teak-llvm/llvm/lib/Transforms/Utils/SSAUpdaterBulk.cpp
Michael Zolotukhin 4fbb93003b [SSAUpdaterBulk] Fix linux bootstrap/sanitizer failures: explicitly specify order of evaluation.
The standard says that the order of evaluation of an expression
  s[x] = foo()
is unspecified. In our case, we first create an empty entry in the map,
then call foo(), then store its return value to the created entry. The
problem is that foo uses the map as a cache, so if it finds that there
is an entry in the map, it stops computation. This change explicitly
sets the order, thus fixing this heisenbug.

llvm-svn: 329864
2018-04-11 23:37:37 +00:00

175 lines
6.7 KiB
C++

//===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SSAUpdaterBulk class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
using namespace llvm;
#define DEBUG_TYPE "ssaupdaterbulk"
/// Add a new variable to the SSA rewriter. This needs to be called before
/// AddAvailableValue or AddUse calls.
void SSAUpdaterBulk::AddVariable(unsigned Var, StringRef Name, Type *Ty) {
assert(Rewrites.find(Var) == Rewrites.end() && "Variable added twice!");
RewriteInfo RI(Name, Ty);
Rewrites[Var] = RI;
}
/// Indicate that a rewritten value is available in the specified block with the
/// specified value.
void SSAUpdaterBulk::AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V) {
assert(Rewrites.find(Var) != Rewrites.end() && "Should add variable first!");
Rewrites[Var].Defines[BB] = V;
}
/// Record a use of the symbolic value. This use will be updated with a
/// rewritten value when RewriteAllUses is called.
void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) {
assert(Rewrites.find(Var) != Rewrites.end() && "Should add variable first!");
Rewrites[Var].Uses.insert(U);
}
/// Return true if the SSAUpdater already has a value for the specified variable
/// in the specified block.
bool SSAUpdaterBulk::HasValueForBlock(unsigned Var, BasicBlock *BB) {
return Rewrites.count(Var) ? Rewrites[Var].Defines.count(BB) : false;
}
// Compute value at the given block BB. We either should already know it, or we
// should be able to recursively reach it going up dominator tree.
Value *SSAUpdaterBulk::computeValueAt(BasicBlock *BB, RewriteInfo &R,
DominatorTree *DT) {
if (!R.Defines.count(BB)) {
if (DT->isReachableFromEntry(BB) && PredCache.get(BB).size()) {
BasicBlock *IDom = DT->getNode(BB)->getIDom()->getBlock();
Value *V = computeValueAt(IDom, R, DT);
R.Defines[BB] = V;
} else
R.Defines[BB] = UndefValue::get(R.Ty);
}
return R.Defines[BB];
}
/// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks.
/// This is basically a subgraph limited by DefBlocks and UsingBlocks.
static void
ComputeLiveInBlocks(const SmallPtrSetImpl<BasicBlock *> &UsingBlocks,
const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
// To determine liveness, we must iterate through the predecessors of blocks
// where the def is live. Blocks are added to the worklist if we need to
// check their predecessors. Start with all the using blocks.
SmallVector<BasicBlock *, 64> LiveInBlockWorklist(UsingBlocks.begin(),
UsingBlocks.end());
// Now that we have a set of blocks where the phi is live-in, recursively add
// their predecessors until we find the full region the value is live.
while (!LiveInBlockWorklist.empty()) {
BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
// The block really is live in here, insert it into the set. If already in
// the set, then it has already been processed.
if (!LiveInBlocks.insert(BB).second)
continue;
// Since the value is live into BB, it is either defined in a predecessor or
// live into it to. Add the preds to the worklist unless they are a
// defining block.
for (BasicBlock *P : predecessors(BB)) {
// The value is not live into a predecessor if it defines the value.
if (DefBlocks.count(P))
continue;
// Otherwise it is, add to the worklist.
LiveInBlockWorklist.push_back(P);
}
}
}
/// Helper function for finding a block which should have a value for the given
/// user. For PHI-nodes this block is the corresponding predecessor, for other
/// instructions it's their parent block.
static BasicBlock *getUserBB(Use *U) {
auto *User = cast<Instruction>(U->getUser());
if (auto *UserPN = dyn_cast<PHINode>(User))
return UserPN->getIncomingBlock(*U);
else
return User->getParent();
}
/// Perform all the necessary updates, including new PHI-nodes insertion and the
/// requested uses update.
void SSAUpdaterBulk::RewriteAllUses(DominatorTree *DT,
SmallVectorImpl<PHINode *> *InsertedPHIs) {
for (auto P : Rewrites) {
// Compute locations for new phi-nodes.
// For that we need to initialize DefBlocks from definitions in R.Defines,
// UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use
// this set for computing iterated dominance frontier (IDF).
// The IDF blocks are the blocks where we need to insert new phi-nodes.
ForwardIDFCalculator IDF(*DT);
RewriteInfo &R = P.second;
SmallPtrSet<BasicBlock *, 2> DefBlocks;
for (auto Def : R.Defines)
DefBlocks.insert(Def.first);
IDF.setDefiningBlocks(DefBlocks);
SmallPtrSet<BasicBlock *, 2> UsingBlocks;
for (auto U : R.Uses)
UsingBlocks.insert(getUserBB(U));
SmallVector<BasicBlock *, 32> IDFBlocks;
SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks);
IDF.resetLiveInBlocks();
IDF.setLiveInBlocks(LiveInBlocks);
IDF.calculate(IDFBlocks);
// We've computed IDF, now insert new phi-nodes there.
SmallVector<PHINode *, 4> InsertedPHIsForVar;
for (auto FrontierBB : IDFBlocks) {
IRBuilder<> B(FrontierBB, FrontierBB->begin());
PHINode *PN = B.CreatePHI(R.Ty, 0, R.Name);
R.Defines[FrontierBB] = PN;
InsertedPHIsForVar.push_back(PN);
if (InsertedPHIs)
InsertedPHIs->push_back(PN);
}
// Fill in arguments of the inserted PHIs.
for (auto PN : InsertedPHIsForVar) {
BasicBlock *PBB = PN->getParent();
for (BasicBlock *Pred : PredCache.get(PBB))
PN->addIncoming(computeValueAt(Pred, R, DT), Pred);
}
// Rewrite actual uses with the inserted definitions.
for (auto U : R.Uses) {
Value *V = computeValueAt(getUserBB(U), R, DT);
Value *OldVal = U->get();
// Notify that users of the existing value that it is being replaced.
if (OldVal != V && OldVal->hasValueHandle())
ValueHandleBase::ValueIsRAUWd(OldVal, V);
U->set(V);
}
}
}