teak-llvm/lldb/source/Plugins/ScriptInterpreter/Python/PythonDataObjects.cpp
Pavel Labath d68983e3d5 Partially revert r335236
Jim pointed out that XCode has build configurations that build without
python and removing the ifdefs around the python code breaks them.

This reverts the #ifdef part of the above patch, while keeping the cmake
parts.

llvm-svn: 335260
2018-06-21 17:36:32 +00:00

1039 lines
32 KiB
C++

//===-- PythonDataObjects.cpp -----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifdef LLDB_DISABLE_PYTHON
// Python is disabled in this build
#else
#include "PythonDataObjects.h"
#include "ScriptInterpreterPython.h"
#include "lldb/Host/File.h"
#include "lldb/Host/FileSystem.h"
#include "lldb/Interpreter/ScriptInterpreter.h"
#include "lldb/Utility/Stream.h"
#include "llvm/Support/ConvertUTF.h"
#include <stdio.h>
#include "llvm/ADT/StringSwitch.h"
using namespace lldb_private;
using namespace lldb;
void StructuredPythonObject::Dump(Stream &s, bool pretty_print) const {
s << "Python Obj: 0x" << GetValue();
}
//----------------------------------------------------------------------
// PythonObject
//----------------------------------------------------------------------
void PythonObject::Dump(Stream &strm) const {
if (m_py_obj) {
FILE *file = ::tmpfile();
if (file) {
::PyObject_Print(m_py_obj, file, 0);
const long length = ftell(file);
if (length) {
::rewind(file);
std::vector<char> file_contents(length, '\0');
const size_t length_read =
::fread(file_contents.data(), 1, file_contents.size(), file);
if (length_read > 0)
strm.Write(file_contents.data(), length_read);
}
::fclose(file);
}
} else
strm.PutCString("NULL");
}
PyObjectType PythonObject::GetObjectType() const {
if (!IsAllocated())
return PyObjectType::None;
if (PythonModule::Check(m_py_obj))
return PyObjectType::Module;
if (PythonList::Check(m_py_obj))
return PyObjectType::List;
if (PythonTuple::Check(m_py_obj))
return PyObjectType::Tuple;
if (PythonDictionary::Check(m_py_obj))
return PyObjectType::Dictionary;
if (PythonString::Check(m_py_obj))
return PyObjectType::String;
#if PY_MAJOR_VERSION >= 3
if (PythonBytes::Check(m_py_obj))
return PyObjectType::Bytes;
#endif
if (PythonByteArray::Check(m_py_obj))
return PyObjectType::ByteArray;
if (PythonInteger::Check(m_py_obj))
return PyObjectType::Integer;
if (PythonFile::Check(m_py_obj))
return PyObjectType::File;
if (PythonCallable::Check(m_py_obj))
return PyObjectType::Callable;
return PyObjectType::Unknown;
}
PythonString PythonObject::Repr() const {
if (!m_py_obj)
return PythonString();
PyObject *repr = PyObject_Repr(m_py_obj);
if (!repr)
return PythonString();
return PythonString(PyRefType::Owned, repr);
}
PythonString PythonObject::Str() const {
if (!m_py_obj)
return PythonString();
PyObject *str = PyObject_Str(m_py_obj);
if (!str)
return PythonString();
return PythonString(PyRefType::Owned, str);
}
PythonObject
PythonObject::ResolveNameWithDictionary(llvm::StringRef name,
const PythonDictionary &dict) {
size_t dot_pos = name.find_first_of('.');
llvm::StringRef piece = name.substr(0, dot_pos);
PythonObject result = dict.GetItemForKey(PythonString(piece));
if (dot_pos == llvm::StringRef::npos) {
// There was no dot, we're done.
return result;
}
// There was a dot. The remaining portion of the name should be looked up in
// the context of the object that was found in the dictionary.
return result.ResolveName(name.substr(dot_pos + 1));
}
PythonObject PythonObject::ResolveName(llvm::StringRef name) const {
// Resolve the name in the context of the specified object. If, for example,
// `this` refers to a PyModule, then this will look for `name` in this
// module. If `this` refers to a PyType, then it will resolve `name` as an
// attribute of that type. If `this` refers to an instance of an object,
// then it will resolve `name` as the value of the specified field.
//
// This function handles dotted names so that, for example, if `m_py_obj`
// refers to the `sys` module, and `name` == "path.append", then it will find
// the function `sys.path.append`.
size_t dot_pos = name.find_first_of('.');
if (dot_pos == llvm::StringRef::npos) {
// No dots in the name, we should be able to find the value immediately as
// an attribute of `m_py_obj`.
return GetAttributeValue(name);
}
// Look up the first piece of the name, and resolve the rest as a child of
// that.
PythonObject parent = ResolveName(name.substr(0, dot_pos));
if (!parent.IsAllocated())
return PythonObject();
// Tail recursion.. should be optimized by the compiler
return parent.ResolveName(name.substr(dot_pos + 1));
}
bool PythonObject::HasAttribute(llvm::StringRef attr) const {
if (!IsValid())
return false;
PythonString py_attr(attr);
return !!PyObject_HasAttr(m_py_obj, py_attr.get());
}
PythonObject PythonObject::GetAttributeValue(llvm::StringRef attr) const {
if (!IsValid())
return PythonObject();
PythonString py_attr(attr);
if (!PyObject_HasAttr(m_py_obj, py_attr.get()))
return PythonObject();
return PythonObject(PyRefType::Owned,
PyObject_GetAttr(m_py_obj, py_attr.get()));
}
bool PythonObject::IsNone() const { return m_py_obj == Py_None; }
bool PythonObject::IsValid() const { return m_py_obj != nullptr; }
bool PythonObject::IsAllocated() const { return IsValid() && !IsNone(); }
StructuredData::ObjectSP PythonObject::CreateStructuredObject() const {
switch (GetObjectType()) {
case PyObjectType::Dictionary:
return PythonDictionary(PyRefType::Borrowed, m_py_obj)
.CreateStructuredDictionary();
case PyObjectType::Integer:
return PythonInteger(PyRefType::Borrowed, m_py_obj)
.CreateStructuredInteger();
case PyObjectType::List:
return PythonList(PyRefType::Borrowed, m_py_obj).CreateStructuredArray();
case PyObjectType::String:
return PythonString(PyRefType::Borrowed, m_py_obj).CreateStructuredString();
case PyObjectType::Bytes:
return PythonBytes(PyRefType::Borrowed, m_py_obj).CreateStructuredString();
case PyObjectType::ByteArray:
return PythonByteArray(PyRefType::Borrowed, m_py_obj)
.CreateStructuredString();
case PyObjectType::None:
return StructuredData::ObjectSP();
default:
return StructuredData::ObjectSP(new StructuredPythonObject(m_py_obj));
}
}
//----------------------------------------------------------------------
// PythonString
//----------------------------------------------------------------------
PythonBytes::PythonBytes() : PythonObject() {}
PythonBytes::PythonBytes(llvm::ArrayRef<uint8_t> bytes) : PythonObject() {
SetBytes(bytes);
}
PythonBytes::PythonBytes(const uint8_t *bytes, size_t length) : PythonObject() {
SetBytes(llvm::ArrayRef<uint8_t>(bytes, length));
}
PythonBytes::PythonBytes(PyRefType type, PyObject *py_obj) : PythonObject() {
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a string
}
PythonBytes::PythonBytes(const PythonBytes &object) : PythonObject(object) {}
PythonBytes::~PythonBytes() {}
bool PythonBytes::Check(PyObject *py_obj) {
if (!py_obj)
return false;
if (PyBytes_Check(py_obj))
return true;
return false;
}
void PythonBytes::Reset(PyRefType type, PyObject *py_obj) {
// Grab the desired reference type so that if we end up rejecting `py_obj` it
// still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonBytes::Check(py_obj)) {
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack
// overflow since it calls back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
llvm::ArrayRef<uint8_t> PythonBytes::GetBytes() const {
if (!IsValid())
return llvm::ArrayRef<uint8_t>();
Py_ssize_t size;
char *c;
PyBytes_AsStringAndSize(m_py_obj, &c, &size);
return llvm::ArrayRef<uint8_t>(reinterpret_cast<uint8_t *>(c), size);
}
size_t PythonBytes::GetSize() const {
if (!IsValid())
return 0;
return PyBytes_Size(m_py_obj);
}
void PythonBytes::SetBytes(llvm::ArrayRef<uint8_t> bytes) {
const char *data = reinterpret_cast<const char *>(bytes.data());
PyObject *py_bytes = PyBytes_FromStringAndSize(data, bytes.size());
PythonObject::Reset(PyRefType::Owned, py_bytes);
}
StructuredData::StringSP PythonBytes::CreateStructuredString() const {
StructuredData::StringSP result(new StructuredData::String);
Py_ssize_t size;
char *c;
PyBytes_AsStringAndSize(m_py_obj, &c, &size);
result->SetValue(std::string(c, size));
return result;
}
PythonByteArray::PythonByteArray(llvm::ArrayRef<uint8_t> bytes)
: PythonByteArray(bytes.data(), bytes.size()) {}
PythonByteArray::PythonByteArray(const uint8_t *bytes, size_t length) {
const char *str = reinterpret_cast<const char *>(bytes);
Reset(PyRefType::Owned, PyByteArray_FromStringAndSize(str, length));
}
PythonByteArray::PythonByteArray(PyRefType type, PyObject *o) {
Reset(type, o);
}
PythonByteArray::PythonByteArray(const PythonBytes &object)
: PythonObject(object) {}
PythonByteArray::~PythonByteArray() {}
bool PythonByteArray::Check(PyObject *py_obj) {
if (!py_obj)
return false;
if (PyByteArray_Check(py_obj))
return true;
return false;
}
void PythonByteArray::Reset(PyRefType type, PyObject *py_obj) {
// Grab the desired reference type so that if we end up rejecting `py_obj` it
// still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonByteArray::Check(py_obj)) {
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack
// overflow since it calls back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
llvm::ArrayRef<uint8_t> PythonByteArray::GetBytes() const {
if (!IsValid())
return llvm::ArrayRef<uint8_t>();
char *c = PyByteArray_AsString(m_py_obj);
size_t size = GetSize();
return llvm::ArrayRef<uint8_t>(reinterpret_cast<uint8_t *>(c), size);
}
size_t PythonByteArray::GetSize() const {
if (!IsValid())
return 0;
return PyByteArray_Size(m_py_obj);
}
StructuredData::StringSP PythonByteArray::CreateStructuredString() const {
StructuredData::StringSP result(new StructuredData::String);
llvm::ArrayRef<uint8_t> bytes = GetBytes();
const char *str = reinterpret_cast<const char *>(bytes.data());
result->SetValue(std::string(str, bytes.size()));
return result;
}
//----------------------------------------------------------------------
// PythonString
//----------------------------------------------------------------------
PythonString::PythonString(PyRefType type, PyObject *py_obj) : PythonObject() {
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a string
}
PythonString::PythonString(const PythonString &object) : PythonObject(object) {}
PythonString::PythonString(llvm::StringRef string) : PythonObject() {
SetString(string);
}
PythonString::PythonString(const char *string) : PythonObject() {
SetString(llvm::StringRef(string));
}
PythonString::PythonString() : PythonObject() {}
PythonString::~PythonString() {}
bool PythonString::Check(PyObject *py_obj) {
if (!py_obj)
return false;
if (PyUnicode_Check(py_obj))
return true;
#if PY_MAJOR_VERSION < 3
if (PyString_Check(py_obj))
return true;
#endif
return false;
}
void PythonString::Reset(PyRefType type, PyObject *py_obj) {
// Grab the desired reference type so that if we end up rejecting `py_obj` it
// still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonString::Check(py_obj)) {
PythonObject::Reset();
return;
}
#if PY_MAJOR_VERSION < 3
// In Python 2, Don't store PyUnicode objects directly, because we need
// access to their underlying character buffers which Python 2 doesn't
// provide.
if (PyUnicode_Check(py_obj))
result.Reset(PyRefType::Owned, PyUnicode_AsUTF8String(result.get()));
#endif
// Calling PythonObject::Reset(const PythonObject&) will lead to stack
// overflow since it calls back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
llvm::StringRef PythonString::GetString() const {
if (!IsValid())
return llvm::StringRef();
Py_ssize_t size;
char *c;
#if PY_MAJOR_VERSION >= 3
c = PyUnicode_AsUTF8AndSize(m_py_obj, &size);
#else
PyString_AsStringAndSize(m_py_obj, &c, &size);
#endif
return llvm::StringRef(c, size);
}
size_t PythonString::GetSize() const {
if (IsValid()) {
#if PY_MAJOR_VERSION >= 3
return PyUnicode_GetSize(m_py_obj);
#else
return PyString_Size(m_py_obj);
#endif
}
return 0;
}
void PythonString::SetString(llvm::StringRef string) {
#if PY_MAJOR_VERSION >= 3
PyObject *unicode = PyUnicode_FromStringAndSize(string.data(), string.size());
PythonObject::Reset(PyRefType::Owned, unicode);
#else
PyObject *str = PyString_FromStringAndSize(string.data(), string.size());
PythonObject::Reset(PyRefType::Owned, str);
#endif
}
StructuredData::StringSP PythonString::CreateStructuredString() const {
StructuredData::StringSP result(new StructuredData::String);
result->SetValue(GetString());
return result;
}
//----------------------------------------------------------------------
// PythonInteger
//----------------------------------------------------------------------
PythonInteger::PythonInteger() : PythonObject() {}
PythonInteger::PythonInteger(PyRefType type, PyObject *py_obj)
: PythonObject() {
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a integer type
}
PythonInteger::PythonInteger(const PythonInteger &object)
: PythonObject(object) {}
PythonInteger::PythonInteger(int64_t value) : PythonObject() {
SetInteger(value);
}
PythonInteger::~PythonInteger() {}
bool PythonInteger::Check(PyObject *py_obj) {
if (!py_obj)
return false;
#if PY_MAJOR_VERSION >= 3
// Python 3 does not have PyInt_Check. There is only one type of integral
// value, long.
return PyLong_Check(py_obj);
#else
return PyLong_Check(py_obj) || PyInt_Check(py_obj);
#endif
}
void PythonInteger::Reset(PyRefType type, PyObject *py_obj) {
// Grab the desired reference type so that if we end up rejecting `py_obj` it
// still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonInteger::Check(py_obj)) {
PythonObject::Reset();
return;
}
#if PY_MAJOR_VERSION < 3
// Always store this as a PyLong, which makes interoperability between Python
// 2.x and Python 3.x easier. This is only necessary in 2.x, since 3.x
// doesn't even have a PyInt.
if (PyInt_Check(py_obj)) {
// Since we converted the original object to a different type, the new
// object is an owned object regardless of the ownership semantics
// requested by the user.
result.Reset(PyRefType::Owned, PyLong_FromLongLong(PyInt_AsLong(py_obj)));
}
#endif
assert(PyLong_Check(result.get()) &&
"Couldn't get a PyLong from this PyObject");
// Calling PythonObject::Reset(const PythonObject&) will lead to stack
// overflow since it calls back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
int64_t PythonInteger::GetInteger() const {
if (m_py_obj) {
assert(PyLong_Check(m_py_obj) &&
"PythonInteger::GetInteger has a PyObject that isn't a PyLong");
int overflow = 0;
int64_t result = PyLong_AsLongLongAndOverflow(m_py_obj, &overflow);
if (overflow != 0) {
// We got an integer that overflows, like 18446744072853913392L we can't
// use PyLong_AsLongLong() as it will return 0xffffffffffffffff. If we
// use the unsigned long long it will work as expected.
const uint64_t uval = PyLong_AsUnsignedLongLong(m_py_obj);
result = static_cast<int64_t>(uval);
}
return result;
}
return UINT64_MAX;
}
void PythonInteger::SetInteger(int64_t value) {
PythonObject::Reset(PyRefType::Owned, PyLong_FromLongLong(value));
}
StructuredData::IntegerSP PythonInteger::CreateStructuredInteger() const {
StructuredData::IntegerSP result(new StructuredData::Integer);
result->SetValue(GetInteger());
return result;
}
//----------------------------------------------------------------------
// PythonList
//----------------------------------------------------------------------
PythonList::PythonList(PyInitialValue value) : PythonObject() {
if (value == PyInitialValue::Empty)
Reset(PyRefType::Owned, PyList_New(0));
}
PythonList::PythonList(int list_size) : PythonObject() {
Reset(PyRefType::Owned, PyList_New(list_size));
}
PythonList::PythonList(PyRefType type, PyObject *py_obj) : PythonObject() {
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a list
}
PythonList::PythonList(const PythonList &list) : PythonObject(list) {}
PythonList::~PythonList() {}
bool PythonList::Check(PyObject *py_obj) {
if (!py_obj)
return false;
return PyList_Check(py_obj);
}
void PythonList::Reset(PyRefType type, PyObject *py_obj) {
// Grab the desired reference type so that if we end up rejecting `py_obj` it
// still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonList::Check(py_obj)) {
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack
// overflow since it calls back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
uint32_t PythonList::GetSize() const {
if (IsValid())
return PyList_GET_SIZE(m_py_obj);
return 0;
}
PythonObject PythonList::GetItemAtIndex(uint32_t index) const {
if (IsValid())
return PythonObject(PyRefType::Borrowed, PyList_GetItem(m_py_obj, index));
return PythonObject();
}
void PythonList::SetItemAtIndex(uint32_t index, const PythonObject &object) {
if (IsAllocated() && object.IsValid()) {
// PyList_SetItem is documented to "steal" a reference, so we need to
// convert it to an owned reference by incrementing it.
Py_INCREF(object.get());
PyList_SetItem(m_py_obj, index, object.get());
}
}
void PythonList::AppendItem(const PythonObject &object) {
if (IsAllocated() && object.IsValid()) {
// `PyList_Append` does *not* steal a reference, so do not call `Py_INCREF`
// here like we do with `PyList_SetItem`.
PyList_Append(m_py_obj, object.get());
}
}
StructuredData::ArraySP PythonList::CreateStructuredArray() const {
StructuredData::ArraySP result(new StructuredData::Array);
uint32_t count = GetSize();
for (uint32_t i = 0; i < count; ++i) {
PythonObject obj = GetItemAtIndex(i);
result->AddItem(obj.CreateStructuredObject());
}
return result;
}
//----------------------------------------------------------------------
// PythonTuple
//----------------------------------------------------------------------
PythonTuple::PythonTuple(PyInitialValue value) : PythonObject() {
if (value == PyInitialValue::Empty)
Reset(PyRefType::Owned, PyTuple_New(0));
}
PythonTuple::PythonTuple(int tuple_size) : PythonObject() {
Reset(PyRefType::Owned, PyTuple_New(tuple_size));
}
PythonTuple::PythonTuple(PyRefType type, PyObject *py_obj) : PythonObject() {
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a tuple
}
PythonTuple::PythonTuple(const PythonTuple &tuple) : PythonObject(tuple) {}
PythonTuple::PythonTuple(std::initializer_list<PythonObject> objects) {
m_py_obj = PyTuple_New(objects.size());
uint32_t idx = 0;
for (auto object : objects) {
if (object.IsValid())
SetItemAtIndex(idx, object);
idx++;
}
}
PythonTuple::PythonTuple(std::initializer_list<PyObject *> objects) {
m_py_obj = PyTuple_New(objects.size());
uint32_t idx = 0;
for (auto py_object : objects) {
PythonObject object(PyRefType::Borrowed, py_object);
if (object.IsValid())
SetItemAtIndex(idx, object);
idx++;
}
}
PythonTuple::~PythonTuple() {}
bool PythonTuple::Check(PyObject *py_obj) {
if (!py_obj)
return false;
return PyTuple_Check(py_obj);
}
void PythonTuple::Reset(PyRefType type, PyObject *py_obj) {
// Grab the desired reference type so that if we end up rejecting `py_obj` it
// still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonTuple::Check(py_obj)) {
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack
// overflow since it calls back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
uint32_t PythonTuple::GetSize() const {
if (IsValid())
return PyTuple_GET_SIZE(m_py_obj);
return 0;
}
PythonObject PythonTuple::GetItemAtIndex(uint32_t index) const {
if (IsValid())
return PythonObject(PyRefType::Borrowed, PyTuple_GetItem(m_py_obj, index));
return PythonObject();
}
void PythonTuple::SetItemAtIndex(uint32_t index, const PythonObject &object) {
if (IsAllocated() && object.IsValid()) {
// PyTuple_SetItem is documented to "steal" a reference, so we need to
// convert it to an owned reference by incrementing it.
Py_INCREF(object.get());
PyTuple_SetItem(m_py_obj, index, object.get());
}
}
StructuredData::ArraySP PythonTuple::CreateStructuredArray() const {
StructuredData::ArraySP result(new StructuredData::Array);
uint32_t count = GetSize();
for (uint32_t i = 0; i < count; ++i) {
PythonObject obj = GetItemAtIndex(i);
result->AddItem(obj.CreateStructuredObject());
}
return result;
}
//----------------------------------------------------------------------
// PythonDictionary
//----------------------------------------------------------------------
PythonDictionary::PythonDictionary(PyInitialValue value) : PythonObject() {
if (value == PyInitialValue::Empty)
Reset(PyRefType::Owned, PyDict_New());
}
PythonDictionary::PythonDictionary(PyRefType type, PyObject *py_obj)
: PythonObject() {
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a dictionary
}
PythonDictionary::PythonDictionary(const PythonDictionary &object)
: PythonObject(object) {}
PythonDictionary::~PythonDictionary() {}
bool PythonDictionary::Check(PyObject *py_obj) {
if (!py_obj)
return false;
return PyDict_Check(py_obj);
}
void PythonDictionary::Reset(PyRefType type, PyObject *py_obj) {
// Grab the desired reference type so that if we end up rejecting `py_obj` it
// still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonDictionary::Check(py_obj)) {
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack
// overflow since it calls back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
uint32_t PythonDictionary::GetSize() const {
if (IsValid())
return PyDict_Size(m_py_obj);
return 0;
}
PythonList PythonDictionary::GetKeys() const {
if (IsValid())
return PythonList(PyRefType::Owned, PyDict_Keys(m_py_obj));
return PythonList(PyInitialValue::Invalid);
}
PythonObject PythonDictionary::GetItemForKey(const PythonObject &key) const {
if (IsAllocated() && key.IsValid())
return PythonObject(PyRefType::Borrowed,
PyDict_GetItem(m_py_obj, key.get()));
return PythonObject();
}
void PythonDictionary::SetItemForKey(const PythonObject &key,
const PythonObject &value) {
if (IsAllocated() && key.IsValid() && value.IsValid())
PyDict_SetItem(m_py_obj, key.get(), value.get());
}
StructuredData::DictionarySP
PythonDictionary::CreateStructuredDictionary() const {
StructuredData::DictionarySP result(new StructuredData::Dictionary);
PythonList keys(GetKeys());
uint32_t num_keys = keys.GetSize();
for (uint32_t i = 0; i < num_keys; ++i) {
PythonObject key = keys.GetItemAtIndex(i);
PythonObject value = GetItemForKey(key);
StructuredData::ObjectSP structured_value = value.CreateStructuredObject();
result->AddItem(key.Str().GetString(), structured_value);
}
return result;
}
PythonModule::PythonModule() : PythonObject() {}
PythonModule::PythonModule(PyRefType type, PyObject *py_obj) {
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a module
}
PythonModule::PythonModule(const PythonModule &dict) : PythonObject(dict) {}
PythonModule::~PythonModule() {}
PythonModule PythonModule::BuiltinsModule() {
#if PY_MAJOR_VERSION >= 3
return AddModule("builtins");
#else
return AddModule("__builtin__");
#endif
}
PythonModule PythonModule::MainModule() { return AddModule("__main__"); }
PythonModule PythonModule::AddModule(llvm::StringRef module) {
std::string str = module.str();
return PythonModule(PyRefType::Borrowed, PyImport_AddModule(str.c_str()));
}
PythonModule PythonModule::ImportModule(llvm::StringRef module) {
std::string str = module.str();
return PythonModule(PyRefType::Owned, PyImport_ImportModule(str.c_str()));
}
bool PythonModule::Check(PyObject *py_obj) {
if (!py_obj)
return false;
return PyModule_Check(py_obj);
}
void PythonModule::Reset(PyRefType type, PyObject *py_obj) {
// Grab the desired reference type so that if we end up rejecting `py_obj` it
// still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonModule::Check(py_obj)) {
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack
// overflow since it calls back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
PythonDictionary PythonModule::GetDictionary() const {
return PythonDictionary(PyRefType::Borrowed, PyModule_GetDict(m_py_obj));
}
PythonCallable::PythonCallable() : PythonObject() {}
PythonCallable::PythonCallable(PyRefType type, PyObject *py_obj) {
Reset(type, py_obj); // Use "Reset()" to ensure that py_obj is a callable
}
PythonCallable::PythonCallable(const PythonCallable &callable)
: PythonObject(callable) {}
PythonCallable::~PythonCallable() {}
bool PythonCallable::Check(PyObject *py_obj) {
if (!py_obj)
return false;
return PyCallable_Check(py_obj);
}
void PythonCallable::Reset(PyRefType type, PyObject *py_obj) {
// Grab the desired reference type so that if we end up rejecting `py_obj` it
// still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonCallable::Check(py_obj)) {
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack
// overflow since it calls back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
PythonCallable::ArgInfo PythonCallable::GetNumArguments() const {
ArgInfo result = {0, false, false, false};
if (!IsValid())
return result;
PyObject *py_func_obj = m_py_obj;
if (PyMethod_Check(py_func_obj)) {
py_func_obj = PyMethod_GET_FUNCTION(py_func_obj);
PythonObject im_self = GetAttributeValue("im_self");
if (im_self.IsValid() && !im_self.IsNone())
result.is_bound_method = true;
} else {
// see if this is a callable object with an __call__ method
if (!PyFunction_Check(py_func_obj)) {
PythonObject __call__ = GetAttributeValue("__call__");
if (__call__.IsValid()) {
auto __callable__ = __call__.AsType<PythonCallable>();
if (__callable__.IsValid()) {
py_func_obj = PyMethod_GET_FUNCTION(__callable__.get());
PythonObject im_self = GetAttributeValue("im_self");
if (im_self.IsValid() && !im_self.IsNone())
result.is_bound_method = true;
}
}
}
}
if (!py_func_obj)
return result;
PyCodeObject *code = (PyCodeObject *)PyFunction_GET_CODE(py_func_obj);
if (!code)
return result;
result.count = code->co_argcount;
result.has_varargs = !!(code->co_flags & CO_VARARGS);
result.has_kwargs = !!(code->co_flags & CO_VARKEYWORDS);
return result;
}
PythonObject PythonCallable::operator()() {
return PythonObject(PyRefType::Owned, PyObject_CallObject(m_py_obj, nullptr));
}
PythonObject PythonCallable::
operator()(std::initializer_list<PyObject *> args) {
PythonTuple arg_tuple(args);
return PythonObject(PyRefType::Owned,
PyObject_CallObject(m_py_obj, arg_tuple.get()));
}
PythonObject PythonCallable::
operator()(std::initializer_list<PythonObject> args) {
PythonTuple arg_tuple(args);
return PythonObject(PyRefType::Owned,
PyObject_CallObject(m_py_obj, arg_tuple.get()));
}
PythonFile::PythonFile() : PythonObject() {}
PythonFile::PythonFile(File &file, const char *mode) { Reset(file, mode); }
PythonFile::PythonFile(const char *path, const char *mode) {
lldb_private::File file(path, GetOptionsFromMode(mode));
Reset(file, mode);
}
PythonFile::PythonFile(PyRefType type, PyObject *o) { Reset(type, o); }
PythonFile::~PythonFile() {}
bool PythonFile::Check(PyObject *py_obj) {
#if PY_MAJOR_VERSION < 3
return PyFile_Check(py_obj);
#else
// In Python 3, there is no `PyFile_Check`, and in fact PyFile is not even a
// first-class object type anymore. `PyFile_FromFd` is just a thin wrapper
// over `io.open()`, which returns some object derived from `io.IOBase`. As a
// result, the only way to detect a file in Python 3 is to check whether it
// inherits from `io.IOBase`. Since it is possible for non-files to also
// inherit from `io.IOBase`, we additionally verify that it has the `fileno`
// attribute, which should guarantee that it is backed by the file system.
PythonObject io_module(PyRefType::Owned, PyImport_ImportModule("io"));
PythonDictionary io_dict(PyRefType::Borrowed,
PyModule_GetDict(io_module.get()));
PythonObject io_base_class = io_dict.GetItemForKey(PythonString("IOBase"));
PythonObject object_type(PyRefType::Owned, PyObject_Type(py_obj));
if (1 != PyObject_IsSubclass(object_type.get(), io_base_class.get()))
return false;
if (!object_type.HasAttribute("fileno"))
return false;
return true;
#endif
}
void PythonFile::Reset(PyRefType type, PyObject *py_obj) {
// Grab the desired reference type so that if we end up rejecting `py_obj` it
// still gets decremented if necessary.
PythonObject result(type, py_obj);
if (!PythonFile::Check(py_obj)) {
PythonObject::Reset();
return;
}
// Calling PythonObject::Reset(const PythonObject&) will lead to stack
// overflow since it calls back into the virtual implementation.
PythonObject::Reset(PyRefType::Borrowed, result.get());
}
void PythonFile::Reset(File &file, const char *mode) {
if (!file.IsValid()) {
Reset();
return;
}
char *cmode = const_cast<char *>(mode);
#if PY_MAJOR_VERSION >= 3
Reset(PyRefType::Owned, PyFile_FromFd(file.GetDescriptor(), nullptr, cmode,
-1, nullptr, "ignore", nullptr, 0));
#else
// Read through the Python source, doesn't seem to modify these strings
Reset(PyRefType::Owned,
PyFile_FromFile(file.GetStream(), const_cast<char *>(""), cmode,
nullptr));
#endif
}
uint32_t PythonFile::GetOptionsFromMode(llvm::StringRef mode) {
if (mode.empty())
return 0;
return llvm::StringSwitch<uint32_t>(mode.str())
.Case("r", File::eOpenOptionRead)
.Case("w", File::eOpenOptionWrite)
.Case("a", File::eOpenOptionWrite | File::eOpenOptionAppend |
File::eOpenOptionCanCreate)
.Case("r+", File::eOpenOptionRead | File::eOpenOptionWrite)
.Case("w+", File::eOpenOptionRead | File::eOpenOptionWrite |
File::eOpenOptionCanCreate | File::eOpenOptionTruncate)
.Case("a+", File::eOpenOptionRead | File::eOpenOptionWrite |
File::eOpenOptionAppend | File::eOpenOptionCanCreate)
.Default(0);
}
bool PythonFile::GetUnderlyingFile(File &file) const {
if (!IsValid())
return false;
file.Close();
// We don't own the file descriptor returned by this function, make sure the
// File object knows about that.
file.SetDescriptor(PyObject_AsFileDescriptor(m_py_obj), false);
PythonString py_mode = GetAttributeValue("mode").AsType<PythonString>();
file.SetOptions(PythonFile::GetOptionsFromMode(py_mode.GetString()));
return file.IsValid();
}
#endif