointerOperand();
}
if (PtrOperand) {
// Do not instrument acesses from different address spaces; we cannot deal
// with them.
Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
if (PtrTy->getPointerAddressSpace() != 0)
return nullptr;
// Ignore swifterror addresses.
// swifterror memory addresses are mem2reg promoted by instruction
// selection. As such they cannot have regular uses like an instrumentation
// function and it makes no sense to track them as memory.
if (PtrOperand->isSwiftError())
return nullptr;
}
return PtrOperand;
}
static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
size_t Res = countTrailingZeros(TypeSize / 8);
assert(Res < kNumberOfAccessSizes);
return Res;
}
void HWAddressSanitizer::instrumentMemAccessInline(Value *PtrLong, bool IsWrite,
unsigned AccessSizeIndex,
Instruction *InsertBefore) {
IRBuilder<> IRB(InsertBefore);
Value *PtrTag = IRB.CreateTrunc(IRB.CreateLShr(PtrLong, kPointerTagShift), IRB.getInt8Ty());
Value *AddrLong = untagPointer(IRB, PtrLong);
Value *ShadowLong = IRB.CreateLShr(AddrLong, kShadowScale);
if (ClMappingOffset)
ShadowLong = IRB.CreateAdd(
ShadowLong, ConstantInt::get(PtrLong->getType(), ClMappingOffset,
/*isSigned=*/false));
Value *MemTag =
IRB.CreateLoad(IRB.CreateIntToPtr(ShadowLong, IRB.getInt8PtrTy()));
Value *TagMismatch = IRB.CreateICmpNE(PtrTag, MemTag);
TerminatorInst *CheckTerm =
SplitBlockAndInsertIfThen(TagMismatch, InsertBefore, !Recover,
MDBuilder(*C).createBranchWeights(1, 100000));
IRB.SetInsertPoint(CheckTerm);
// The signal handler will find the data address in x0.
InlineAsm *Asm = InlineAsm::get(
FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false),
"brk #" +
itostr(0x900 + Recover * 0x20 + IsWrite * 0x10 + AccessSizeIndex),
"{x0}",
/*hasSideEffects=*/true);
IRB.CreateCall(Asm, PtrLong);
}
bool HWAddressSanitizer::instrumentMemAccess(Instruction *I) {
DEBUG(dbgs() << "Instrumenting: " << *I << "\n");
bool IsWrite = false;
unsigned Alignment = 0;
uint64_t TypeSize = 0;
Value *MaybeMask = nullptr;
Value *Addr =
isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask);
if (!Addr)
return false;
if (MaybeMask)
return false; //FIXME
IRBuilder<> IRB(I);
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
if (isPowerOf2_64(TypeSize) &&
(TypeSize / 8 <= (1UL << (kNumberOfAccessSizes - 1))) &&
(Alignment >= (1UL << kShadowScale) || Alignment == 0 ||
Alignment >= TypeSize / 8)) {
size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
if (ClInstrumentWithCalls) {
IRB.CreateCall(HwasanMemoryAccessCallback[IsWrite][AccessSizeIndex],
AddrLong);
} else {
instrumentMemAccessInline(AddrLong, IsWrite, AccessSizeIndex, I);
}
} else {
IRB.CreateCall(HwasanMemoryAccessCallbackSized[IsWrite],
{AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8)});
}
return true;
}
static uint64_t getAllocaSizeInBytes(const AllocaInst &AI) {
uint64_t ArraySize = 1;
if (AI.isArrayAllocation()) {
const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
assert(CI && "non-constant array size");
ArraySize = CI->getZExtValue();
}
Type *Ty = AI.getAllocatedType();
uint64_t SizeInBytes = AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
return SizeInBytes * ArraySize;
}
bool HWAddressSanitizer::tagAlloca(IRBuilder<> &IRB, AllocaInst *AI,
Value *Tag) {
size_t Size = (getAllocaSizeInBytes(*AI) + kAllocaAlignment - 1) &
~(kAllocaAlignment - 1);
Value *JustTag = IRB.CreateTrunc(Tag, IRB.getInt8Ty());
if (ClInstrumentWithCalls) {
IRB.CreateCall(HwasanTagMemoryFunc,
{IRB.CreatePointerCast(AI, IntptrTy), JustTag,
ConstantInt::get(IntptrTy, Size)});
} else {
size_t ShadowSize = Size >> kShadowScale;
Value *ShadowPtr = IRB.CreateIntToPtr(
IRB.CreateLShr(IRB.CreatePointerCast(AI, IntptrTy), kShadowScale),
IRB.getInt8PtrTy());
// If this memset is not inlined, it will be intercepted in the hwasan
// runtime library. That's OK, because the interceptor skips the checks if
// the address is in the shadow region.
// FIXME: the interceptor is not as fast as real memset. Consider lowering
// llvm.memset right here into either a sequence of stores, or a call to
// hwasan_tag_memory.
IRB.CreateMemSet(ShadowPtr, JustTag, ShadowSize, /*Align=*/1);
}
return true;
}
static unsigned RetagMask(unsigned AllocaNo) {
// A list of 8-bit numbers that have at most one run of non-zero bits.
// x = x ^ (mask << 56) can be encoded as a single armv8 instruction for these
// masks.
// The list does not include the value 255, which is used for UAR.
static unsigned FastMasks[] = {
0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24,
28, 30, 31, 32, 48, 56, 60, 62, 63, 64, 96, 112, 120,
124, 126, 127, 128, 192, 224, 240, 248, 252, 254};
return FastMasks[AllocaNo % (sizeof(FastMasks) / sizeof(FastMasks[0]))];
}
Value *HWAddressSanitizer::getNextTagWithCall(IRBuilder<> &IRB) {
return IRB.CreateZExt(IRB.CreateCall(HwasanGenerateTagFunc), IntptrTy);
}
Value *HWAddressSanitizer::getStackBaseTag(IRBuilder<> &IRB) {
if (ClGenerateTagsWithCalls)
return nullptr;
// FIXME: use addressofreturnaddress (but implement it in aarch64 backend
// first).
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
auto GetStackPointerFn =
Intrinsic::getDeclaration(M, Intrinsic::frameaddress);
Value *StackPointer = IRB.CreateCall(
GetStackPointerFn, {Constant::getNullValue(IRB.getInt32Ty())});
// Extract some entropy from the stack pointer for the tags.
// Take bits 20..28 (ASLR entropy) and xor with bits 0..8 (these differ
// between functions).
Value *StackPointerLong = IRB.CreatePointerCast(StackPointer, IntptrTy);
Value *StackTag =
IRB.CreateXor(StackPointerLong, IRB.CreateLShr(StackPointerLong, 20),
"hwasan.stack.base.tag");
return StackTag;
}
Value *HWAddressSanitizer::getAllocaTag(IRBuilder<> &IRB, Value *StackTag,
AllocaInst *AI, unsigned AllocaNo) {
if (ClGenerateTagsWithCalls)
return getNextTagWithCall(IRB);
return IRB.CreateXor(StackTag,
ConstantInt::get(IntptrTy, RetagMask(AllocaNo)));
}
Value *HWAddressSanitizer::getUARTag(IRBuilder<> &IRB, Value *StackTag) {
if (ClGenerateTagsWithCalls)
return getNextTagWithCall(IRB);
return IRB.CreateXor(StackTag, ConstantInt::get(IntptrTy, 0xFFU));
}
// Add a tag to an address.
Value *HWAddressSanitizer::tagPointer(IRBuilder<> &IRB, Type *Ty, Value *PtrLong,
Value *Tag) {
Value *TaggedPtrLong;
if (ClEnableKhwasan) {
// Kernel addresses have 0xFF in the most significant byte.
Value *ShiftedTag = IRB.CreateOr(
IRB.CreateShl(Tag, kPointerTagShift),
ConstantInt::get(IntptrTy, (1ULL << kPointerTagShift) - 1));
TaggedPtrLong = IRB.CreateAnd(PtrLong, ShiftedTag);
} else {
// Userspace can simply do OR (tag << 56);
Value *ShiftedTag = IRB.CreateShl(Tag, kPointerTagShift);
TaggedPtrLong = IRB.CreateOr(PtrLong, ShiftedTag);
}
return IRB.CreateIntToPtr(TaggedPtrLong, Ty);
}
// Remove tag from an address.
Value *HWAddressSanitizer::untagPointer(IRBuilder<> &IRB, Value *PtrLong) {
Value *UntaggedPtrLong;
if (ClEnableKhwasan) {
// Kernel addresses have 0xFF in the most significant byte.
UntaggedPtrLong = IRB.CreateOr(PtrLong,
ConstantInt::get(PtrLong->getType(), 0xFFULL << kPointerTagShift));
} else {
// Userspace addresses have 0x00.
UntaggedPtrLong = IRB.CreateAnd(PtrLong,
ConstantInt::get(PtrLong->getType(), ~(0xFFULL << kPointerTagShift)));
}
return UntaggedPtrLong;
}
bool HWAddressSanitizer::instrumentStack(
SmallVectorImpl<AllocaInst *> &Allocas,
SmallVectorImpl<Instruction *> &RetVec) {
Function *F = Allocas[0]->getParent()->getParent();
Instruction *InsertPt = &*F->getEntryBlock().begin();
IRBuilder<> IRB(InsertPt);
Value *StackTag = getStackBaseTag(IRB);
// Ideally, we want to calculate tagged stack base pointer, and rewrite all
// alloca addresses using that. Unfortunately, offsets are not known yet
// (unless we use ASan-style mega-alloca). Instead we keep the base tag in a
// temp, shift-OR it into each alloca address and xor with the retag mask.
// This generates one extra instruction per alloca use.
for (unsigned N = 0; N < Allocas.size(); ++N) {
auto *AI = Allocas[N];
IRB.SetInsertPoint(AI->getNextNode());
// Replace uses of the alloca with tagged address.
Value *Tag = getAllocaTag(IRB, StackTag, AI, N);
Value *AILong = IRB.CreatePointerCast(AI, IntptrTy);
Value *Replacement = tagPointer(IRB, AI->getType(), AILong, Tag);
std::string Name =
AI->hasName() ? AI->getName().str() : "alloca." + itostr(N);
Replacement->setName(Name + ".hwasan");
for (auto UI = AI->use_begin(), UE = AI->use_end(); UI != UE;) {
Use &U = *UI++;
if (U.getUser() != AILong)
U.set(Replacement);
}
tagAlloca(IRB, AI, Tag);
for (auto RI : RetVec) {
IRB.SetInsertPoint(RI);
// Re-tag alloca memory with the special UAR tag.
Value *Tag = getUARTag(IRB, StackTag);
tagAlloca(IRB, AI, Tag);
}
}
return true;
}
bool HWAddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
return (AI.getAllocatedType()->isSized() &&
// FIXME: instrument dynamic allocas, too
AI.isStaticAlloca() &&
// alloca() may be called with 0 size, ignore it.
getAllocaSizeInBytes(AI) > 0 &&
// We are only interested in allocas not promotable to registers.
// Promotable allocas are common under -O0.
!isAllocaPromotable(&AI) &&
// inalloca allocas are not treated as static, and we don't want
// dynamic alloca instrumentation for them as well.
!AI.isUsedWithInAlloca() &&
// swifterror allocas are register promoted by ISel
!AI.isSwiftError());
}
bool HWAddressSanitizer::runOnFunction(Function &F) {
if (&F == HwasanCtorFunction)
return false;
if (!F.hasFnAttribute(Attribute::SanitizeHWAddress))
return false;
DEBUG(dbgs() << "Function: " << F.getName() << "\n");
initializeCallbacks(*F.getParent());
bool Changed = false;
SmallVector<Instruction*, 16> ToInstrument;
SmallVector<AllocaInst*, 8> AllocasToInstrument;
SmallVector<Instruction*, 8> RetVec;
for (auto &BB : F) {
for (auto &Inst : BB) {
if (ClInstrumentStack)
if (AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) {
// Realign all allocas. We don't want small uninteresting allocas to
// hide in instrumented alloca's padding.
if (AI->getAlignment() < kAllocaAlignment)
AI->setAlignment(kAllocaAlignment);
// Instrument some of them.
if (isInterestingAlloca(*AI))
AllocasToInstrument.push_back(AI);
continue;
}
if (isa<ReturnInst>(Inst) || isa<ResumeInst>(Inst) || isa<CleanupReturnInst>(Inst))
RetVec.push_back(&Inst);
Value *MaybeMask = nullptr;
bool IsWrite;
unsigned Alignment;
uint64_t TypeSize;
Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
&Alignment, &MaybeMask);
if (Addr || isa<MemIntrinsic>(Inst))
ToInstrument.push_back(&Inst);
}
}
if (!AllocasToInstrument.empty())
Changed |= instrumentStack(AllocasToInstrument, RetVec);
for (auto Inst : ToInstrument)
Changed |= instrumentMemAccess(Inst);
return Changed;
}