teak-llvm/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
Chris Lattner a52ab6f57f Do not let the numbering of PHI nodes placed in the function depend on
non-deterministic things like the ordering of blocks in the dominance
frontier of a BB.  Unfortunately, I don't know of a better way to solve
this problem than to explicitly sort the BB's in function-order before
processing them.  This is guaranteed to slow the pass down a bit, but
is absolutely necessary to get usable diffs between two different tools
executing the mem2reg or scalarrepl pass.

Before this, bazillions of spurious diff failures occurred all over the
place due to the different order of processing PHIs:

-       %tmp.111 = getelementptr %struct.Connector_struct* %upcon.0.0, uint 0, uint 0
+       %tmp.111 = getelementptr %struct.Connector_struct* %upcon.0.1, uint 0, uint 0

Now, the diffs match.

llvm-svn: 14244
2004-06-19 07:40:14 +00:00

693 lines
29 KiB
C++

//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file promote memory references to be register references. It promotes
// alloca instructions which only have loads and stores as uses (or that have
// PHI nodes which are only loaded from). An alloca is transformed by using
// dominator frontiers to place PHI nodes, then traversing the function in
// depth-first order to rewrite loads and stores as appropriate. This is just
// the standard SSA construction algorithm to construct "pruned" SSA form.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/iMemory.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/Function.h"
#include "llvm/Constant.h"
#include "llvm/Support/CFG.h"
#include "Support/StringExtras.h"
using namespace llvm;
/// isAllocaPromotable - Return true if this alloca is legal for promotion.
/// This is true if there are only loads and stores to the alloca... of if there
/// is a PHI node using the address which can be trivially transformed.
///
bool llvm::isAllocaPromotable(const AllocaInst *AI, const TargetData &TD) {
// FIXME: If the memory unit is of pointer or integer type, we can permit
// assignments to subsections of the memory unit.
// Only allow direct loads and stores...
for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
UI != UE; ++UI) // Loop over all of the uses of the alloca
if (isa<LoadInst>(*UI)) {
// noop
} else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
if (SI->getOperand(0) == AI)
return false; // Don't allow a store OF the AI, only INTO the AI.
} else if (const PHINode *PN = dyn_cast<PHINode>(*UI)) {
// We only support PHI nodes in a few simple cases. The PHI node is only
// allowed to have one use, which must be a load instruction, and can only
// use alloca instructions (no random pointers). Also, there cannot be
// any accesses to AI between the PHI node and the use of the PHI.
if (!PN->hasOneUse()) return false;
// Our transformation causes the unconditional loading of all pointer
// operands to the PHI node. Because this could cause a fault if there is
// a critical edge in the CFG and if one of the pointers is illegal, we
// refuse to promote PHI nodes unless they are obviously safe. For now,
// obviously safe means that all of the operands are allocas.
//
// If we wanted to extend this code to break critical edges, this
// restriction could be relaxed, and we could even handle uses of the PHI
// node that are volatile loads or stores.
//
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (!isa<AllocaInst>(PN->getIncomingValue(i)))
return false;
// Now make sure the one user instruction is in the same basic block as
// the PHI, and that there are no loads or stores between the PHI node and
// the access.
BasicBlock::const_iterator UI = cast<Instruction>(PN->use_back());
if (!isa<LoadInst>(UI) || cast<LoadInst>(UI)->isVolatile()) return false;
// Scan looking for memory accesses.
// FIXME: this should REALLY use alias analysis.
for (--UI; !isa<PHINode>(UI); --UI)
if (isa<LoadInst>(UI) || isa<StoreInst>(UI) || isa<CallInst>(UI))
return false;
// If we got this far, we can promote the PHI use.
} else if (const SelectInst *SI = dyn_cast<SelectInst>(*UI)) {
// We only support selects in a few simple cases. The select is only
// allowed to have one use, which must be a load instruction, and can only
// use alloca instructions (no random pointers). Also, there cannot be
// any accesses to AI between the PHI node and the use of the PHI.
if (!SI->hasOneUse()) return false;
// Our transformation causes the unconditional loading of all pointer
// operands of the select. Because this could cause a fault if there is a
// critical edge in the CFG and if one of the pointers is illegal, we
// refuse to promote the select unless it is obviously safe. For now,
// obviously safe means that all of the operands are allocas.
//
if (!isa<AllocaInst>(SI->getOperand(1)) ||
!isa<AllocaInst>(SI->getOperand(2)))
return false;
// Now make sure the one user instruction is in the same basic block as
// the PHI, and that there are no loads or stores between the PHI node and
// the access.
BasicBlock::const_iterator UI = cast<Instruction>(SI->use_back());
if (!isa<LoadInst>(UI) || cast<LoadInst>(UI)->isVolatile()) return false;
// Scan looking for memory accesses.
// FIXME: this should REALLY use alias analysis.
for (--UI; &*UI != SI; --UI)
if (isa<LoadInst>(UI) || isa<StoreInst>(UI) || isa<CallInst>(UI))
return false;
// If we got this far, we can promote the select use.
} else {
return false; // Not a load, store, or promotable PHI?
}
return true;
}
namespace {
struct PromoteMem2Reg {
// Allocas - The alloca instructions being promoted
std::vector<AllocaInst*> Allocas;
DominatorTree &DT;
DominanceFrontier &DF;
const TargetData &TD;
// AllocaLookup - Reverse mapping of Allocas
std::map<AllocaInst*, unsigned> AllocaLookup;
// NewPhiNodes - The PhiNodes we're adding.
std::map<BasicBlock*, std::vector<PHINode*> > NewPhiNodes;
// Visited - The set of basic blocks the renamer has already visited.
std::set<BasicBlock*> Visited;
// BasicBlockNumbering - Holds a numbering of the basic blocks in the
// function in a stable order that does not depend on their address.
std::map<BasicBlock*, unsigned> BasicBlockNumbering;
// NumberedBasicBlock - Holds the inverse mapping of BasicBlockNumbering.
std::vector<BasicBlock*> NumberedBasicBlock;
public:
PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
DominanceFrontier &df, const TargetData &td)
: Allocas(A), DT(dt), DF(df), TD(td) {}
void run();
private:
void MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
std::set<PHINode*> &DeadPHINodes);
void PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI);
void PromoteLocallyUsedAllocas(BasicBlock *BB,
const std::vector<AllocaInst*> &AIs);
void RenamePass(BasicBlock *BB, BasicBlock *Pred,
std::vector<Value*> &IncVals);
bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
std::set<PHINode*> &InsertedPHINodes);
};
} // end of anonymous namespace
void PromoteMem2Reg::run() {
Function &F = *DF.getRoot()->getParent();
// LocallyUsedAllocas - Keep track of all of the alloca instructions which are
// only used in a single basic block. These instructions can be efficiently
// promoted by performing a single linear scan over that one block. Since
// individual basic blocks are sometimes large, we group together all allocas
// that are live in a single basic block by the basic block they are live in.
std::map<BasicBlock*, std::vector<AllocaInst*> > LocallyUsedAllocas;
for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
AllocaInst *AI = Allocas[AllocaNum];
assert(isAllocaPromotable(AI, TD) &&
"Cannot promote non-promotable alloca!");
assert(AI->getParent()->getParent() == &F &&
"All allocas should be in the same function, which is same as DF!");
if (AI->use_empty()) {
// If there are no uses of the alloca, just delete it now.
AI->getParent()->getInstList().erase(AI);
// Remove the alloca from the Allocas list, since it has been processed
Allocas[AllocaNum] = Allocas.back();
Allocas.pop_back();
--AllocaNum;
continue;
}
// Calculate the set of read and write-locations for each alloca. This is
// analogous to finding the 'uses' and 'definitions' of each variable.
std::vector<BasicBlock*> DefiningBlocks;
std::vector<BasicBlock*> UsingBlocks;
BasicBlock *OnlyBlock = 0;
bool OnlyUsedInOneBlock = true;
// As we scan the uses of the alloca instruction, keep track of stores, and
// decide whether all of the loads and stores to the alloca are within the
// same basic block.
RestartUseScan:
for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E;++U){
Instruction *User = cast<Instruction>(*U);
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
// Remember the basic blocks which define new values for the alloca
DefiningBlocks.push_back(SI->getParent());
} else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
// Otherwise it must be a load instruction, keep track of variable reads
UsingBlocks.push_back(LI->getParent());
} else if (SelectInst *SI = dyn_cast<SelectInst>(User)) {
// Because of the restrictions we placed on Select instruction uses
// above things are very simple. Transform the PHI of addresses into a
// select of loaded values.
LoadInst *Load = cast<LoadInst>(SI->use_back());
std::string LoadName = Load->getName(); Load->setName("");
Value *TrueVal = new LoadInst(SI->getOperand(1),
SI->getOperand(1)->getName()+".val", SI);
Value *FalseVal = new LoadInst(SI->getOperand(2),
SI->getOperand(2)->getName()+".val", SI);
Value *NewSI = new SelectInst(SI->getOperand(0), TrueVal,
FalseVal, Load->getName(), SI);
Load->replaceAllUsesWith(NewSI);
Load->getParent()->getInstList().erase(Load);
SI->getParent()->getInstList().erase(SI);
// Restart our scan of uses...
DefiningBlocks.clear();
UsingBlocks.clear();
goto RestartUseScan;
} else {
// Because of the restrictions we placed on PHI node uses above, the PHI
// node reads the block in any using predecessors. Transform the PHI of
// addresses into a PHI of loaded values.
PHINode *PN = cast<PHINode>(User);
assert(PN->hasOneUse() && "Cannot handle PHI Node with != 1 use!");
LoadInst *PNUser = cast<LoadInst>(PN->use_back());
std::string PNUserName = PNUser->getName(); PNUser->setName("");
// Create the new PHI node and insert load instructions as appropriate.
PHINode *NewPN = new PHINode(AI->getAllocatedType(), PNUserName, PN);
std::map<BasicBlock*, LoadInst*> NewLoads;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *Pred = PN->getIncomingBlock(i);
LoadInst *&NewLoad = NewLoads[Pred];
if (NewLoad == 0) // Insert the new load in the predecessor
NewLoad = new LoadInst(PN->getIncomingValue(i),
PN->getIncomingValue(i)->getName()+".val",
Pred->getTerminator());
NewPN->addIncoming(NewLoad, Pred);
}
// Remove the old load.
PNUser->replaceAllUsesWith(NewPN);
PNUser->getParent()->getInstList().erase(PNUser);
// Remove the old PHI node.
PN->getParent()->getInstList().erase(PN);
// Restart our scan of uses...
DefiningBlocks.clear();
UsingBlocks.clear();
goto RestartUseScan;
}
if (OnlyUsedInOneBlock) {
if (OnlyBlock == 0)
OnlyBlock = User->getParent();
else if (OnlyBlock != User->getParent())
OnlyUsedInOneBlock = false;
}
}
// If the alloca is only read and written in one basic block, just perform a
// linear sweep over the block to eliminate it.
if (OnlyUsedInOneBlock) {
LocallyUsedAllocas[OnlyBlock].push_back(AI);
// Remove the alloca from the Allocas list, since it will be processed.
Allocas[AllocaNum] = Allocas.back();
Allocas.pop_back();
--AllocaNum;
continue;
}
// If we haven't computed a numbering for the BB's in the function, do so
// now.
if (NumberedBasicBlock.empty()) {
unsigned n = 0;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I, ++n) {
NumberedBasicBlock.push_back(I);
BasicBlockNumbering[I] = n;
}
}
// Compute the locations where PhiNodes need to be inserted. Look at the
// dominance frontier of EACH basic-block we have a write in.
//
unsigned CurrentVersion = 0;
std::set<PHINode*> InsertedPHINodes;
std::vector<unsigned> DFBlocks;
while (!DefiningBlocks.empty()) {
BasicBlock *BB = DefiningBlocks.back();
DefiningBlocks.pop_back();
// Look up the DF for this write, add it to PhiNodes
DominanceFrontier::const_iterator it = DF.find(BB);
if (it != DF.end()) {
const DominanceFrontier::DomSetType &S = it->second;
// In theory we don't need the indirection through the DFBlocks vector.
// In practice, the order of calling QueuePhiNode would depend on the
// (unspecified) ordering of basic blocks in the dominance frontier,
// which would give PHI nodes non-determinstic subscripts. Fix this by
// processing blocks in order of the occurance in the function.
for (DominanceFrontier::DomSetType::iterator P = S.begin(),PE = S.end();
P != PE; ++P)
DFBlocks.push_back(BasicBlockNumbering[*P]);
// Sort by which the block ordering in the function.
std::sort(DFBlocks.begin(), DFBlocks.end());
for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
BasicBlock *BB = NumberedBasicBlock[DFBlocks[i]];
if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
DefiningBlocks.push_back(BB);
}
DFBlocks.clear();
}
}
// Now that we have inserted PHI nodes along the Iterated Dominance Frontier
// of the writes to the variable, scan through the reads of the variable,
// marking PHI nodes which are actually necessary as alive (by removing them
// from the InsertedPHINodes set). This is not perfect: there may PHI
// marked alive because of loads which are dominated by stores, but there
// will be no unmarked PHI nodes which are actually used.
//
for (unsigned i = 0, e = UsingBlocks.size(); i != e; ++i)
MarkDominatingPHILive(UsingBlocks[i], AllocaNum, InsertedPHINodes);
UsingBlocks.clear();
// If there are any PHI nodes which are now known to be dead, remove them!
for (std::set<PHINode*>::iterator I = InsertedPHINodes.begin(),
E = InsertedPHINodes.end(); I != E; ++I) {
PHINode *PN = *I;
std::vector<PHINode*> &BBPNs = NewPhiNodes[PN->getParent()];
BBPNs[AllocaNum] = 0;
// Check to see if we just removed the last inserted PHI node from this
// basic block. If so, remove the entry for the basic block.
bool HasOtherPHIs = false;
for (unsigned i = 0, e = BBPNs.size(); i != e; ++i)
if (BBPNs[i]) {
HasOtherPHIs = true;
break;
}
if (!HasOtherPHIs)
NewPhiNodes.erase(PN->getParent());
PN->getParent()->getInstList().erase(PN);
}
// Keep the reverse mapping of the 'Allocas' array.
AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
}
// Process all allocas which are only used in a single basic block.
for (std::map<BasicBlock*, std::vector<AllocaInst*> >::iterator I =
LocallyUsedAllocas.begin(), E = LocallyUsedAllocas.end(); I != E; ++I){
const std::vector<AllocaInst*> &Allocas = I->second;
assert(!Allocas.empty() && "empty alloca list??");
// It's common for there to only be one alloca in the list. Handle it
// efficiently.
if (Allocas.size() == 1)
PromoteLocallyUsedAlloca(I->first, Allocas[0]);
else
PromoteLocallyUsedAllocas(I->first, Allocas);
}
if (Allocas.empty())
return; // All of the allocas must have been trivial!
// Set the incoming values for the basic block to be null values for all of
// the alloca's. We do this in case there is a load of a value that has not
// been stored yet. In this case, it will get this null value.
//
std::vector<Value *> Values(Allocas.size());
for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
Values[i] = Constant::getNullValue(Allocas[i]->getAllocatedType());
// Walks all basic blocks in the function performing the SSA rename algorithm
// and inserting the phi nodes we marked as necessary
//
RenamePass(F.begin(), 0, Values);
// The renamer uses the Visited set to avoid infinite loops. Clear it now.
Visited.clear();
// Remove the allocas themselves from the function...
for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
Instruction *A = Allocas[i];
// If there are any uses of the alloca instructions left, they must be in
// sections of dead code that were not processed on the dominance frontier.
// Just delete the users now.
//
if (!A->use_empty())
A->replaceAllUsesWith(Constant::getNullValue(A->getType()));
A->getParent()->getInstList().erase(A);
}
// At this point, the renamer has added entries to PHI nodes for all reachable
// code. Unfortunately, there may be blocks which are not reachable, which
// the renamer hasn't traversed. If this is the case, the PHI nodes may not
// have incoming values for all predecessors. Loop over all PHI nodes we have
// created, inserting null constants if they are missing any incoming values.
//
for (std::map<BasicBlock*, std::vector<PHINode *> >::iterator I =
NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
std::vector<BasicBlock*> Preds(pred_begin(I->first), pred_end(I->first));
std::vector<PHINode*> &PNs = I->second;
assert(!PNs.empty() && "Empty PHI node list??");
// Only do work here if there the PHI nodes are missing incoming values. We
// know that all PHI nodes that were inserted in a block will have the same
// number of incoming values, so we can just check any PHI node.
PHINode *FirstPHI;
for (unsigned i = 0; (FirstPHI = PNs[i]) == 0; ++i)
/*empty*/;
if (Preds.size() != FirstPHI->getNumIncomingValues()) {
// Ok, now we know that all of the PHI nodes are missing entries for some
// basic blocks. Start by sorting the incoming predecessors for efficient
// access.
std::sort(Preds.begin(), Preds.end());
// Now we loop through all BB's which have entries in FirstPHI and remove
// them from the Preds list.
for (unsigned i = 0, e = FirstPHI->getNumIncomingValues(); i != e; ++i) {
// Do a log(n) search of the Preds list for the entry we want.
std::vector<BasicBlock*>::iterator EntIt =
std::lower_bound(Preds.begin(), Preds.end(),
FirstPHI->getIncomingBlock(i));
assert(EntIt != Preds.end() && *EntIt == FirstPHI->getIncomingBlock(i)&&
"PHI node has entry for a block which is not a predecessor!");
// Remove the entry
Preds.erase(EntIt);
}
// At this point, the blocks left in the preds list must have dummy
// entries inserted into every PHI nodes for the block.
for (unsigned i = 0, e = PNs.size(); i != e; ++i)
if (PHINode *PN = PNs[i]) {
Value *NullVal = Constant::getNullValue(PN->getType());
for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
PN->addIncoming(NullVal, Preds[pred]);
}
}
}
}
// MarkDominatingPHILive - Mem2Reg wants to construct "pruned" SSA form, not
// "minimal" SSA form. To do this, it inserts all of the PHI nodes on the IDF
// as usual (inserting the PHI nodes in the DeadPHINodes set), then processes
// each read of the variable. For each block that reads the variable, this
// function is called, which removes used PHI nodes from the DeadPHINodes set.
// After all of the reads have been processed, any PHI nodes left in the
// DeadPHINodes set are removed.
//
void PromoteMem2Reg::MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
std::set<PHINode*> &DeadPHINodes) {
// Scan the immediate dominators of this block looking for a block which has a
// PHI node for Alloca num. If we find it, mark the PHI node as being alive!
for (DominatorTree::Node *N = DT[BB]; N; N = N->getIDom()) {
BasicBlock *DomBB = N->getBlock();
std::map<BasicBlock*, std::vector<PHINode*> >::iterator
I = NewPhiNodes.find(DomBB);
if (I != NewPhiNodes.end() && I->second[AllocaNum]) {
// Ok, we found an inserted PHI node which dominates this value.
PHINode *DominatingPHI = I->second[AllocaNum];
// Find out if we previously thought it was dead.
std::set<PHINode*>::iterator DPNI = DeadPHINodes.find(DominatingPHI);
if (DPNI != DeadPHINodes.end()) {
// Ok, until now, we thought this PHI node was dead. Mark it as being
// alive/needed.
DeadPHINodes.erase(DPNI);
// Now that we have marked the PHI node alive, also mark any PHI nodes
// which it might use as being alive as well.
for (pred_iterator PI = pred_begin(DomBB), PE = pred_end(DomBB);
PI != PE; ++PI)
MarkDominatingPHILive(*PI, AllocaNum, DeadPHINodes);
}
}
}
}
/// PromoteLocallyUsedAlloca - Many allocas are only used within a single basic
/// block. If this is the case, avoid traversing the CFG and inserting a lot of
/// potentially useless PHI nodes by just performing a single linear pass over
/// the basic block using the Alloca.
///
void PromoteMem2Reg::PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI) {
assert(!AI->use_empty() && "There are no uses of the alloca!");
// Handle degenerate cases quickly.
if (AI->hasOneUse()) {
Instruction *U = cast<Instruction>(AI->use_back());
if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
// Must be a load of uninitialized value.
LI->replaceAllUsesWith(Constant::getNullValue(AI->getAllocatedType()));
} else {
// Otherwise it must be a store which is never read.
assert(isa<StoreInst>(U));
}
BB->getInstList().erase(U);
} else {
// Uses of the uninitialized memory location shall get zero...
Value *CurVal = Constant::getNullValue(AI->getAllocatedType());
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
Instruction *Inst = I++;
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
if (LI->getOperand(0) == AI) {
// Loads just returns the "current value"...
LI->replaceAllUsesWith(CurVal);
BB->getInstList().erase(LI);
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
if (SI->getOperand(1) == AI) {
// Store updates the "current value"...
CurVal = SI->getOperand(0);
BB->getInstList().erase(SI);
}
}
}
}
// After traversing the basic block, there should be no more uses of the
// alloca, remove it now.
assert(AI->use_empty() && "Uses of alloca from more than one BB??");
AI->getParent()->getInstList().erase(AI);
}
/// PromoteLocallyUsedAllocas - This method is just like
/// PromoteLocallyUsedAlloca, except that it processes multiple alloca
/// instructions in parallel. This is important in cases where we have large
/// basic blocks, as we don't want to rescan the entire basic block for each
/// alloca which is locally used in it (which might be a lot).
void PromoteMem2Reg::
PromoteLocallyUsedAllocas(BasicBlock *BB, const std::vector<AllocaInst*> &AIs) {
std::map<AllocaInst*, Value*> CurValues;
for (unsigned i = 0, e = AIs.size(); i != e; ++i)
CurValues[AIs[i]] = 0; // Insert with null value
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
Instruction *Inst = I++;
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
// Is this a load of an alloca we are tracking?
if (AllocaInst *AI = dyn_cast<AllocaInst>(LI->getOperand(0))) {
std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
if (AIt != CurValues.end()) {
// Loads just returns the "current value"...
if (AIt->second == 0) // Uninitialized value??
AIt->second =Constant::getNullValue(AIt->first->getAllocatedType());
LI->replaceAllUsesWith(AIt->second);
BB->getInstList().erase(LI);
}
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(SI->getOperand(1))) {
std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
if (AIt != CurValues.end()) {
// Store updates the "current value"...
AIt->second = SI->getOperand(0);
BB->getInstList().erase(SI);
}
}
}
}
}
// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
// Alloca returns true if there wasn't already a phi-node for that variable
//
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
unsigned &Version,
std::set<PHINode*> &InsertedPHINodes) {
// Look up the basic-block in question
std::vector<PHINode*> &BBPNs = NewPhiNodes[BB];
if (BBPNs.empty()) BBPNs.resize(Allocas.size());
// If the BB already has a phi node added for the i'th alloca then we're done!
if (BBPNs[AllocaNo]) return false;
// Create a PhiNode using the dereferenced type... and add the phi-node to the
// BasicBlock.
BBPNs[AllocaNo] = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
Allocas[AllocaNo]->getName() + "." +
utostr(Version++), BB->begin());
InsertedPHINodes.insert(BBPNs[AllocaNo]);
return true;
}
// RenamePass - Recursively traverse the CFG of the function, renaming loads and
// stores to the allocas which we are promoting. IncomingVals indicates what
// value each Alloca contains on exit from the predecessor block Pred.
//
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
std::vector<Value*> &IncomingVals) {
// If this BB needs a PHI node, update the PHI node for each variable we need
// PHI nodes for.
std::map<BasicBlock*, std::vector<PHINode *> >::iterator
BBPNI = NewPhiNodes.find(BB);
if (BBPNI != NewPhiNodes.end()) {
std::vector<PHINode *> &BBPNs = BBPNI->second;
for (unsigned k = 0; k != BBPNs.size(); ++k)
if (PHINode *PN = BBPNs[k]) {
// Add this incoming value to the PHI node.
PN->addIncoming(IncomingVals[k], Pred);
// The currently active variable for this block is now the PHI.
IncomingVals[k] = PN;
}
}
// don't revisit nodes
if (Visited.count(BB)) return;
// mark as visited
Visited.insert(BB);
for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
Instruction *I = II++; // get the instruction, increment iterator
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
if (AI != AllocaLookup.end()) {
Value *V = IncomingVals[AI->second];
// walk the use list of this load and replace all uses with r
LI->replaceAllUsesWith(V);
BB->getInstList().erase(LI);
}
}
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
// Delete this instruction and mark the name as the current holder of the
// value
if (AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
if (ai != AllocaLookup.end()) {
// what value were we writing?
IncomingVals[ai->second] = SI->getOperand(0);
BB->getInstList().erase(SI);
}
}
}
}
// Recurse to our successors.
TerminatorInst *TI = BB->getTerminator();
for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
std::vector<Value*> OutgoingVals(IncomingVals);
RenamePass(TI->getSuccessor(i), BB, OutgoingVals);
}
}
/// PromoteMemToReg - Promote the specified list of alloca instructions into
/// scalar registers, inserting PHI nodes as appropriate. This function makes
/// use of DominanceFrontier information. This function does not modify the CFG
/// of the function at all. All allocas must be from the same function.
///
void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
DominatorTree &DT, DominanceFrontier &DF,
const TargetData &TD) {
// If there is nothing to do, bail out...
if (Allocas.empty()) return;
PromoteMem2Reg(Allocas, DT, DF, TD).run();
}