teak-llvm/clang/test/SemaCXX/enum.cpp
Douglas Gregor b92a1565c3 Implement the lvalue-to-rvalue conversion where needed. The
lvalue-to-rvalue conversion adjusts lvalues of qualified, non-class
type to rvalue expressions of the unqualified variant of that
type. For example, given:

  const int i;
  (void)(i + 17);

the lvalue-to-rvalue conversion for the subexpression "i" will turn it
from an lvalue expression (a DeclRefExpr) with type 'const int' into
an rvalue expression with type 'int'. Both C and C++ mandate this
conversion, and somehow we've slid through without implementing it. 

We now have both DefaultFunctionArrayConversion and
DefaultFunctionArrayLvalueConversion, and which gets used depends on
whether we do the lvalue-to-rvalue conversion or not. Generally, we do
the lvalue-to-rvalue conversion, but there are a few notable
exceptions:
  - the left-hand side of a '.' operator
  - the left-hand side of an assignment
  - a C++ throw expression
  - a subscript expression that's subscripting a vector

Making this change exposed two issues with blocks:
  - we were deducing const-qualified return types of non-class type
  from a block return, which doesn't fit well
  - we weren't always setting the known return type of a block when it
  was provided with the ^return-type syntax

Fixes the current Clang-on-Clang compile failure and PR6076.

llvm-svn: 95167
2010-02-03 00:27:59 +00:00

74 lines
1.5 KiB
C++

// RUN: %clang_cc1 -fsyntax-only -pedantic -std=c++98 -verify -triple x86_64-apple-darwin %s
enum E {
Val1,
Val2
};
int& enumerator_type(int);
float& enumerator_type(E);
void f() {
E e = Val1;
float& fr = enumerator_type(Val2);
}
// <rdar://problem/6502934>
typedef enum Foo {
A = 0,
B = 1
} Foo;
void bar() {
Foo myvar = A;
myvar = B;
}
/// PR3688
struct s1 {
enum e1 (*bar)(void); // expected-error{{ISO C++ forbids forward references to 'enum' types}}
};
enum e1 { YES, NO };
static enum e1 badfunc(struct s1 *q) {
return q->bar();
}
enum e2; // expected-error{{ISO C++ forbids forward references to 'enum' types}}
namespace test1 {
template <class A, class B> struct is_same { static const int value = -1; };
template <class A> struct is_same<A,A> { static const int value = 1; };
enum enum0 { v0 };
int test0[is_same<__typeof(+v0), int>::value];
enum enum1 { v1 = __INT_MAX__ };
int test1[is_same<__typeof(+v1), int>::value];
enum enum2 { v2 = __INT_MAX__ * 2U };
int test2[is_same<__typeof(+v2), unsigned int>::value];
enum enum3 { v3 = __LONG_MAX__ };
int test3[is_same<__typeof(+v3), long>::value];
enum enum4 { v4 = __LONG_MAX__ * 2UL };
int test4[is_same<__typeof(+v4), unsigned long>::value];
}
// PR6061
namespace PR6061 {
struct A { enum { id }; };
struct B { enum { id }; };
struct C : public A, public B
{
enum { id };
};
}
namespace Conditional {
enum a { A }; a x(const enum a x) { return 1?x:A; }
}