teak-llvm/lldb/source/Plugins/Process/Windows/MiniDump/ProcessWinMiniDump.cpp
Adrian McCarthy a7ad58b61c NFC: Refactor ProcessWinMiniDump to use a more traditional pimpl idiom.
This is a mechanical refactor.  There should be no functional changes in this commit.

Instead of encapsulating just the Windows-specific data, ProcessWinMiniDump now uses a private implementation class.  This reduces indirections (in the source).  It makes it easier to add private helper methods without touching the header and allows them to have platform-specific types as parameters.  The only trick was that the pimpl class needed a back pointer in order to call a couple methods.

llvm-svn: 262256
2016-02-29 21:15:23 +00:00

675 lines
22 KiB
C++

//===-- ProcessWinMiniDump.cpp ----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ProcessWinMiniDump.h"
#include "lldb/Host/windows/windows.h"
#include <DbgHelp.h>
#include <assert.h>
#include <stdlib.h>
#include <memory>
#include <mutex>
#include "Plugins/DynamicLoader/Windows-DYLD/DynamicLoaderWindowsDYLD.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/State.h"
#include "lldb/Target/DynamicLoader.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/StopInfo.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/UnixSignals.h"
#include "lldb/Utility/LLDBAssert.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include "Plugins/Process/Windows/Common/NtStructures.h"
#include "Plugins/Process/Windows/Common/ProcessWindowsLog.h"
#include "ExceptionRecord.h"
#include "ThreadWinMiniDump.h"
using namespace lldb_private;
// Implementation class for ProcessWinMiniDump encapsulates the Windows-specific
// code, keeping non-portable types out of the header files.
// TODO(amccarth): Determine if we need a mutex for access. Given that this is
// postmortem debugging, I don't think so.
class ProcessWinMiniDump::Impl
{
public:
Impl(const FileSpec &core_file, ProcessWinMiniDump *self);
~Impl();
Error
DoLoadCore();
bool
UpdateThreadList(ThreadList &old_thread_list, ThreadList &new_thread_list);
void
RefreshStateAfterStop();
size_t
DoReadMemory(lldb::addr_t addr, void *buf, size_t size, Error &error);
Error
GetMemoryRegionInfo(lldb::addr_t load_addr, lldb_private::MemoryRegionInfo &info);
private:
// Describes a range of memory captured in the mini dump.
struct Range
{
lldb::addr_t start; // virtual address of the beginning of the range
size_t size; // size of the range in bytes
const uint8_t *ptr; // absolute pointer to the first byte of the range
};
// If the mini dump has a memory range that contains the desired address, it
// returns true with the details of the range in *range_out. Otherwise, it
// returns false.
bool
FindMemoryRange(lldb::addr_t addr, Range *range_out) const;
lldb_private::Error
MapMiniDumpIntoMemory();
lldb_private::ArchSpec
DetermineArchitecture();
void
ReadExceptionRecord();
void
ReadMiscInfo();
void
ReadModuleList();
// A thin wrapper around WinAPI's MiniDumpReadDumpStream to avoid redundant
// checks. If there's a failure (e.g., if the requested stream doesn't exist),
// the function returns nullptr and sets *size_out to 0.
void *
FindDumpStream(unsigned stream_number, size_t *size_out) const;
// Getting a string out of a mini dump is a chore. You're usually given a
// relative virtual address (RVA), which points to a counted string that's in
// Windows Unicode (UTF-16). This wrapper handles all the redirection and
// returns a UTF-8 copy of the string.
std::string
GetMiniDumpString(RVA rva) const;
ProcessWinMiniDump *m_self; // non-owning back pointer
FileSpec m_core_file;
HANDLE m_dump_file; // handle to the open minidump file
HANDLE m_mapping; // handle to the file mapping for the minidump file
void * m_base_addr; // base memory address of the minidump
std::shared_ptr<ExceptionRecord> m_exception_sp;
bool m_is_wow64; // minidump is of a 32-bit process captured with a 64-bit debugger
};
ProcessWinMiniDump::Impl::Impl(const FileSpec &core_file, ProcessWinMiniDump *self)
: m_self(self),
m_core_file(core_file),
m_dump_file(INVALID_HANDLE_VALUE),
m_mapping(NULL),
m_base_addr(nullptr),
m_exception_sp(),
m_is_wow64(false)
{
}
ProcessWinMiniDump::Impl::~Impl()
{
if (m_base_addr)
{
::UnmapViewOfFile(m_base_addr);
m_base_addr = nullptr;
}
if (m_mapping)
{
::CloseHandle(m_mapping);
m_mapping = NULL;
}
if (m_dump_file != INVALID_HANDLE_VALUE)
{
::CloseHandle(m_dump_file);
m_dump_file = INVALID_HANDLE_VALUE;
}
}
Error
ProcessWinMiniDump::Impl::DoLoadCore()
{
Error error = MapMiniDumpIntoMemory();
if (error.Fail())
{
return error;
}
m_self->GetTarget().SetArchitecture(DetermineArchitecture());
ReadMiscInfo(); // notably for process ID
ReadModuleList();
ReadExceptionRecord();
return error;
}
bool
ProcessWinMiniDump::Impl::UpdateThreadList(ThreadList &old_thread_list, ThreadList &new_thread_list)
{
size_t size = 0;
auto thread_list_ptr = static_cast<const MINIDUMP_THREAD_LIST *>(FindDumpStream(ThreadListStream, &size));
if (thread_list_ptr)
{
const ULONG32 thread_count = thread_list_ptr->NumberOfThreads;
for (ULONG32 i = 0; i < thread_count; ++i) {
const auto &mini_dump_thread = thread_list_ptr->Threads[i];
auto thread_sp = std::make_shared<ThreadWinMiniDump>(*m_self, mini_dump_thread.ThreadId);
if (mini_dump_thread.ThreadContext.DataSize >= sizeof(CONTEXT))
{
const CONTEXT *context = reinterpret_cast<const CONTEXT *>(static_cast<const char *>(m_base_addr) +
mini_dump_thread.ThreadContext.Rva);
if (m_is_wow64)
{
// On Windows, a 32-bit process can run on a 64-bit machine under WOW64.
// If the minidump was captured with a 64-bit debugger, then the CONTEXT
// we just grabbed from the mini_dump_thread is the one for the 64-bit
// "native" process rather than the 32-bit "guest" process we care about.
// In this case, we can get the 32-bit CONTEXT from the TEB (Thread
// Environment Block) of the 64-bit process.
Error error;
TEB64 wow64teb = {0};
m_self->ReadMemory(mini_dump_thread.Teb, &wow64teb, sizeof(wow64teb), error);
if (error.Success())
{
// Slot 1 of the thread-local storage in the 64-bit TEB points to a structure
// that includes the 32-bit CONTEXT (after a ULONG).
// See: https://msdn.microsoft.com/en-us/library/ms681670.aspx
const size_t addr = wow64teb.TlsSlots[1];
Range range = {0};
if (FindMemoryRange(addr, &range))
{
lldbassert(range.start <= addr);
const size_t offset = addr - range.start + sizeof(ULONG);
if (offset < range.size)
{
const size_t overlap = range.size - offset;
if (overlap >= sizeof(CONTEXT))
{
context = reinterpret_cast<const CONTEXT *>(range.ptr + offset);
}
}
}
}
// NOTE: We don't currently use the TEB for anything else. If we need it in
// the future, the 32-bit TEB is located according to the address stored in the
// first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
}
thread_sp->SetContext(context);
}
new_thread_list.AddThread(thread_sp);
}
}
return new_thread_list.GetSize(false) > 0;
}
void
ProcessWinMiniDump::Impl::RefreshStateAfterStop()
{
if (!m_exception_sp)
return;
auto active_exception = m_exception_sp;
std::string desc;
llvm::raw_string_ostream desc_stream(desc);
desc_stream << "Exception " << llvm::format_hex(active_exception->GetExceptionCode(), 8)
<< " encountered at address " << llvm::format_hex(active_exception->GetExceptionAddress(), 8);
m_self->m_thread_list.SetSelectedThreadByID(active_exception->GetThreadID());
auto stop_thread = m_self->m_thread_list.GetSelectedThread();
auto stop_info = StopInfo::CreateStopReasonWithException(*stop_thread, desc_stream.str().c_str());
stop_thread->SetStopInfo(stop_info);
}
size_t
ProcessWinMiniDump::Impl::DoReadMemory(lldb::addr_t addr, void *buf, size_t size, Error &error)
{
// I don't have a sense of how frequently this is called or how many memory
// ranges a mini dump typically has, so I'm not sure if searching for the
// appropriate range linearly each time is stupid. Perhaps we should build
// an index for faster lookups.
Range range = {0};
if (!FindMemoryRange(addr, &range))
{
return 0;
}
// There's at least some overlap between the beginning of the desired range
// (addr) and the current range. Figure out where the overlap begins and
// how much overlap there is, then copy it to the destination buffer.
lldbassert(range.start <= addr);
const size_t offset = addr - range.start;
lldbassert(offset < range.size);
const size_t overlap = std::min(size, range.size - offset);
std::memcpy(buf, range.ptr + offset, overlap);
return overlap;
}
Error
ProcessWinMiniDump::Impl::GetMemoryRegionInfo(lldb::addr_t load_addr, lldb_private::MemoryRegionInfo &info)
{
Error error;
size_t size;
const auto list = reinterpret_cast<const MINIDUMP_MEMORY_INFO_LIST *>(FindDumpStream(MemoryInfoListStream, &size));
if (list == nullptr || size < sizeof(MINIDUMP_MEMORY_INFO_LIST))
{
error.SetErrorString("the mini dump contains no memory range information");
return error;
}
if (list->SizeOfEntry < sizeof(MINIDUMP_MEMORY_INFO))
{
error.SetErrorString("the entries in the mini dump memory info list are smaller than expected");
return error;
}
if (size < list->SizeOfHeader + list->SizeOfEntry * list->NumberOfEntries)
{
error.SetErrorString("the mini dump memory info list is incomplete");
return error;
}
for (int i = 0; i < list->NumberOfEntries; ++i)
{
const auto entry = reinterpret_cast<const MINIDUMP_MEMORY_INFO *>(reinterpret_cast<const char *>(list) +
list->SizeOfHeader + i * list->SizeOfEntry);
const auto head = entry->BaseAddress;
const auto tail = head + entry->RegionSize;
if (head <= load_addr && load_addr < tail)
{
info.SetReadable(IsPageReadable(entry->Protect) ? MemoryRegionInfo::eYes : MemoryRegionInfo::eNo);
info.SetWritable(IsPageWritable(entry->Protect) ? MemoryRegionInfo::eYes : MemoryRegionInfo::eNo);
info.SetExecutable(IsPageExecutable(entry->Protect) ? MemoryRegionInfo::eYes : MemoryRegionInfo::eNo);
return error;
}
}
// Note that the memory info list doesn't seem to contain ranges in kernel space,
// so if you're walking a stack that has kernel frames, the stack may appear
// truncated.
error.SetErrorString("address is not in a known range");
return error;
}
bool
ProcessWinMiniDump::Impl::FindMemoryRange(lldb::addr_t addr, Range *range_out) const
{
size_t stream_size = 0;
auto mem_list_stream = static_cast<const MINIDUMP_MEMORY_LIST *>(FindDumpStream(MemoryListStream, &stream_size));
if (mem_list_stream)
{
for (ULONG32 i = 0; i < mem_list_stream->NumberOfMemoryRanges; ++i)
{
const MINIDUMP_MEMORY_DESCRIPTOR &mem_desc = mem_list_stream->MemoryRanges[i];
const MINIDUMP_LOCATION_DESCRIPTOR &loc_desc = mem_desc.Memory;
const lldb::addr_t range_start = mem_desc.StartOfMemoryRange;
const size_t range_size = loc_desc.DataSize;
if (range_start <= addr && addr < range_start + range_size)
{
range_out->start = range_start;
range_out->size = range_size;
range_out->ptr = reinterpret_cast<const uint8_t *>(m_base_addr) + loc_desc.Rva;
return true;
}
}
}
// Some mini dumps have a Memory64ListStream that captures all the heap
// memory. We can't exactly use the same loop as above, because the mini
// dump uses slightly different data structures to describe those.
auto mem_list64_stream = static_cast<const MINIDUMP_MEMORY64_LIST *>(FindDumpStream(Memory64ListStream, &stream_size));
if (mem_list64_stream)
{
size_t base_rva = mem_list64_stream->BaseRva;
for (ULONG32 i = 0; i < mem_list64_stream->NumberOfMemoryRanges; ++i) {
const MINIDUMP_MEMORY_DESCRIPTOR64 &mem_desc = mem_list64_stream->MemoryRanges[i];
const lldb::addr_t range_start = mem_desc.StartOfMemoryRange;
const size_t range_size = mem_desc.DataSize;
if (range_start <= addr && addr < range_start + range_size)
{
range_out->start = range_start;
range_out->size = range_size;
range_out->ptr = reinterpret_cast<const uint8_t *>(m_base_addr) + base_rva;
return true;
}
base_rva += range_size;
}
}
return false;
}
Error
ProcessWinMiniDump::Impl::MapMiniDumpIntoMemory()
{
Error error;
const char *file = m_core_file.GetCString();
m_dump_file = ::CreateFile(file, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (m_dump_file == INVALID_HANDLE_VALUE)
{
error.SetError(::GetLastError(), lldb::eErrorTypeWin32);
return error;
}
m_mapping = ::CreateFileMapping(m_dump_file, NULL, PAGE_READONLY, 0, 0, NULL);
if (m_mapping == NULL)
{
error.SetError(::GetLastError(), lldb::eErrorTypeWin32);
return error;
}
m_base_addr = ::MapViewOfFile(m_mapping, FILE_MAP_READ, 0, 0, 0);
if (m_base_addr == nullptr)
{
error.SetError(::GetLastError(), lldb::eErrorTypeWin32);
return error;
}
return error;
}
ArchSpec
ProcessWinMiniDump::Impl::DetermineArchitecture()
{
size_t size = 0;
auto system_info_ptr = static_cast<const MINIDUMP_SYSTEM_INFO *>(FindDumpStream(SystemInfoStream, &size));
if (system_info_ptr)
{
switch (system_info_ptr->ProcessorArchitecture)
{
case PROCESSOR_ARCHITECTURE_INTEL:
return ArchSpec(eArchTypeCOFF, IMAGE_FILE_MACHINE_I386, LLDB_INVALID_CPUTYPE);
case PROCESSOR_ARCHITECTURE_AMD64:
return ArchSpec(eArchTypeCOFF, IMAGE_FILE_MACHINE_AMD64, LLDB_INVALID_CPUTYPE);
default:
break;
}
}
return ArchSpec(); // invalid or unknown
}
void
ProcessWinMiniDump::Impl::ReadExceptionRecord()
{
size_t size = 0;
auto exception_stream_ptr = static_cast<MINIDUMP_EXCEPTION_STREAM*>(FindDumpStream(ExceptionStream, &size));
if (exception_stream_ptr)
{
m_exception_sp.reset(
new ExceptionRecord(exception_stream_ptr->ExceptionRecord, exception_stream_ptr->ThreadId));
}
else
{
WINLOG_IFALL(WINDOWS_LOG_PROCESS, "Minidump has no exception record.");
// TODO: See if we can recover the exception from the TEB.
}
}
void
ProcessWinMiniDump::Impl::ReadMiscInfo()
{
size_t size = 0;
const auto misc_info_ptr = static_cast<MINIDUMP_MISC_INFO*>(FindDumpStream(MiscInfoStream, &size));
if (!misc_info_ptr || size < sizeof(MINIDUMP_MISC_INFO)) {
return;
}
if ((misc_info_ptr->Flags1 & MINIDUMP_MISC1_PROCESS_ID) != 0) {
// This misc info record has the process ID.
m_self->SetID(misc_info_ptr->ProcessId);
}
}
void
ProcessWinMiniDump::Impl::ReadModuleList()
{
size_t size = 0;
auto module_list_ptr = static_cast<MINIDUMP_MODULE_LIST*>(FindDumpStream(ModuleListStream, &size));
if (!module_list_ptr || module_list_ptr->NumberOfModules == 0)
{
return;
}
for (ULONG32 i = 0; i < module_list_ptr->NumberOfModules; ++i)
{
const auto &module = module_list_ptr->Modules[i];
const auto file_name = GetMiniDumpString(module.ModuleNameRva);
const auto file_spec = FileSpec(file_name, true);
if (FileSpec::Compare(file_spec, FileSpec("wow64.dll", false), false) == 0)
{
WINLOG_IFALL(WINDOWS_LOG_PROCESS, "Minidump is for a WOW64 process.");
m_is_wow64 = true;
}
ModuleSpec module_spec = file_spec;
lldb::ModuleSP module_sp = m_self->GetTarget().GetSharedModule(module_spec);
if (!module_sp)
{
continue;
}
bool load_addr_changed = false;
module_sp->SetLoadAddress(m_self->GetTarget(), module.BaseOfImage, false, load_addr_changed);
}
}
void *
ProcessWinMiniDump::Impl::FindDumpStream(unsigned stream_number, size_t *size_out) const
{
void *stream = nullptr;
*size_out = 0;
MINIDUMP_DIRECTORY *dir = nullptr;
if (::MiniDumpReadDumpStream(m_base_addr, stream_number, &dir, nullptr, nullptr) && dir != nullptr &&
dir->Location.DataSize > 0)
{
assert(dir->StreamType == stream_number);
*size_out = dir->Location.DataSize;
stream = static_cast<void *>(static_cast<char *>(m_base_addr) + dir->Location.Rva);
}
return stream;
}
std::string
ProcessWinMiniDump::Impl::GetMiniDumpString(RVA rva) const
{
std::string result;
if (!m_base_addr)
{
return result;
}
auto md_string = reinterpret_cast<const MINIDUMP_STRING *>(static_cast<const char *>(m_base_addr) + rva);
auto source_start = reinterpret_cast<const UTF16 *>(md_string->Buffer);
const auto source_length = ::wcslen(md_string->Buffer);
const auto source_end = source_start + source_length;
result.resize(4 * source_length); // worst case length
auto result_start = reinterpret_cast<UTF8 *>(&result[0]);
const auto result_end = result_start + result.size();
ConvertUTF16toUTF8(&source_start, source_end, &result_start, result_end, strictConversion);
const auto result_size = std::distance(reinterpret_cast<UTF8 *>(&result[0]), result_start);
result.resize(result_size); // shrink to actual length
return result;
}
ConstString
ProcessWinMiniDump::GetPluginNameStatic()
{
static ConstString g_name("win-minidump");
return g_name;
}
const char *
ProcessWinMiniDump::GetPluginDescriptionStatic()
{
return "Windows minidump plug-in.";
}
void
ProcessWinMiniDump::Terminate()
{
PluginManager::UnregisterPlugin(ProcessWinMiniDump::CreateInstance);
}
lldb::ProcessSP
ProcessWinMiniDump::CreateInstance(lldb::TargetSP target_sp, Listener &listener, const FileSpec *crash_file)
{
lldb::ProcessSP process_sp;
if (crash_file)
{
process_sp.reset(new ProcessWinMiniDump(target_sp, listener, *crash_file));
}
return process_sp;
}
bool
ProcessWinMiniDump::CanDebug(lldb::TargetSP target_sp, bool plugin_specified_by_name)
{
// TODO(amccarth): Eventually, this needs some actual logic.
return true;
}
ProcessWinMiniDump::ProcessWinMiniDump(lldb::TargetSP target_sp, Listener &listener, const FileSpec &core_file)
: ProcessWindows(target_sp, listener), m_impl_up(new Impl(core_file, this))
{
}
ProcessWinMiniDump::~ProcessWinMiniDump()
{
Clear();
// We need to call finalize on the process before destroying ourselves
// to make sure all of the broadcaster cleanup goes as planned. If we
// destruct this class, then Process::~Process() might have problems
// trying to fully destroy the broadcaster.
Finalize();
}
ConstString
ProcessWinMiniDump::GetPluginName()
{
return GetPluginNameStatic();
}
uint32_t
ProcessWinMiniDump::GetPluginVersion()
{
return 1;
}
Error
ProcessWinMiniDump::DoLoadCore()
{
return m_impl_up->DoLoadCore();
}
DynamicLoader *
ProcessWinMiniDump::GetDynamicLoader()
{
if (m_dyld_ap.get() == NULL)
m_dyld_ap.reset(DynamicLoader::FindPlugin(this, DynamicLoaderWindowsDYLD::GetPluginNameStatic().GetCString()));
return m_dyld_ap.get();
}
bool
ProcessWinMiniDump::UpdateThreadList(ThreadList &old_thread_list, ThreadList &new_thread_list)
{
return m_impl_up->UpdateThreadList(old_thread_list, new_thread_list);
}
void
ProcessWinMiniDump::RefreshStateAfterStop()
{
if (!m_impl_up)
return;
return m_impl_up->RefreshStateAfterStop();
}
Error
ProcessWinMiniDump::DoDestroy()
{
return Error();
}
bool
ProcessWinMiniDump::IsAlive()
{
return true;
}
bool
ProcessWinMiniDump::WarnBeforeDetach() const
{
// Since this is post-mortem debugging, there's no need to warn the user
// that quitting the debugger will terminate the process.
return false;
}
size_t
ProcessWinMiniDump::ReadMemory(lldb::addr_t addr, void *buf, size_t size, Error &error)
{
// Don't allow the caching that lldb_private::Process::ReadMemory does
// since we have it all cached our our dump file anyway.
return DoReadMemory(addr, buf, size, error);
}
size_t
ProcessWinMiniDump::DoReadMemory(lldb::addr_t addr, void *buf, size_t size, Error &error)
{
return m_impl_up->DoReadMemory(addr, buf, size, error);
}
Error
ProcessWinMiniDump::GetMemoryRegionInfo(lldb::addr_t load_addr, lldb_private::MemoryRegionInfo &info)
{
return m_impl_up->GetMemoryRegionInfo(load_addr, info);
}
void
ProcessWinMiniDump::Clear()
{
m_thread_list.Clear();
}
void
ProcessWinMiniDump::Initialize()
{
static std::once_flag g_once_flag;
std::call_once(g_once_flag, []() {
PluginManager::RegisterPlugin(GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance);
});
}
ArchSpec
ProcessWinMiniDump::GetArchitecture()
{
// TODO
return ArchSpec();
}