teak-llvm/clang-tools-extra/clang-tidy/modernize/UseNullptrCheck.cpp
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

500 lines
18 KiB
C++

//===--- UseNullptrCheck.cpp - clang-tidy----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "UseNullptrCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Lex/Lexer.h"
using namespace clang;
using namespace clang::ast_matchers;
using namespace llvm;
namespace clang {
namespace tidy {
namespace modernize {
namespace {
const char CastSequence[] = "sequence";
AST_MATCHER(Type, sugaredNullptrType) {
const Type *DesugaredType = Node.getUnqualifiedDesugaredType();
if (const auto *BT = dyn_cast<BuiltinType>(DesugaredType))
return BT->getKind() == BuiltinType::NullPtr;
return false;
}
/// \brief Create a matcher that finds implicit casts as well as the head of a
/// sequence of zero or more nested explicit casts that have an implicit cast
/// to null within.
/// Finding sequences of explict casts is necessary so that an entire sequence
/// can be replaced instead of just the inner-most implicit cast.
StatementMatcher makeCastSequenceMatcher() {
StatementMatcher ImplicitCastToNull = implicitCastExpr(
anyOf(hasCastKind(CK_NullToPointer), hasCastKind(CK_NullToMemberPointer)),
unless(hasImplicitDestinationType(qualType(substTemplateTypeParmType()))),
unless(hasSourceExpression(hasType(sugaredNullptrType()))));
return castExpr(anyOf(ImplicitCastToNull,
explicitCastExpr(hasDescendant(ImplicitCastToNull))),
unless(hasAncestor(explicitCastExpr())))
.bind(CastSequence);
}
bool isReplaceableRange(SourceLocation StartLoc, SourceLocation EndLoc,
const SourceManager &SM) {
return SM.isWrittenInSameFile(StartLoc, EndLoc);
}
/// \brief Replaces the provided range with the text "nullptr", but only if
/// the start and end location are both in main file.
/// Returns true if and only if a replacement was made.
void replaceWithNullptr(ClangTidyCheck &Check, SourceManager &SM,
SourceLocation StartLoc, SourceLocation EndLoc) {
CharSourceRange Range(SourceRange(StartLoc, EndLoc), true);
// Add a space if nullptr follows an alphanumeric character. This happens
// whenever there is an c-style explicit cast to nullptr not surrounded by
// parentheses and right beside a return statement.
SourceLocation PreviousLocation = StartLoc.getLocWithOffset(-1);
bool NeedsSpace = isAlphanumeric(*SM.getCharacterData(PreviousLocation));
Check.diag(Range.getBegin(), "use nullptr") << FixItHint::CreateReplacement(
Range, NeedsSpace ? " nullptr" : "nullptr");
}
/// \brief Returns the name of the outermost macro.
///
/// Given
/// \code
/// #define MY_NULL NULL
/// \endcode
/// If \p Loc points to NULL, this function will return the name MY_NULL.
StringRef getOutermostMacroName(SourceLocation Loc, const SourceManager &SM,
const LangOptions &LO) {
assert(Loc.isMacroID());
SourceLocation OutermostMacroLoc;
while (Loc.isMacroID()) {
OutermostMacroLoc = Loc;
Loc = SM.getImmediateMacroCallerLoc(Loc);
}
return Lexer::getImmediateMacroName(OutermostMacroLoc, SM, LO);
}
/// \brief RecursiveASTVisitor for ensuring all nodes rooted at a given AST
/// subtree that have file-level source locations corresponding to a macro
/// argument have implicit NullTo(Member)Pointer nodes as ancestors.
class MacroArgUsageVisitor : public RecursiveASTVisitor<MacroArgUsageVisitor> {
public:
MacroArgUsageVisitor(SourceLocation CastLoc, const SourceManager &SM)
: CastLoc(CastLoc), SM(SM), Visited(false), CastFound(false),
InvalidFound(false) {
assert(CastLoc.isFileID());
}
bool TraverseStmt(Stmt *S) {
bool VisitedPreviously = Visited;
if (!RecursiveASTVisitor<MacroArgUsageVisitor>::TraverseStmt(S))
return false;
// The point at which VisitedPreviously is false and Visited is true is the
// root of a subtree containing nodes whose locations match CastLoc. It's
// at this point we test that the Implicit NullTo(Member)Pointer cast was
// found or not.
if (!VisitedPreviously) {
if (Visited && !CastFound) {
// Found nodes with matching SourceLocations but didn't come across a
// cast. This is an invalid macro arg use. Can stop traversal
// completely now.
InvalidFound = true;
return false;
}
// Reset state as we unwind back up the tree.
CastFound = false;
Visited = false;
}
return true;
}
bool VisitStmt(Stmt *S) {
if (SM.getFileLoc(S->getBeginLoc()) != CastLoc)
return true;
Visited = true;
const ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(S);
if (Cast && (Cast->getCastKind() == CK_NullToPointer ||
Cast->getCastKind() == CK_NullToMemberPointer))
CastFound = true;
return true;
}
bool TraverseInitListExpr(InitListExpr *S) {
// Only go through the semantic form of the InitListExpr, because
// ImplicitCast might not appear in the syntactic form, and this results in
// finding usages of the macro argument that don't have a ImplicitCast as an
// ancestor (thus invalidating the replacement) when they actually have.
return RecursiveASTVisitor<MacroArgUsageVisitor>::
TraverseSynOrSemInitListExpr(
S->isSemanticForm() ? S : S->getSemanticForm());
}
bool foundInvalid() const { return InvalidFound; }
private:
SourceLocation CastLoc;
const SourceManager &SM;
bool Visited;
bool CastFound;
bool InvalidFound;
};
/// \brief Looks for implicit casts as well as sequences of 0 or more explicit
/// casts with an implicit null-to-pointer cast within.
///
/// The matcher this visitor is used with will find a single implicit cast or a
/// top-most explicit cast (i.e. it has no explicit casts as an ancestor) where
/// an implicit cast is nested within. However, there is no guarantee that only
/// explicit casts exist between the found top-most explicit cast and the
/// possibly more than one nested implicit cast. This visitor finds all cast
/// sequences with an implicit cast to null within and creates a replacement
/// leaving the outermost explicit cast unchanged to avoid introducing
/// ambiguities.
class CastSequenceVisitor : public RecursiveASTVisitor<CastSequenceVisitor> {
public:
CastSequenceVisitor(ASTContext &Context, ArrayRef<StringRef> NullMacros,
ClangTidyCheck &check)
: SM(Context.getSourceManager()), Context(Context),
NullMacros(NullMacros), Check(check), FirstSubExpr(nullptr),
PruneSubtree(false) {}
bool TraverseStmt(Stmt *S) {
// Stop traversing down the tree if requested.
if (PruneSubtree) {
PruneSubtree = false;
return true;
}
return RecursiveASTVisitor<CastSequenceVisitor>::TraverseStmt(S);
}
// Only VisitStmt is overridden as we shouldn't find other base AST types
// within a cast expression.
bool VisitStmt(Stmt *S) {
auto *C = dyn_cast<CastExpr>(S);
// Catch the castExpr inside cxxDefaultArgExpr.
if (auto *E = dyn_cast<CXXDefaultArgExpr>(S)) {
C = dyn_cast<CastExpr>(E->getExpr());
FirstSubExpr = nullptr;
}
if (!C) {
FirstSubExpr = nullptr;
return true;
}
auto* CastSubExpr = C->getSubExpr()->IgnoreParens();
// Ignore cast expressions which cast nullptr literal.
if (isa<CXXNullPtrLiteralExpr>(CastSubExpr)) {
return true;
}
if (!FirstSubExpr)
FirstSubExpr = CastSubExpr;
if (C->getCastKind() != CK_NullToPointer &&
C->getCastKind() != CK_NullToMemberPointer) {
return true;
}
SourceLocation StartLoc = FirstSubExpr->getBeginLoc();
SourceLocation EndLoc = FirstSubExpr->getEndLoc();
// If the location comes from a macro arg expansion, *all* uses of that
// arg must be checked to result in NullTo(Member)Pointer casts.
//
// If the location comes from a macro body expansion, check to see if its
// coming from one of the allowed 'NULL' macros.
if (SM.isMacroArgExpansion(StartLoc) && SM.isMacroArgExpansion(EndLoc)) {
SourceLocation FileLocStart = SM.getFileLoc(StartLoc),
FileLocEnd = SM.getFileLoc(EndLoc);
SourceLocation ImmediateMacroArgLoc, MacroLoc;
// Skip NULL macros used in macro.
if (!getMacroAndArgLocations(StartLoc, ImmediateMacroArgLoc, MacroLoc) ||
ImmediateMacroArgLoc != FileLocStart)
return skipSubTree();
if (isReplaceableRange(FileLocStart, FileLocEnd, SM) &&
allArgUsesValid(C)) {
replaceWithNullptr(Check, SM, FileLocStart, FileLocEnd);
}
return true;
}
if (SM.isMacroBodyExpansion(StartLoc) && SM.isMacroBodyExpansion(EndLoc)) {
StringRef OutermostMacroName =
getOutermostMacroName(StartLoc, SM, Context.getLangOpts());
// Check to see if the user wants to replace the macro being expanded.
if (std::find(NullMacros.begin(), NullMacros.end(), OutermostMacroName) ==
NullMacros.end()) {
return skipSubTree();
}
StartLoc = SM.getFileLoc(StartLoc);
EndLoc = SM.getFileLoc(EndLoc);
}
if (!isReplaceableRange(StartLoc, EndLoc, SM)) {
return skipSubTree();
}
replaceWithNullptr(Check, SM, StartLoc, EndLoc);
return true;
}
private:
bool skipSubTree() {
PruneSubtree = true;
return true;
}
/// \brief Tests that all expansions of a macro arg, one of which expands to
/// result in \p CE, yield NullTo(Member)Pointer casts.
bool allArgUsesValid(const CastExpr *CE) {
SourceLocation CastLoc = CE->getBeginLoc();
// Step 1: Get location of macro arg and location of the macro the arg was
// provided to.
SourceLocation ArgLoc, MacroLoc;
if (!getMacroAndArgLocations(CastLoc, ArgLoc, MacroLoc))
return false;
// Step 2: Find the first ancestor that doesn't expand from this macro.
ast_type_traits::DynTypedNode ContainingAncestor;
if (!findContainingAncestor(
ast_type_traits::DynTypedNode::create<Stmt>(*CE), MacroLoc,
ContainingAncestor))
return false;
// Step 3:
// Visit children of this containing parent looking for the least-descended
// nodes of the containing parent which are macro arg expansions that expand
// from the given arg location.
// Visitor needs: arg loc.
MacroArgUsageVisitor ArgUsageVisitor(SM.getFileLoc(CastLoc), SM);
if (const auto *D = ContainingAncestor.get<Decl>())
ArgUsageVisitor.TraverseDecl(const_cast<Decl *>(D));
else if (const auto *S = ContainingAncestor.get<Stmt>())
ArgUsageVisitor.TraverseStmt(const_cast<Stmt *>(S));
else
llvm_unreachable("Unhandled ContainingAncestor node type");
return !ArgUsageVisitor.foundInvalid();
}
/// \brief Given the SourceLocation for a macro arg expansion, finds the
/// non-macro SourceLocation of the macro the arg was passed to and the
/// non-macro SourceLocation of the argument in the arg list to that macro.
/// These results are returned via \c MacroLoc and \c ArgLoc respectively.
/// These values are undefined if the return value is false.
///
/// \returns false if one of the returned SourceLocations would be a
/// SourceLocation pointing within the definition of another macro.
bool getMacroAndArgLocations(SourceLocation Loc, SourceLocation &ArgLoc,
SourceLocation &MacroLoc) {
assert(Loc.isMacroID() && "Only reasonble to call this on macros");
ArgLoc = Loc;
// Find the location of the immediate macro expansion.
while (true) {
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(ArgLoc);
const SrcMgr::SLocEntry *E = &SM.getSLocEntry(LocInfo.first);
const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
SourceLocation OldArgLoc = ArgLoc;
ArgLoc = Expansion.getExpansionLocStart();
if (!Expansion.isMacroArgExpansion()) {
if (!MacroLoc.isFileID())
return false;
StringRef Name =
Lexer::getImmediateMacroName(OldArgLoc, SM, Context.getLangOpts());
return std::find(NullMacros.begin(), NullMacros.end(), Name) !=
NullMacros.end();
}
MacroLoc = SM.getExpansionRange(ArgLoc).getBegin();
ArgLoc = Expansion.getSpellingLoc().getLocWithOffset(LocInfo.second);
if (ArgLoc.isFileID())
return true;
// If spelling location resides in the same FileID as macro expansion
// location, it means there is no inner macro.
FileID MacroFID = SM.getFileID(MacroLoc);
if (SM.isInFileID(ArgLoc, MacroFID)) {
// Don't transform this case. If the characters that caused the
// null-conversion come from within a macro, they can't be changed.
return false;
}
}
llvm_unreachable("getMacroAndArgLocations");
}
/// \brief Tests if TestMacroLoc is found while recursively unravelling
/// expansions starting at TestLoc. TestMacroLoc.isFileID() must be true.
/// Implementation is very similar to getMacroAndArgLocations() except in this
/// case, it's not assumed that TestLoc is expanded from a macro argument.
/// While unravelling expansions macro arguments are handled as with
/// getMacroAndArgLocations() but in this function macro body expansions are
/// also handled.
///
/// False means either:
/// - TestLoc is not from a macro expansion.
/// - TestLoc is from a different macro expansion.
bool expandsFrom(SourceLocation TestLoc, SourceLocation TestMacroLoc) {
if (TestLoc.isFileID()) {
return false;
}
SourceLocation Loc = TestLoc, MacroLoc;
while (true) {
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
const SrcMgr::SLocEntry *E = &SM.getSLocEntry(LocInfo.first);
const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
Loc = Expansion.getExpansionLocStart();
if (!Expansion.isMacroArgExpansion()) {
if (Loc.isFileID()) {
return Loc == TestMacroLoc;
}
// Since Loc is still a macro ID and it's not an argument expansion, we
// don't need to do the work of handling an argument expansion. Simply
// keep recursively expanding until we hit a FileID or a macro arg
// expansion or a macro arg expansion.
continue;
}
MacroLoc = SM.getImmediateExpansionRange(Loc).getBegin();
if (MacroLoc.isFileID() && MacroLoc == TestMacroLoc) {
// Match made.
return true;
}
Loc = Expansion.getSpellingLoc().getLocWithOffset(LocInfo.second);
if (Loc.isFileID()) {
// If we made it this far without finding a match, there is no match to
// be made.
return false;
}
}
llvm_unreachable("expandsFrom");
}
/// \brief Given a starting point \c Start in the AST, find an ancestor that
/// doesn't expand from the macro called at file location \c MacroLoc.
///
/// \pre MacroLoc.isFileID()
/// \returns true if such an ancestor was found, false otherwise.
bool findContainingAncestor(ast_type_traits::DynTypedNode Start,
SourceLocation MacroLoc,
ast_type_traits::DynTypedNode &Result) {
// Below we're only following the first parent back up the AST. This should
// be fine since for the statements we care about there should only be one
// parent, except for the case specified below.
assert(MacroLoc.isFileID());
while (true) {
const auto &Parents = Context.getParents(Start);
if (Parents.empty())
return false;
if (Parents.size() > 1) {
// If there are more than one parents, don't do the replacement unless
// they are InitListsExpr (semantic and syntactic form). In this case we
// can choose any one here, and the ASTVisitor will take care of
// traversing the right one.
for (const auto &Parent : Parents) {
if (!Parent.get<InitListExpr>())
return false;
}
}
const ast_type_traits::DynTypedNode &Parent = Parents[0];
SourceLocation Loc;
if (const auto *D = Parent.get<Decl>())
Loc = D->getBeginLoc();
else if (const auto *S = Parent.get<Stmt>())
Loc = S->getBeginLoc();
// TypeLoc and NestedNameSpecifierLoc are members of the parent map. Skip
// them and keep going up.
if (Loc.isValid()) {
if (!expandsFrom(Loc, MacroLoc)) {
Result = Parent;
return true;
}
}
Start = Parent;
}
llvm_unreachable("findContainingAncestor");
}
private:
SourceManager &SM;
ASTContext &Context;
ArrayRef<StringRef> NullMacros;
ClangTidyCheck &Check;
Expr *FirstSubExpr;
bool PruneSubtree;
};
} // namespace
UseNullptrCheck::UseNullptrCheck(StringRef Name, ClangTidyContext *Context)
: ClangTidyCheck(Name, Context),
NullMacrosStr(Options.get("NullMacros", "")) {
StringRef(NullMacrosStr).split(NullMacros, ",");
}
void UseNullptrCheck::storeOptions(ClangTidyOptions::OptionMap &Opts) {
Options.store(Opts, "NullMacros", NullMacrosStr);
}
void UseNullptrCheck::registerMatchers(MatchFinder *Finder) {
// Only register the matcher for C++. Because this checker is used for
// modernization, it is reasonable to run it on any C++ standard with the
// assumption the user is trying to modernize their codebase.
if (getLangOpts().CPlusPlus)
Finder->addMatcher(makeCastSequenceMatcher(), this);
}
void UseNullptrCheck::check(const MatchFinder::MatchResult &Result) {
const auto *NullCast = Result.Nodes.getNodeAs<CastExpr>(CastSequence);
assert(NullCast && "Bad Callback. No node provided");
// Given an implicit null-ptr cast or an explicit cast with an implicit
// null-to-pointer cast within use CastSequenceVisitor to identify sequences
// of explicit casts that can be converted into 'nullptr'.
CastSequenceVisitor(*Result.Context, NullMacros, *this)
.TraverseStmt(const_cast<CastExpr *>(NullCast));
}
} // namespace modernize
} // namespace tidy
} // namespace clang