mirror of
https://github.com/Gericom/teak-llvm.git
synced 2025-06-20 12:05:48 -04:00

This pass is being added in order to make the information available to BasicAA, which can't do caching of this information itself, but possibly this information may be useful for other passes. Incorporates code based on Daniel Berlin's implementation of Tarjan's algorithm. Differential Revision: https://reviews.llvm.org/D47893 llvm-svn: 335857
197 lines
7.3 KiB
C++
197 lines
7.3 KiB
C++
//===- PhiValues.cpp - Phi Value Analysis ---------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/PhiValues.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
using namespace llvm;
|
|
|
|
bool PhiValues::invalidate(Function &, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &) {
|
|
// PhiValues is invalidated if it isn't preserved.
|
|
auto PAC = PA.getChecker<PhiValuesAnalysis>();
|
|
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>());
|
|
}
|
|
|
|
// The goal here is to find all of the non-phi values reachable from this phi,
|
|
// and to do the same for all of the phis reachable from this phi, as doing so
|
|
// is necessary anyway in order to get the values for this phi. We do this using
|
|
// Tarjan's algorithm with Nuutila's improvements to find the strongly connected
|
|
// components of the phi graph rooted in this phi:
|
|
// * All phis in a strongly connected component will have the same reachable
|
|
// non-phi values. The SCC may not be the maximal subgraph for that set of
|
|
// reachable values, but finding out that isn't really necessary (it would
|
|
// only reduce the amount of memory needed to store the values).
|
|
// * Tarjan's algorithm completes components in a bottom-up manner, i.e. it
|
|
// never completes a component before the components reachable from it have
|
|
// been completed. This means that when we complete a component we have
|
|
// everything we need to collect the values reachable from that component.
|
|
// * We collect both the non-phi values reachable from each SCC, as that's what
|
|
// we're ultimately interested in, and all of the reachable values, i.e.
|
|
// including phis, as that makes invalidateValue easier.
|
|
void PhiValues::processPhi(const PHINode *Phi,
|
|
SmallVector<const PHINode *, 8> &Stack) {
|
|
// Initialize the phi with the next depth number.
|
|
assert(DepthMap.lookup(Phi) == 0);
|
|
assert(NextDepthNumber != UINT_MAX);
|
|
unsigned int DepthNumber = ++NextDepthNumber;
|
|
DepthMap[Phi] = DepthNumber;
|
|
|
|
// Recursively process the incoming phis of this phi.
|
|
for (Value *PhiOp : Phi->incoming_values()) {
|
|
if (PHINode *PhiPhiOp = dyn_cast<PHINode>(PhiOp)) {
|
|
// Recurse if the phi has not yet been visited.
|
|
if (DepthMap.lookup(PhiPhiOp) == 0)
|
|
processPhi(PhiPhiOp, Stack);
|
|
assert(DepthMap.lookup(PhiPhiOp) != 0);
|
|
// If the phi did not become part of a component then this phi and that
|
|
// phi are part of the same component, so adjust the depth number.
|
|
if (!ReachableMap.count(DepthMap[PhiPhiOp]))
|
|
DepthMap[Phi] = std::min(DepthMap[Phi], DepthMap[PhiPhiOp]);
|
|
}
|
|
}
|
|
|
|
// Now that incoming phis have been handled, push this phi to the stack.
|
|
Stack.push_back(Phi);
|
|
|
|
// If the depth number has not changed then we've finished collecting the phis
|
|
// of a strongly connected component.
|
|
if (DepthMap[Phi] == DepthNumber) {
|
|
// Collect the reachable values for this component. The phis of this
|
|
// component will be those on top of the depth stach with the same or
|
|
// greater depth number.
|
|
ConstValueSet Reachable;
|
|
while (!Stack.empty() && DepthMap[Stack.back()] >= DepthNumber) {
|
|
const PHINode *ComponentPhi = Stack.pop_back_val();
|
|
Reachable.insert(ComponentPhi);
|
|
DepthMap[ComponentPhi] = DepthNumber;
|
|
for (Value *Op : ComponentPhi->incoming_values()) {
|
|
if (PHINode *PhiOp = dyn_cast<PHINode>(Op)) {
|
|
// If this phi is not part of the same component then that component
|
|
// is guaranteed to have been completed before this one. Therefore we
|
|
// can just add its reachable values to the reachable values of this
|
|
// component.
|
|
auto It = ReachableMap.find(DepthMap[PhiOp]);
|
|
if (It != ReachableMap.end())
|
|
Reachable.insert(It->second.begin(), It->second.end());
|
|
} else {
|
|
Reachable.insert(Op);
|
|
}
|
|
}
|
|
}
|
|
ReachableMap.insert({DepthNumber,Reachable});
|
|
|
|
// Filter out phis to get the non-phi reachable values.
|
|
ValueSet NonPhi;
|
|
for (const Value *V : Reachable)
|
|
if (!isa<PHINode>(V))
|
|
NonPhi.insert(const_cast<Value*>(V));
|
|
NonPhiReachableMap.insert({DepthNumber,NonPhi});
|
|
}
|
|
}
|
|
|
|
const PhiValues::ValueSet &PhiValues::getValuesForPhi(const PHINode *PN) {
|
|
if (DepthMap.count(PN) == 0) {
|
|
SmallVector<const PHINode *, 8> Stack;
|
|
processPhi(PN, Stack);
|
|
assert(Stack.empty());
|
|
}
|
|
assert(DepthMap.lookup(PN) != 0);
|
|
return NonPhiReachableMap[DepthMap[PN]];
|
|
}
|
|
|
|
void PhiValues::invalidateValue(const Value *V) {
|
|
// Components that can reach V are invalid.
|
|
SmallVector<unsigned int, 8> InvalidComponents;
|
|
for (auto &Pair : ReachableMap)
|
|
if (Pair.second.count(V))
|
|
InvalidComponents.push_back(Pair.first);
|
|
|
|
for (unsigned int N : InvalidComponents) {
|
|
for (const Value *V : ReachableMap[N])
|
|
if (const PHINode *PN = dyn_cast<PHINode>(V))
|
|
DepthMap.erase(PN);
|
|
NonPhiReachableMap.erase(N);
|
|
ReachableMap.erase(N);
|
|
}
|
|
}
|
|
|
|
void PhiValues::releaseMemory() {
|
|
DepthMap.clear();
|
|
NonPhiReachableMap.clear();
|
|
ReachableMap.clear();
|
|
}
|
|
|
|
void PhiValues::print(raw_ostream &OS) const {
|
|
// Iterate through the phi nodes of the function rather than iterating through
|
|
// DepthMap in order to get predictable ordering.
|
|
for (const BasicBlock &BB : F) {
|
|
for (const PHINode &PN : BB.phis()) {
|
|
OS << "PHI ";
|
|
PN.printAsOperand(OS, false);
|
|
OS << " has values:\n";
|
|
unsigned int N = DepthMap.lookup(&PN);
|
|
auto It = NonPhiReachableMap.find(N);
|
|
if (It == NonPhiReachableMap.end())
|
|
OS << " UNKNOWN\n";
|
|
else if (It->second.empty())
|
|
OS << " NONE\n";
|
|
else
|
|
for (Value *V : It->second)
|
|
// Printing of an instruction prints two spaces at the start, so
|
|
// handle instructions and everything else slightly differently in
|
|
// order to get consistent indenting.
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
OS << *I << "\n";
|
|
else
|
|
OS << " " << *V << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
AnalysisKey PhiValuesAnalysis::Key;
|
|
PhiValues PhiValuesAnalysis::run(Function &F, FunctionAnalysisManager &) {
|
|
return PhiValues(F);
|
|
}
|
|
|
|
PreservedAnalyses PhiValuesPrinterPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
OS << "PHI Values for function: " << F.getName() << "\n";
|
|
PhiValues &PI = AM.getResult<PhiValuesAnalysis>(F);
|
|
for (const BasicBlock &BB : F)
|
|
for (const PHINode &PN : BB.phis())
|
|
PI.getValuesForPhi(&PN);
|
|
PI.print(OS);
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
PhiValuesWrapperPass::PhiValuesWrapperPass() : FunctionPass(ID) {
|
|
initializePhiValuesWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool PhiValuesWrapperPass::runOnFunction(Function &F) {
|
|
Result.reset(new PhiValues(F));
|
|
return false;
|
|
}
|
|
|
|
void PhiValuesWrapperPass::releaseMemory() {
|
|
Result->releaseMemory();
|
|
}
|
|
|
|
void PhiValuesWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
char PhiValuesWrapperPass::ID = 0;
|
|
|
|
INITIALIZE_PASS(PhiValuesWrapperPass, "phi-values", "Phi Values Analysis", false,
|
|
true)
|