teak-llvm/lldb/source/Core/DataExtractor.cpp
Greg Clayton c982c768d2 Merged Eli Friedman's linux build changes where he added Makefile files that
enabled LLVM make style building and made this compile LLDB on Mac OS X. We
can now iterate on this to make the build work on both linux and macosx.

llvm-svn: 108009
2010-07-09 20:39:50 +00:00

1555 lines
53 KiB
C++

//===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include <assert.h>
#include <stddef.h>
#include <bitset>
#include <string>
#include "llvm/Support/MathExtras.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/DataBuffer.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Stream.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/UUID.h"
#include "lldb/Core/dwarf.h"
using namespace lldb;
using namespace lldb_private;
static inline uint16_t
ReadInt16(const unsigned char* ptr, unsigned offset)
{
return *(uint16_t *)(ptr + offset);
}
static inline uint32_t
ReadInt32 (const unsigned char* ptr, unsigned offset)
{
return *(uint32_t *)(ptr + offset);
}
static inline uint64_t
ReadInt64(const unsigned char* ptr, unsigned offset)
{
return *(uint64_t *)(ptr + offset);
}
static inline uint16_t
ReadSwapInt16(const unsigned char* ptr, unsigned offset)
{
return llvm::ByteSwap_16(*(uint16_t *)(ptr + offset));
}
static inline uint32_t
ReadSwapInt32 (const unsigned char* ptr, unsigned offset)
{
return llvm::ByteSwap_32(*(uint32_t *)(ptr + offset));
}
static inline uint64_t
ReadSwapInt64(const unsigned char* ptr, unsigned offset)
{
return llvm::ByteSwap_64(*(uint64_t *)(ptr + offset));
}
#define NON_PRINTABLE_CHAR '.'
//----------------------------------------------------------------------
// Default constructor.
//----------------------------------------------------------------------
DataExtractor::DataExtractor () :
m_start (NULL),
m_end (NULL),
m_byte_order(eByteOrderHost),
m_addr_size (4),
m_data_sp ()
{
}
//----------------------------------------------------------------------
// This constructor allows us to use data that is owned by someone else.
// The data must stay around as long as this object is valid.
//----------------------------------------------------------------------
DataExtractor::DataExtractor (const void* data, uint32_t length, ByteOrder endian, uint8_t addr_size) :
m_start ((uint8_t*)data),
m_end ((uint8_t*)data + length),
m_byte_order(endian),
m_addr_size (addr_size),
m_data_sp ()
{
}
//----------------------------------------------------------------------
// Make a shared pointer reference to the shared data in "data_sp" and
// set the endian swapping setting to "swap", and the address size to
// "addr_size". The shared data reference will ensure the data lives
// as long as any DataExtractor objects exist that have a reference to
// this data.
//----------------------------------------------------------------------
DataExtractor::DataExtractor (DataBufferSP& data_sp, ByteOrder endian, uint8_t addr_size) :
m_start (NULL),
m_end (NULL),
m_byte_order(endian),
m_addr_size (addr_size),
m_data_sp ()
{
SetData (data_sp);
}
//----------------------------------------------------------------------
// Initialize this object with a subset of the data bytes in "data".
// If "data" contains shared data, then a reference to this shared
// data will added and the shared data will stay around as long
// as any object contains a reference to that data. The endian
// swap and address size settings are copied from "data".
//----------------------------------------------------------------------
DataExtractor::DataExtractor (const DataExtractor& data, uint32_t offset, uint32_t length) :
m_start(NULL),
m_end(NULL),
m_byte_order(data.m_byte_order),
m_addr_size(data.m_addr_size),
m_data_sp()
{
if (data.ValidOffset(offset))
{
uint32_t bytes_available = data.GetByteSize() - offset;
if (length > bytes_available)
length = bytes_available;
SetData(data, offset, length);
}
}
//----------------------------------------------------------------------
// Assignment operator
//----------------------------------------------------------------------
const DataExtractor&
DataExtractor::operator= (const DataExtractor& rhs)
{
if (this != &rhs)
{
m_start = rhs.m_start;
m_end = rhs.m_end;
m_byte_order= rhs.m_byte_order;
m_addr_size = rhs.m_addr_size;
m_data_sp = rhs.m_data_sp;
}
return *this;
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
DataExtractor::~DataExtractor ()
{
}
//------------------------------------------------------------------
// Clears the object contents back to a default invalid state, and
// release any references to shared data that this object may
// contain.
//------------------------------------------------------------------
void
DataExtractor::Clear ()
{
m_start = NULL;
m_end = NULL;
m_byte_order = eByteOrderHost;
m_addr_size = 4;
m_data_sp.reset();
}
//------------------------------------------------------------------
// Returns the total number of bytes that this object refers to
//------------------------------------------------------------------
size_t
DataExtractor::GetByteSize () const
{
return m_end - m_start;
}
//------------------------------------------------------------------
// If this object contains shared data, this function returns the
// offset into that shared data. Else zero is returned.
//------------------------------------------------------------------
size_t
DataExtractor::GetSharedDataOffset () const
{
if (m_start != NULL)
{
const DataBuffer * data = m_data_sp.get();
if (data != NULL)
{
const uint8_t * data_bytes = data->GetBytes();
if (data_bytes != NULL)
{
assert(m_start >= data_bytes);
return m_start - data_bytes;
}
}
}
return 0;
}
//------------------------------------------------------------------
// Returns true if OFFSET is a valid offset into the data in this
// object.
//------------------------------------------------------------------
bool
DataExtractor::ValidOffset (uint32_t offset) const
{
return offset < GetByteSize();
}
//------------------------------------------------------------------
// Returns true if there are LENGTH bytes availabe starting OFFSET
// into the data that is in this object.
//------------------------------------------------------------------
bool
DataExtractor::ValidOffsetForDataOfSize (uint32_t offset, uint32_t length) const
{
size_t size = GetByteSize();
if (offset >= size)
return false; // offset isn't valid
if (length == 0)
return true; // No bytes requested at this offset, return true
// If we flip the bits in offset we can figure out how
// many bytes we have left before "offset + length"
// could overflow when doing unsigned arithmetic.
if (length > ~offset)
return false; // unsigned overflow
// Make sure "offset + length" is a valid offset as well.
// length must be greater than zero for this to be a
// valid expression, and we have already checked for this.
return ((offset + length) <= size);
}
//------------------------------------------------------------------
// Returns a pointer to the first byte contained in this object's
// data, or NULL of there is no data in this object.
//------------------------------------------------------------------
const uint8_t *
DataExtractor::GetDataStart () const
{
return m_start;
}
//------------------------------------------------------------------
// Returns a pointer to the byte past the last byte contained in
// this object's data, or NULL of there is no data in this object.
//------------------------------------------------------------------
const uint8_t *
DataExtractor::GetDataEnd () const
{
return m_end;
}
//------------------------------------------------------------------
// Returns true if this object will endian swap values as it
// extracts data.
//------------------------------------------------------------------
ByteOrder
DataExtractor::GetByteOrder () const
{
return m_byte_order;
}
//------------------------------------------------------------------
// Set wether this object will endian swap values as it extracts
// data.
//------------------------------------------------------------------
void
DataExtractor::SetByteOrder (ByteOrder endian)
{
m_byte_order = endian;
}
//------------------------------------------------------------------
// Return the size in bytes of any address values this object will
// extract
//------------------------------------------------------------------
uint8_t
DataExtractor::GetAddressByteSize () const
{
return m_addr_size;
}
//------------------------------------------------------------------
// Set the size in bytes that will be used when extracting any
// address values from data contained in this object.
//------------------------------------------------------------------
void
DataExtractor::SetAddressByteSize (uint8_t addr_size)
{
m_addr_size = addr_size;
}
//----------------------------------------------------------------------
// Set the data with which this object will extract from to data
// starting at BYTES and set the length of the data to LENGTH bytes
// long. The data is externally owned must be around at least as
// long as this object points to the data. No copy of the data is
// made, this object just refers to this data and can extract from
// it. If this object refers to any shared data upon entry, the
// reference to that data will be released. Is SWAP is set to true,
// any data extracted will be endian swapped.
//----------------------------------------------------------------------
uint32_t
DataExtractor::SetData (const void *bytes, uint32_t length, ByteOrder endian)
{
m_byte_order = endian;
m_data_sp.reset();
if (bytes == NULL || length == 0)
{
m_start = NULL;
m_end = NULL;
}
else
{
m_start = (uint8_t *)bytes;
m_end = m_start + length;
}
return GetByteSize();
}
//----------------------------------------------------------------------
// Assign the data for this object to be a subrange in "data"
// starting "data_offset" bytes into "data" and ending "data_length"
// bytes later. If "data_offset" is not a valid offset into "data",
// then this object will contain no bytes. If "data_offset" is
// within "data" yet "data_length" is too large, the length will be
// capped at the number of bytes remaining in "data". If "data"
// contains a shared pointer to other data, then a ref counted
// pointer to that data will be made in this object. If "data"
// doesn't contain a shared pointer to data, then the bytes referred
// to in "data" will need to exist at least as long as this object
// refers to those bytes. The address size and endian swap settings
// are copied from the current values in "data".
//----------------------------------------------------------------------
uint32_t
DataExtractor::SetData (const DataExtractor& data, uint32_t data_offset, uint32_t data_length)
{
m_addr_size = data.m_addr_size;
// If "data" contains shared pointer to data, then we can use that
if (data.m_data_sp.get())
{
m_byte_order = data.m_byte_order;
return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset, data_length);
}
// We have a DataExtractor object that just has a pointer to bytes
if (data.ValidOffset(data_offset))
{
if (data_length > data.GetByteSize() - data_offset)
data_length = data.GetByteSize() - data_offset;
return SetData (data.GetDataStart() + data_offset, data_length, data.GetByteOrder());
}
return 0;
}
//----------------------------------------------------------------------
// Assign the data for this object to be a subrange of the shared
// data in "data_sp" starting "data_offset" bytes into "data_sp"
// and ending "data_length" bytes later. If "data_offset" is not
// a valid offset into "data_sp", then this object will contain no
// bytes. If "data_offset" is within "data_sp" yet "data_length" is
// too large, the length will be capped at the number of bytes
// remaining in "data_sp". A ref counted pointer to the data in
// "data_sp" will be made in this object IF the number of bytes this
// object refers to in greater than zero (if at least one byte was
// available starting at "data_offset") to ensure the data stays
// around as long as it is needed. The address size and endian swap
// settings will remain unchanged from their current settings.
//----------------------------------------------------------------------
uint32_t
DataExtractor::SetData (DataBufferSP& data_sp, uint32_t data_offset, uint32_t data_length)
{
m_start = m_end = NULL;
if (data_length > 0)
{
m_data_sp = data_sp;
if (data_sp.get())
{
const size_t data_size = data_sp->GetByteSize();
if (data_offset < data_size)
{
m_start = data_sp->GetBytes() + data_offset;
const size_t bytes_left = data_size - data_offset;
// Cap the length of we asked for too many
if (data_length <= bytes_left)
m_end = m_start + data_length; // We got all the bytes we wanted
else
m_end = m_start + bytes_left; // Not all the bytes requested were available in the shared data
}
}
}
uint32_t new_size = GetByteSize();
// Don't hold a shared pointer to the data buffer if we don't share
// any valid bytes in the shared buffer.
if (new_size == 0)
m_data_sp.reset();
return new_size;
}
//----------------------------------------------------------------------
// Extract a single unsigned char from the binary data and update
// the offset pointed to by "offset_ptr".
//
// RETURNS the byte that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint8_t
DataExtractor::GetU8 (uint32_t *offset_ptr) const
{
uint8_t val = 0;
if ( m_start < m_end )
{
val = m_start[*offset_ptr];
*offset_ptr += sizeof(val);
}
return val;
}
//----------------------------------------------------------------------
// Extract "count" unsigned chars from the binary data and update the
// offset pointed to by "offset_ptr". The extracted data is copied into
// "dst".
//
// RETURNS the non-NULL buffer pointer upon successful extraction of
// all the requested bytes, or NULL when the data is not available in
// the buffer due to being out of bounds, or unsufficient data.
//----------------------------------------------------------------------
void *
DataExtractor::GetU8 (uint32_t *offset_ptr, void *dst, uint32_t count) const
{
register uint32_t offset = *offset_ptr;
if ((count > 0) && ValidOffsetForDataOfSize(offset, count) )
{
// Copy the data into the buffer
memcpy (dst, m_start + offset, count);
// Advance the offset
*offset_ptr += count;
// Return a non-NULL pointer to the converted data as an indicator of success
return dst;
}
return NULL;
}
//----------------------------------------------------------------------
// Extract a single uint16_t from the data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the uint16_t that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint16_t
DataExtractor::GetU16 (uint32_t *offset_ptr) const
{
uint16_t val = 0;
register uint32_t offset = *offset_ptr;
if ( ValidOffsetForDataOfSize(offset, sizeof(val)) )
{
if (m_byte_order != eByteOrderHost)
val = ReadSwapInt16(m_start, offset);
else
val = ReadInt16 (m_start, offset);
// Advance the offset
*offset_ptr += sizeof(val);
}
return val;
}
//----------------------------------------------------------------------
// Extract "count" uint16_t values from the binary data and update
// the offset pointed to by "offset_ptr". The extracted data is
// copied into "dst".
//
// RETURNS the non-NULL buffer pointer upon successful extraction of
// all the requested bytes, or NULL when the data is not available
// in the buffer due to being out of bounds, or unsufficient data.
//----------------------------------------------------------------------
void *
DataExtractor::GetU16 (uint32_t *offset_ptr, void *void_dst, uint32_t count) const
{
uint16_t *dst = (uint16_t *)void_dst;
const size_t value_size = sizeof(*dst);
register uint32_t offset = *offset_ptr;
if ((count > 0) && ValidOffsetForDataOfSize(offset, value_size * count) )
{
uint16_t *value_ptr;
uint16_t *end = dst + count;
if (m_byte_order != eByteOrderHost)
{
for (value_ptr = dst; value_ptr < end; ++value_ptr, offset += value_size)
*value_ptr = ReadSwapInt16 (m_start, offset);
}
else
{
for (value_ptr = dst; value_ptr < end; ++value_ptr, offset += value_size)
*value_ptr = ReadInt16 (m_start, offset);
}
// Advance the offset
*offset_ptr = offset;
// Return a non-NULL pointer to the converted data as an indicator of success
return dst;
}
return NULL;
}
//----------------------------------------------------------------------
// Extract a single uint32_t from the data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the uint32_t that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint32_t
DataExtractor::GetU32 (uint32_t *offset_ptr) const
{
uint32_t val = 0;
register uint32_t offset = *offset_ptr;
if ( ValidOffsetForDataOfSize(offset, sizeof(val)) )
{
if (m_byte_order != eByteOrderHost)
val = ReadSwapInt32 (m_start, offset);
else
val = ReadInt32 (m_start, offset);
// Advance the offset
*offset_ptr += sizeof(val);
}
return val;
}
//----------------------------------------------------------------------
// Extract "count" uint32_t values from the binary data and update
// the offset pointed to by "offset_ptr". The extracted data is
// copied into "dst".
//
// RETURNS the non-NULL buffer pointer upon successful extraction of
// all the requested bytes, or NULL when the data is not available
// in the buffer due to being out of bounds, or unsufficient data.
//----------------------------------------------------------------------
void *
DataExtractor::GetU32 (uint32_t *offset_ptr, void *void_dst, uint32_t count) const
{
uint32_t *dst = (uint32_t *)void_dst;
const size_t value_size = sizeof(*dst);
register uint32_t offset = *offset_ptr;
if ((count > 0) && ValidOffsetForDataOfSize(offset, value_size * count))
{
uint32_t *value_ptr;
uint32_t *end = dst + count;
if (m_byte_order != eByteOrderHost)
{
for (value_ptr = dst; value_ptr < end; ++value_ptr, offset += value_size)
*value_ptr = ReadSwapInt32 (m_start, offset);
}
else
{
for (value_ptr = dst; value_ptr < end; ++value_ptr, offset += value_size)
*value_ptr = ReadInt32 (m_start, offset);
}
// Advance the offset
*offset_ptr = offset;
// Return a non-NULL pointer to the converted data as an indicator of success
return dst;
}
return NULL;
}
//----------------------------------------------------------------------
// Extract a single uint64_t from the data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the uint64_t that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint64_t
DataExtractor::GetU64 (uint32_t *offset_ptr) const
{
uint64_t val = 0;
register uint32_t offset = *offset_ptr;
if ( ValidOffsetForDataOfSize(offset, sizeof(val)) )
{
if (m_byte_order != eByteOrderHost)
val = ReadSwapInt64 (m_start, offset);
else
val = ReadInt64 (m_start, offset);
// Advance the offset
*offset_ptr += sizeof(val);
}
return val;
}
//----------------------------------------------------------------------
// GetU64
//
// Get multiple consecutive 64 bit values. Return true if the entire
// read succeeds and increment the offset pointed to by offset_ptr, else
// return false and leave the offset pointed to by offset_ptr unchanged.
//----------------------------------------------------------------------
void *
DataExtractor::GetU64 (uint32_t *offset_ptr, void *void_dst, uint32_t count) const
{
uint64_t *dst = (uint64_t *)void_dst;
const size_t value_size = sizeof(uint64_t);
register uint32_t offset = *offset_ptr;
if ((count > 0) && ValidOffsetForDataOfSize(offset, value_size * count))
{
uint64_t *value_ptr;
uint64_t *end = dst + count;
if (m_byte_order != eByteOrderHost)
{
for (value_ptr = dst; value_ptr < end; ++value_ptr, offset += value_size)
*value_ptr = ReadSwapInt64 (m_start, offset);
}
else
{
for (value_ptr = dst; value_ptr < end; ++value_ptr, offset += value_size)
*value_ptr = ReadInt64 (m_start, offset);
}
// Advance the offset
*offset_ptr = offset;
// Return a non-NULL pointer to the converted data as an indicator of success
return dst;
}
return NULL;
}
//----------------------------------------------------------------------
// Extract a single integer value from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted integer
// is specified by the "byte_size" argument. "byte_size" should have
// a value between 1 and 4 since the return value is only 32 bits
// wide. Any "byte_size" values less than 1 or greater than 4 will
// result in nothing being extracted, and zero being returned.
//
// RETURNS the integer value that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint32_t
DataExtractor::GetMaxU32 (uint32_t *offset_ptr, uint32_t byte_size) const
{
switch (byte_size)
{
case 1: return GetU8 (offset_ptr); break;
case 2: return GetU16(offset_ptr); break;
case 4: return GetU32(offset_ptr); break;
default:
assert(!"GetMaxU32 unhandled case!");
break;
}
return 0;
}
//----------------------------------------------------------------------
// Extract a single integer value from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted integer
// is specified by the "byte_size" argument. "byte_size" should have
// a value >= 1 and <= 8 since the return value is only 64 bits
// wide. Any "byte_size" values less than 1 or greater than 8 will
// result in nothing being extracted, and zero being returned.
//
// RETURNS the integer value that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint64_t
DataExtractor::GetMaxU64 (uint32_t *offset_ptr, uint32_t size) const
{
switch (size)
{
case 1: return GetU8 (offset_ptr); break;
case 2: return GetU16(offset_ptr); break;
case 4: return GetU32(offset_ptr); break;
case 8: return GetU64(offset_ptr); break;
default:
assert(!"GetMax64 unhandled case!");
break;
}
return 0;
}
int64_t
DataExtractor::GetMaxS64 (uint32_t *offset_ptr, uint32_t size) const
{
switch (size)
{
case 1: return (int8_t)GetU8 (offset_ptr); break;
case 2: return (int16_t)GetU16(offset_ptr); break;
case 4: return (int32_t)GetU32(offset_ptr); break;
case 8: return (int64_t)GetU64(offset_ptr); break;
default:
assert(!"GetMax64 unhandled case!");
break;
}
return 0;
}
uint64_t
DataExtractor::GetMaxU64Bitfield (uint32_t *offset_ptr, uint32_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const
{
uint64_t uval64 = GetMaxU64 (offset_ptr, size);
if (bitfield_bit_size > 0)
{
if (bitfield_bit_offset > 0)
uval64 >>= bitfield_bit_offset;
uint64_t bitfield_mask = ((1 << bitfield_bit_size) - 1);
uval64 &= bitfield_mask;
}
return uval64;
}
int64_t
DataExtractor::GetMaxS64Bitfield (uint32_t *offset_ptr, uint32_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const
{
int64_t sval64 = GetMaxS64 (offset_ptr, size);
if (bitfield_bit_size > 0)
{
if (bitfield_bit_offset > 0)
sval64 >>= bitfield_bit_offset;
uint64_t bitfield_mask = ((1 << bitfield_bit_size) - 1);
sval64 &= bitfield_mask;
// sign extend if needed
if (sval64 & (1 << (bitfield_bit_size - 1)))
sval64 |= ~bitfield_mask;
}
return sval64;
}
float
DataExtractor::GetFloat (uint32_t *offset_ptr) const
{
uint32_t val = 0;
register uint32_t offset = *offset_ptr;
if ( ValidOffsetForDataOfSize(offset, sizeof(val)) )
{
if (m_byte_order != eByteOrderHost)
val = ReadSwapInt32 (m_start, offset);
else
val = ReadInt32 (m_start, offset);
// Advance the offset
*offset_ptr += sizeof(val);
}
return *((float *)&val);
}
double
DataExtractor::GetDouble (uint32_t *offset_ptr) const
{
uint64_t val = 0;
register uint32_t offset = *offset_ptr;
if ( ValidOffsetForDataOfSize(offset, sizeof(val)) )
{
if (m_byte_order != eByteOrderHost)
val = ReadSwapInt64 (m_start, offset);
else
val = ReadInt64 (m_start, offset);
// Advance the offset
*offset_ptr += sizeof(val);
}
return *((double *)&val);
}
long double
DataExtractor::GetLongDouble (uint32_t *offset_ptr) const
{
if (sizeof(long double) == sizeof(uint64_t))
{
uint64_t val = 0;
register uint32_t offset = *offset_ptr;
if ( ValidOffsetForDataOfSize(offset, sizeof(val)) )
{
if (m_byte_order != eByteOrderHost)
val = ReadSwapInt64 (m_start, offset);
else
val = ReadInt64 (m_start, offset);
// Advance the offset
*offset_ptr += sizeof(val);
}
return *((long double *)&val);
}
return 0.0;
}
//------------------------------------------------------------------
// Extract a single address from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted address
// comes from the "this->m_addr_size" member variable and should be
// set correctly prior to extracting any address values.
//
// RETURNS the address that was extracted, or zero on failure.
//------------------------------------------------------------------
uint64_t
DataExtractor::GetAddress (uint32_t *offset_ptr) const
{
return GetMaxU64 (offset_ptr, m_addr_size);
}
//------------------------------------------------------------------
// Extract a single pointer from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted pointer
// comes from the "this->m_addr_size" member variable and should be
// set correctly prior to extracting any pointer values.
//
// RETURNS the pointer that was extracted, or zero on failure.
//------------------------------------------------------------------
uint64_t
DataExtractor::GetPointer (uint32_t *offset_ptr) const
{
return GetMaxU64 (offset_ptr, m_addr_size);
}
//----------------------------------------------------------------------
// GetDwarfEHPtr
//
// Used for calls when the value type is specified by a DWARF EH Frame
// pointer encoding.
//----------------------------------------------------------------------
uint64_t
DataExtractor::GetGNUEHPointer (uint32_t *offset_ptr, uint32_t eh_ptr_enc, lldb::addr_t pc_rel_addr, lldb::addr_t text_addr, lldb::addr_t data_addr)//, BSDRelocs *data_relocs) const
{
if (eh_ptr_enc == DW_EH_PE_omit)
return ULONG_LONG_MAX; // Value isn't in the buffer...
uint64_t baseAddress = 0;
uint64_t addressValue = 0;
const uint32_t addr_size = GetAddressByteSize();
bool signExtendValue = false;
// Decode the base part or adjust our offset
switch (eh_ptr_enc & 0x70)
{
case DW_EH_PE_pcrel:
signExtendValue = true;
baseAddress = *offset_ptr;
if (pc_rel_addr != LLDB_INVALID_ADDRESS)
baseAddress += pc_rel_addr;
// else
// Log::GlobalWarning ("PC relative pointer encoding found with invalid pc relative address.");
break;
case DW_EH_PE_textrel:
signExtendValue = true;
if (text_addr != LLDB_INVALID_ADDRESS)
baseAddress = text_addr;
// else
// Log::GlobalWarning ("text relative pointer encoding being decoded with invalid text section address, setting base address to zero.");
break;
case DW_EH_PE_datarel:
signExtendValue = true;
if (data_addr != LLDB_INVALID_ADDRESS)
baseAddress = data_addr;
// else
// Log::GlobalWarning ("data relative pointer encoding being decoded with invalid data section address, setting base address to zero.");
break;
case DW_EH_PE_funcrel:
signExtendValue = true;
break;
case DW_EH_PE_aligned:
{
// SetPointerSize should be called prior to extracting these so the
// pointer size is cached
assert(addr_size != 0);
if (addr_size)
{
// Align to a address size boundary first
uint32_t alignOffset = *offset_ptr % addr_size;
if (alignOffset)
offset_ptr += addr_size - alignOffset;
}
}
break;
default:
break;
}
// Decode the value part
switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING)
{
case DW_EH_PE_absptr :
{
addressValue = GetAddress (offset_ptr);
// if (data_relocs)
// addressValue = data_relocs->Relocate(*offset_ptr - addr_size, *this, addressValue);
}
break;
case DW_EH_PE_uleb128 : addressValue = GetULEB128(offset_ptr); break;
case DW_EH_PE_udata2 : addressValue = GetU16(offset_ptr); break;
case DW_EH_PE_udata4 : addressValue = GetU32(offset_ptr); break;
case DW_EH_PE_udata8 : addressValue = GetU64(offset_ptr); break;
case DW_EH_PE_sleb128 : addressValue = GetSLEB128(offset_ptr); break;
case DW_EH_PE_sdata2 : addressValue = (int16_t)GetU16(offset_ptr); break;
case DW_EH_PE_sdata4 : addressValue = (int32_t)GetU32(offset_ptr); break;
case DW_EH_PE_sdata8 : addressValue = (int64_t)GetU64(offset_ptr); break;
default:
// Unhandled encoding type
assert(eh_ptr_enc);
break;
}
// Since we promote everything to 64 bit, we may need to sign extend
if (signExtendValue && addr_size < sizeof(baseAddress))
{
uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
if (sign_bit & addressValue)
{
uint64_t mask = ~sign_bit + 1;
addressValue |= mask;
}
}
return baseAddress + addressValue;
}
size_t
DataExtractor::ExtractBytes (uint32_t offset, uint32_t length, ByteOrder dst_byte_order, void *dst) const
{
const uint8_t *src = PeekData (offset, length);
if (src)
{
if (dst_byte_order != GetByteOrder())
{
for (uint32_t i=0; i<length; ++i)
((uint8_t*)dst)[i] = src[length - i - 1];
}
else
::memcpy (dst, src, length);
return length;
}
return 0;
}
//----------------------------------------------------------------------
// Peeks at bytes in the contained data.
//
// Returns a valid pointer to bytes if "offset" is a valid offset in
// and there are "length" bytes available, else NULL is returned.
//----------------------------------------------------------------------
const uint8_t*
DataExtractor::PeekData (uint32_t offset, uint32_t length) const
{
if ( length > 0 && ValidOffsetForDataOfSize(offset, length) )
return m_start + offset;
return NULL;
}
//----------------------------------------------------------------------
// Returns a pointer to a bytes in this object's data at the offset
// pointed to by "offset_ptr". If "length" is zero or too large,
// then the offset pointed to by "offset_ptr" will not be updated
// and NULL will be returned.
//
// Returns a pointer to the data if the offset and length are valid,
// or NULL otherwise.
//----------------------------------------------------------------------
const void*
DataExtractor::GetData (uint32_t *offset_ptr, uint32_t length) const
{
const uint8_t* bytes = NULL;
register uint32_t offset = *offset_ptr;
if ( length > 0 && ValidOffsetForDataOfSize(offset, length) )
{
bytes = m_start + offset;
*offset_ptr = offset + length;
}
return bytes;
}
//----------------------------------------------------------------------
// Extracts a AsCString (fixed length, or variable length) from
// the data at the offset pointed to by "offset_ptr". If
// "length" is zero, then a variable length NULL terminated C
// string will be extracted from the data the "offset_ptr" will be
// updated with the offset of the byte that follows the NULL
// terminator byte. If "length" is greater than zero, then
// the function will make sure there are "length" bytes
// available in the current data and if so, return a valid pointer.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if
// "length" is non-zero and there aren't enough avaialable
// bytes, NULL will be returned and "offset_ptr" will not be
// updated.
//----------------------------------------------------------------------
const char*
DataExtractor::GetCStr (uint32_t *offset_ptr) const
{
const char *s = NULL;
if ( m_start < m_end )
{
s = (char*)m_start + *offset_ptr;
size_t length = strlen(s) + 1;
if (!ValidOffsetForDataOfSize(*offset_ptr, length))
return NULL;
// Advance the offset
*offset_ptr += length;
}
return s;
}
//------------------------------------------------------------------
// Peeks at a string in the contained data. No verification is done
// to make sure the entire string lies within the bounds of this
// object's data, only "offset" is verified to be a valid offset.
//
// Returns a valid C string pointer if "offset" is a valid offset in
// this object's data, else NULL is returned.
//------------------------------------------------------------------
const char *
DataExtractor::PeekCStr (uint32_t offset) const
{
if (ValidOffset (offset))
return (const char*)m_start + offset;
return NULL;
}
//----------------------------------------------------------------------
// Extracts an unsigned LEB128 number from this object's data
// starting at the offset pointed to by "offset_ptr". The offset
// pointed to by "offset_ptr" will be updated with the offset of the
// byte following the last extracted byte.
//
// Returned the extracted integer value.
//----------------------------------------------------------------------
uint64_t
DataExtractor::GetULEB128 (uint32_t *offset_ptr) const
{
uint64_t result = 0;
if ( m_start < m_end )
{
int shift = 0;
const uint8_t *src = m_start + *offset_ptr;
uint8_t byte;
int bytecount = 0;
while (src < m_end)
{
bytecount++;
byte = *src++;
result |= (byte & 0x7f) << shift;
shift += 7;
if ((byte & 0x80) == 0)
break;
}
*offset_ptr += bytecount;
}
return result;
}
//----------------------------------------------------------------------
// Extracts an signed LEB128 number from this object's data
// starting at the offset pointed to by "offset_ptr". The offset
// pointed to by "offset_ptr" will be updated with the offset of the
// byte following the last extracted byte.
//
// Returned the extracted integer value.
//----------------------------------------------------------------------
int64_t
DataExtractor::GetSLEB128 (uint32_t *offset_ptr) const
{
int64_t result = 0;
if ( m_start < m_end )
{
int shift = 0;
int size = sizeof (uint32_t) * 8;
const uint8_t *src = m_start + *offset_ptr;
uint8_t byte = 0;
int bytecount = 0;
while (src < m_end)
{
bytecount++;
byte = *src++;
result |= (byte & 0x7f) << shift;
shift += 7;
if ((byte & 0x80) == 0)
break;
}
// Sign bit of byte is 2nd high order bit (0x40)
if (shift < size && (byte & 0x40))
result |= - (1 << shift);
*offset_ptr += bytecount;
}
return result;
}
//----------------------------------------------------------------------
// Skips a ULEB128 number (signed or unsigned) from this object's
// data starting at the offset pointed to by "offset_ptr". The
// offset pointed to by "offset_ptr" will be updated with the offset
// of the byte following the last extracted byte.
//
// Returns the number of bytes consumed during the extraction.
//----------------------------------------------------------------------
uint32_t
DataExtractor::Skip_LEB128 (uint32_t *offset_ptr) const
{
uint32_t bytes_consumed = 0;
if ( m_start < m_end )
{
const uint8_t *start = m_start + *offset_ptr;
const uint8_t *src = start;
while ((src < m_end) && (*src++ & 0x80))
++bytes_consumed;
*offset_ptr += src - start;
}
return bytes_consumed;
}
uint32_t
DataExtractor::Dump
(
Stream *s,
uint32_t start_offset,
lldb::Format item_format,
uint32_t item_byte_size,
uint32_t item_count,
uint32_t num_per_line,
uint64_t base_addr,
uint32_t item_bit_size, // If zero, this is not a bitfield value, if non-zero, the value is a bitfield
uint32_t item_bit_offset // If "item_bit_size" is non-zero, this is the shift amount to apply to a bitfield
) const
{
if (s == NULL)
return start_offset;
uint32_t offset;
uint32_t count;
uint32_t line_start_offset;
if (item_format == eFormatPointer)
{
if (item_byte_size != 4 && item_byte_size != 8)
item_byte_size = s->GetAddressByteSize();
}
for (offset = start_offset, line_start_offset = start_offset, count = 0; ValidOffset(offset) && count < item_count; ++count)
{
if ((count % num_per_line) == 0)
{
if (count > 0)
{
if (item_format == eFormatBytesWithASCII && offset > line_start_offset)
{
s->Printf("%*s", (num_per_line - (offset - line_start_offset)) * 3 + 2, "");
Dump(s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0);
}
s->EOL();
}
if (base_addr != LLDB_INVALID_ADDRESS)
s->Printf ("0x%8.8llx: ", (uint64_t)(base_addr + (offset - start_offset)));
line_start_offset = offset;
}
else
if (item_format != eFormatChar &&
item_format != eFormatCharPrintable &&
count > 0)
{
s->PutChar(' ');
}
uint32_t i;
switch (item_format)
{
case eFormatBoolean:
s->Printf ("%s", GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset) ? "true" : "false");
break;
case eFormatBinary:
{
uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
std::string binary_value(std::bitset<64>(uval64).to_string());
if (item_bit_size > 0)
s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size);
else if (item_byte_size > 0 && item_byte_size <= 8)
s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8);
}
break;
case eFormatBytes:
case eFormatBytesWithASCII:
for (i=0; i<item_byte_size; ++i)
{
s->Printf ("%2.2x", GetU8(&offset));
}
// Put an extra space between the groups of bytes if more than one
// is being dumped in a group (item_byte_size is more than 1).
if (item_byte_size > 1)
s->PutChar(' ');
break;
case eFormatChar:
case eFormatCharPrintable:
{
// If we are only printing one character surround it with single
// quotes
if (item_count == 1 && item_format == eFormatChar)
s->PutChar('\'');
uint8_t ch = GetU8(&offset);
if (isprint(ch))
s->Printf ("%c", ch);
else if (item_format == eFormatChar)
{
switch (ch)
{
case '\e': s->Printf ("\\e", (uint8_t)ch); break;
case '\a': s->Printf ("\\a", ch); break;
case '\b': s->Printf ("\\b", ch); break;
case '\f': s->Printf ("\\f", ch); break;
case '\n': s->Printf ("\\n", ch); break;
case '\r': s->Printf ("\\r", ch); break;
case '\t': s->Printf ("\\t", ch); break;
case '\v': s->Printf ("\\v", ch); break;
case '\0': s->Printf ("\\0", ch); break;
default: s->Printf ("\\x%2.2x", ch); break;
}
}
else
{
s->PutChar(NON_PRINTABLE_CHAR);
}
// If we are only printing one character surround it with single quotes
if (item_count == 1 && item_format == eFormatChar)
s->PutChar('\'');
}
break;
case eFormatComplex:
if (sizeof(float) * 2 == item_byte_size)
{
uint32_t a32 = GetU32(&offset);
uint32_t b32 = GetU32(&offset);
s->Printf ("%g + %gi", a32, b32);
}
else if (sizeof(double) * 2 == item_byte_size)
{
uint64_t a64 = GetU64(&offset);
uint64_t b64 = GetU64(&offset);
s->Printf ("%lg + %lgi", a64, b64);
}
else if (sizeof(long double) * 2 == item_byte_size && sizeof(long double) <= sizeof(uint64_t))
{
uint64_t a64 = GetU64(&offset);
uint64_t b64 = GetU64(&offset);
s->Printf ("%Lg + %Lgi", a64, b64);
}
break;
case eFormatDecimal:
if (item_byte_size <= 8)
s->Printf ("%lld", GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
break;
case eFormatUnsigned:
if (item_byte_size <= 8)
s->Printf ("%llu", GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
break;
case eFormatOctal:
if (item_byte_size <= 8)
s->Printf ("0%llo", GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
break;
case eFormatEnum:
// Print enum value as a signed integer when we don't get the enum type
s->Printf ("%lld", GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
break;
case eFormatCString:
{
const char *cstr = GetCStr(&offset);
if (cstr)
s->Printf("\"%s\"", cstr);
else
{
s->Printf("NULL", cstr);
offset = UINT32_MAX;
}
}
break;
case eFormatPointer:
s->Address(GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset), sizeof (addr_t));
break;
default:
case eFormatDefault:
case eFormatHex:
if (item_byte_size <= 8)
{
s->Printf("0x%*.*llx", 2 * item_byte_size, 2 * item_byte_size, GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
}
else
{
assert (item_bit_size == 0 && item_bit_offset == 0);
s->PutCString("0x");
int32_t start_idx, end_idx, delta;
if (m_byte_order == eByteOrderBig)
{
start_idx = offset;
end_idx = offset + item_byte_size;
delta = 1;
}
else
{
start_idx = offset + item_byte_size - 1;
end_idx = -1;
delta = -1;
}
const uint8_t *bytes = (const uint8_t* )GetData(&offset, item_byte_size);
if (bytes)
{
for (int32_t idx = start_idx; idx != end_idx; idx += delta)
s->Printf("%2.2x", bytes[idx]);
}
}
break;
case eFormatFloat:
if (sizeof(float) == item_byte_size)
{
uint32_t a32 = GetU32(&offset);
s->Printf ("%g", (double)(*((float *)&a32)));
}
else if (sizeof(double) == item_byte_size)
{
uint64_t a64 = GetU64(&offset);
s->Printf ("%lg", (*((double *)&a64)));
}
else if (sizeof(long double) == item_byte_size && sizeof(long double) <= sizeof(uint64_t))
{
uint64_t a64 = GetU64(&offset);
s->Printf ("%Lg", (*((long double *)&a64)));
}
break;
case eFormatUnicode16:
s->Printf("0x%4.4x", GetU16 (&offset));
break;
case eFormatUnicode32:
s->Printf("0x%8.8x", GetU32 (&offset));
break;
case eFormatVectorOfChar:
s->PutChar('{');
offset = Dump (s, start_offset, eFormatChar, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt8:
s->PutChar('{');
offset = Dump (s, start_offset, eFormatDecimal, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt8:
s->PutChar('{');
offset = Dump (s, start_offset, eFormatHex, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt16:
s->PutChar('{');
offset = Dump (s, start_offset, eFormatDecimal, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt16:
s->PutChar('{');
offset = Dump (s, start_offset, eFormatHex, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt32:
s->PutChar('{');
offset = Dump (s, start_offset, eFormatDecimal, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt32:
s->PutChar('{');
offset = Dump (s, start_offset, eFormatHex, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt64:
s->PutChar('{');
offset = Dump (s, start_offset, eFormatDecimal, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt64:
s->PutChar('{');
offset = Dump (s, start_offset, eFormatHex, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfFloat32:
s->PutChar('{');
offset = Dump (s, start_offset, eFormatFloat, 4, item_byte_size / 4, item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfFloat64:
s->PutChar('{');
offset = Dump (s, start_offset, eFormatFloat, 8, item_byte_size / 8, item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt128:
s->PutChar('{');
offset = Dump (s, start_offset, eFormatHex, 16, item_byte_size / 16, item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
}
}
if (item_format == eFormatBytesWithASCII && offset > line_start_offset)
{
s->Printf("%*s", (num_per_line - (offset - line_start_offset)) * 3 + 2, "");
Dump(s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0);
}
return offset; // Return the offset at which we ended up
}
//----------------------------------------------------------------------
// Dumps bytes from this object's data to the stream "s" starting
// "start_offset" bytes into this data, and ending with the byte
// before "end_offset". "base_addr" will be added to the offset
// into the dumped data when showing the offset into the data in the
// output information. "num_per_line" objects of type "type" will
// be dumped with the option to override the format for each object
// with "type_format". "type_format" is a printf style formatting
// string. If "type_format" is NULL, then an appropriate format
// string will be used for the supplied "type". If the stream "s"
// is NULL, then the output will be send to Log().
//----------------------------------------------------------------------
uint32_t
DataExtractor::PutToLog
(
Log *log,
uint32_t start_offset,
uint32_t length,
uint64_t base_addr,
uint32_t num_per_line,
DataExtractor::Type type,
const char *format
) const
{
if (log == NULL)
return start_offset;
uint32_t offset;
uint32_t end_offset = offset + length;
uint32_t count;
StreamString sstr;
for (offset = start_offset, count = 0; ValidOffset(offset) && offset < end_offset; ++count)
{
if ((count % num_per_line) == 0)
{
// Print out any previous string
if (sstr.GetSize() > 0)
{
log->Printf("%s", sstr.GetData());
sstr.Clear();
}
// Reset string offset and fill the current line string with address:
if (base_addr != LLDB_INVALID_ADDRESS)
sstr.Printf("0x%8.8llx:", (uint64_t)(base_addr + (offset - start_offset)));
}
switch (type)
{
default:
case TypeUInt8: sstr.Printf (format ? format : " %2.2x", GetU8(&offset)); break;
case TypeChar:
{
char ch = GetU8(&offset);
sstr.Printf (format ? format : " %c", isprint(ch) ? ch : ' ');
}
break;
case TypeUInt16: sstr.Printf (format ? format : " %4.4x", GetU16(&offset)); break;
case TypeUInt32: sstr.Printf (format ? format : " %8.8x", GetU32(&offset)); break;
case TypeUInt64: sstr.Printf (format ? format : " %16.16llx", GetU64(&offset)); break;
case TypePointer: sstr.Printf (format ? format : " 0x%llx", GetAddress(&offset)); break;
case TypeULEB128: sstr.Printf (format ? format : " 0x%llx", GetULEB128(&offset)); break;
case TypeSLEB128: sstr.Printf (format ? format : " %lld", GetSLEB128(&offset)); break;
}
}
if (sstr.GetSize() > 0)
log->Printf("%s", sstr.GetData());
return offset; // Return the offset at which we ended up
}
//----------------------------------------------------------------------
// DumpUUID
//
// Dump out a UUID starting at 'offset' bytes into the buffer
//----------------------------------------------------------------------
void
DataExtractor::DumpUUID (Stream *s, uint32_t offset) const
{
if (s)
{
const uint8_t *uuid_data = PeekData(offset, 16);
if ( uuid_data )
{
UUID uuid(uuid_data, 16);
uuid.Dump(s);
}
else
{
s->Printf("<not enough data for UUID at offset 0x%8.8x>", offset);
}
}
}