teak-llvm/openmp/runtime/src/z_Windows_NT_util.cpp
Jonathan Peyton 9b8bb323c9 [OpenMP] Add omp_pause_resource* API
Add omp_pause_resource and omp_pause_resource_all API and enum, plus stub for
internal implementation. Implemented callable helper function to do local pause,
and added basic functionality for hard and soft pause.

Patch by Terry Wilmarth

Differential Revision: https://reviews.llvm.org/D55078

llvm-svn: 351372
2019-01-16 20:07:39 +00:00

1594 lines
51 KiB
C++

/*
* z_Windows_NT_util.cpp -- platform specific routines.
*/
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
#include "kmp.h"
#include "kmp_affinity.h"
#include "kmp_i18n.h"
#include "kmp_io.h"
#include "kmp_itt.h"
#include "kmp_wait_release.h"
/* This code is related to NtQuerySystemInformation() function. This function
is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
number of running threads in the system. */
#include <ntsecapi.h> // UNICODE_STRING
#include <ntstatus.h>
enum SYSTEM_INFORMATION_CLASS {
SystemProcessInformation = 5
}; // SYSTEM_INFORMATION_CLASS
struct CLIENT_ID {
HANDLE UniqueProcess;
HANDLE UniqueThread;
}; // struct CLIENT_ID
enum THREAD_STATE {
StateInitialized,
StateReady,
StateRunning,
StateStandby,
StateTerminated,
StateWait,
StateTransition,
StateUnknown
}; // enum THREAD_STATE
struct VM_COUNTERS {
SIZE_T PeakVirtualSize;
SIZE_T VirtualSize;
ULONG PageFaultCount;
SIZE_T PeakWorkingSetSize;
SIZE_T WorkingSetSize;
SIZE_T QuotaPeakPagedPoolUsage;
SIZE_T QuotaPagedPoolUsage;
SIZE_T QuotaPeakNonPagedPoolUsage;
SIZE_T QuotaNonPagedPoolUsage;
SIZE_T PagefileUsage;
SIZE_T PeakPagefileUsage;
SIZE_T PrivatePageCount;
}; // struct VM_COUNTERS
struct SYSTEM_THREAD {
LARGE_INTEGER KernelTime;
LARGE_INTEGER UserTime;
LARGE_INTEGER CreateTime;
ULONG WaitTime;
LPVOID StartAddress;
CLIENT_ID ClientId;
DWORD Priority;
LONG BasePriority;
ULONG ContextSwitchCount;
THREAD_STATE State;
ULONG WaitReason;
}; // SYSTEM_THREAD
KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0);
#if KMP_ARCH_X86
KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28);
KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52);
#else
KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32);
KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68);
#endif
struct SYSTEM_PROCESS_INFORMATION {
ULONG NextEntryOffset;
ULONG NumberOfThreads;
LARGE_INTEGER Reserved[3];
LARGE_INTEGER CreateTime;
LARGE_INTEGER UserTime;
LARGE_INTEGER KernelTime;
UNICODE_STRING ImageName;
DWORD BasePriority;
HANDLE ProcessId;
HANDLE ParentProcessId;
ULONG HandleCount;
ULONG Reserved2[2];
VM_COUNTERS VMCounters;
IO_COUNTERS IOCounters;
SYSTEM_THREAD Threads[1];
}; // SYSTEM_PROCESS_INFORMATION
typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION;
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56);
#if KMP_ARCH_X86
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184);
#else
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256);
#endif
typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS,
PVOID, ULONG, PULONG);
NtQuerySystemInformation_t NtQuerySystemInformation = NULL;
HMODULE ntdll = NULL;
/* End of NtQuerySystemInformation()-related code */
static HMODULE kernel32 = NULL;
#if KMP_HANDLE_SIGNALS
typedef void (*sig_func_t)(int);
static sig_func_t __kmp_sighldrs[NSIG];
static int __kmp_siginstalled[NSIG];
#endif
#if KMP_USE_MONITOR
static HANDLE __kmp_monitor_ev;
#endif
static kmp_int64 __kmp_win32_time;
double __kmp_win32_tick;
int __kmp_init_runtime = FALSE;
CRITICAL_SECTION __kmp_win32_section;
void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) {
InitializeCriticalSection(&mx->cs);
#if USE_ITT_BUILD
__kmp_itt_system_object_created(&mx->cs, "Critical Section");
#endif /* USE_ITT_BUILD */
}
void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) {
DeleteCriticalSection(&mx->cs);
}
void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) {
EnterCriticalSection(&mx->cs);
}
int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) {
return TryEnterCriticalSection(&mx->cs);
}
void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) {
LeaveCriticalSection(&mx->cs);
}
void __kmp_win32_cond_init(kmp_win32_cond_t *cv) {
cv->waiters_count_ = 0;
cv->wait_generation_count_ = 0;
cv->release_count_ = 0;
/* Initialize the critical section */
__kmp_win32_mutex_init(&cv->waiters_count_lock_);
/* Create a manual-reset event. */
cv->event_ = CreateEvent(NULL, // no security
TRUE, // manual-reset
FALSE, // non-signaled initially
NULL); // unnamed
#if USE_ITT_BUILD
__kmp_itt_system_object_created(cv->event_, "Event");
#endif /* USE_ITT_BUILD */
}
void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) {
__kmp_win32_mutex_destroy(&cv->waiters_count_lock_);
__kmp_free_handle(cv->event_);
memset(cv, '\0', sizeof(*cv));
}
/* TODO associate cv with a team instead of a thread so as to optimize
the case where we wake up a whole team */
void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx,
kmp_info_t *th, int need_decrease_load) {
int my_generation;
int last_waiter;
/* Avoid race conditions */
__kmp_win32_mutex_lock(&cv->waiters_count_lock_);
/* Increment count of waiters */
cv->waiters_count_++;
/* Store current generation in our activation record. */
my_generation = cv->wait_generation_count_;
__kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
__kmp_win32_mutex_unlock(mx);
for (;;) {
int wait_done;
/* Wait until the event is signaled */
WaitForSingleObject(cv->event_, INFINITE);
__kmp_win32_mutex_lock(&cv->waiters_count_lock_);
/* Exit the loop when the <cv->event_> is signaled and there are still
waiting threads from this <wait_generation> that haven't been released
from this wait yet. */
wait_done = (cv->release_count_ > 0) &&
(cv->wait_generation_count_ != my_generation);
__kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
/* there used to be a semicolon after the if statement, it looked like a
bug, so i removed it */
if (wait_done)
break;
}
__kmp_win32_mutex_lock(mx);
__kmp_win32_mutex_lock(&cv->waiters_count_lock_);
cv->waiters_count_--;
cv->release_count_--;
last_waiter = (cv->release_count_ == 0);
__kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
if (last_waiter) {
/* We're the last waiter to be notified, so reset the manual event. */
ResetEvent(cv->event_);
}
}
void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) {
__kmp_win32_mutex_lock(&cv->waiters_count_lock_);
if (cv->waiters_count_ > 0) {
SetEvent(cv->event_);
/* Release all the threads in this generation. */
cv->release_count_ = cv->waiters_count_;
/* Start a new generation. */
cv->wait_generation_count_++;
}
__kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
}
void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) {
__kmp_win32_cond_broadcast(cv);
}
void __kmp_enable(int new_state) {
if (__kmp_init_runtime)
LeaveCriticalSection(&__kmp_win32_section);
}
void __kmp_disable(int *old_state) {
*old_state = 0;
if (__kmp_init_runtime)
EnterCriticalSection(&__kmp_win32_section);
}
void __kmp_suspend_initialize(void) { /* do nothing */
}
static void __kmp_suspend_initialize_thread(kmp_info_t *th) {
if (!TCR_4(th->th.th_suspend_init)) {
/* this means we haven't initialized the suspension pthread objects for this
thread in this instance of the process */
__kmp_win32_cond_init(&th->th.th_suspend_cv);
__kmp_win32_mutex_init(&th->th.th_suspend_mx);
TCW_4(th->th.th_suspend_init, TRUE);
}
}
void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
if (TCR_4(th->th.th_suspend_init)) {
/* this means we have initialize the suspension pthread objects for this
thread in this instance of the process */
__kmp_win32_cond_destroy(&th->th.th_suspend_cv);
__kmp_win32_mutex_destroy(&th->th.th_suspend_mx);
TCW_4(th->th.th_suspend_init, FALSE);
}
}
int __kmp_try_suspend_mx(kmp_info_t *th) {
return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx);
}
void __kmp_lock_suspend_mx(kmp_info_t *th) {
__kmp_win32_mutex_lock(&th->th.th_suspend_mx);
}
void __kmp_unlock_suspend_mx(kmp_info_t *th) {
__kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
}
/* This routine puts the calling thread to sleep after setting the
sleep bit for the indicated flag variable to true. */
template <class C>
static inline void __kmp_suspend_template(int th_gtid, C *flag) {
kmp_info_t *th = __kmp_threads[th_gtid];
int status;
typename C::flag_t old_spin;
KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n",
th_gtid, flag->get()));
__kmp_suspend_initialize_thread(th);
__kmp_win32_mutex_lock(&th->th.th_suspend_mx);
KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's"
" loc(%p)\n",
th_gtid, flag->get()));
/* TODO: shouldn't this use release semantics to ensure that
__kmp_suspend_initialize_thread gets called first? */
old_spin = flag->set_sleeping();
#if OMP_50_ENABLED
if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
__kmp_pause_status != kmp_soft_paused) {
flag->unset_sleeping();
__kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
return;
}
#endif
KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's"
" loc(%p)==%d\n",
th_gtid, flag->get(), *(flag->get())));
if (flag->done_check_val(old_spin)) {
old_spin = flag->unset_sleeping();
KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
"for flag's loc(%p)\n",
th_gtid, flag->get()));
} else {
#ifdef DEBUG_SUSPEND
__kmp_suspend_count++;
#endif
/* Encapsulate in a loop as the documentation states that this may "with
low probability" return when the condition variable has not been signaled
or broadcast */
int deactivated = FALSE;
TCW_PTR(th->th.th_sleep_loc, (void *)flag);
while (flag->is_sleeping()) {
KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
"kmp_win32_cond_wait()\n",
th_gtid));
// Mark the thread as no longer active (only in the first iteration of the
// loop).
if (!deactivated) {
th->th.th_active = FALSE;
if (th->th.th_active_in_pool) {
th->th.th_active_in_pool = FALSE;
KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
}
deactivated = TRUE;
__kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, 0,
0);
} else {
__kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, 0,
0);
}
#ifdef KMP_DEBUG
if (flag->is_sleeping()) {
KF_TRACE(100,
("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
}
#endif /* KMP_DEBUG */
} // while
// Mark the thread as active again (if it was previous marked as inactive)
if (deactivated) {
th->th.th_active = TRUE;
if (TCR_4(th->th.th_in_pool)) {
KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
th->th.th_active_in_pool = TRUE;
}
}
}
__kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
}
void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
__kmp_suspend_template(th_gtid, flag);
}
void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
__kmp_suspend_template(th_gtid, flag);
}
void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
__kmp_suspend_template(th_gtid, flag);
}
/* This routine signals the thread specified by target_gtid to wake up
after setting the sleep bit indicated by the flag argument to FALSE */
template <class C>
static inline void __kmp_resume_template(int target_gtid, C *flag) {
kmp_info_t *th = __kmp_threads[target_gtid];
int status;
#ifdef KMP_DEBUG
int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
#endif
KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
gtid, target_gtid));
__kmp_suspend_initialize_thread(th);
__kmp_win32_mutex_lock(&th->th.th_suspend_mx);
if (!flag) { // coming from __kmp_null_resume_wrapper
flag = (C *)th->th.th_sleep_loc;
}
// First, check if the flag is null or its type has changed. If so, someone
// else woke it up.
if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
// simply shows what
// flag was cast to
KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
"awake: flag's loc(%p)\n",
gtid, target_gtid, NULL));
__kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
return;
} else {
typename C::flag_t old_spin = flag->unset_sleeping();
if (!flag->is_sleeping_val(old_spin)) {
KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
"awake: flag's loc(%p): %u => %u\n",
gtid, target_gtid, flag->get(), old_spin, *(flag->get())));
__kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
return;
}
}
TCW_PTR(th->th.th_sleep_loc, NULL);
KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep "
"bit for flag's loc(%p)\n",
gtid, target_gtid, flag->get()));
__kmp_win32_cond_signal(&th->th.th_suspend_cv);
__kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
" for T#%d\n",
gtid, target_gtid));
}
void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
__kmp_resume_template(target_gtid, flag);
}
void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
__kmp_resume_template(target_gtid, flag);
}
void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
__kmp_resume_template(target_gtid, flag);
}
void __kmp_yield(int cond) {
if (cond)
Sleep(0);
}
void __kmp_gtid_set_specific(int gtid) {
if (__kmp_init_gtid) {
KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid,
__kmp_gtid_threadprivate_key));
if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1)))
KMP_FATAL(TLSSetValueFailed);
} else {
KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
}
}
int __kmp_gtid_get_specific() {
int gtid;
if (!__kmp_init_gtid) {
KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
"KMP_GTID_SHUTDOWN\n"));
return KMP_GTID_SHUTDOWN;
}
gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key);
if (gtid == 0) {
gtid = KMP_GTID_DNE;
} else {
gtid--;
}
KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
__kmp_gtid_threadprivate_key, gtid));
return gtid;
}
void __kmp_affinity_bind_thread(int proc) {
if (__kmp_num_proc_groups > 1) {
// Form the GROUP_AFFINITY struct directly, rather than filling
// out a bit vector and calling __kmp_set_system_affinity().
GROUP_AFFINITY ga;
KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT *
sizeof(DWORD_PTR))));
ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR));
ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR)));
ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;
KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
DWORD error = GetLastError();
if (__kmp_affinity_verbose) { // AC: continue silently if not verbose
kmp_msg_t err_code = KMP_ERR(error);
__kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code,
__kmp_msg_null);
if (__kmp_generate_warnings == kmp_warnings_off) {
__kmp_str_free(&err_code.str);
}
}
}
} else {
kmp_affin_mask_t *mask;
KMP_CPU_ALLOC_ON_STACK(mask);
KMP_CPU_ZERO(mask);
KMP_CPU_SET(proc, mask);
__kmp_set_system_affinity(mask, TRUE);
KMP_CPU_FREE_FROM_STACK(mask);
}
}
void __kmp_affinity_determine_capable(const char *env_var) {
// All versions of Windows* OS (since Win '95) support SetThreadAffinityMask().
#if KMP_GROUP_AFFINITY
KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR));
#else
KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR));
#endif
KA_TRACE(10, ("__kmp_affinity_determine_capable: "
"Windows* OS affinity interface functional (mask size = "
"%" KMP_SIZE_T_SPEC ").\n",
__kmp_affin_mask_size));
}
double __kmp_read_cpu_time(void) {
FILETIME CreationTime, ExitTime, KernelTime, UserTime;
int status;
double cpu_time;
cpu_time = 0;
status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime,
&KernelTime, &UserTime);
if (status) {
double sec = 0;
sec += KernelTime.dwHighDateTime;
sec += UserTime.dwHighDateTime;
/* Shift left by 32 bits */
sec *= (double)(1 << 16) * (double)(1 << 16);
sec += KernelTime.dwLowDateTime;
sec += UserTime.dwLowDateTime;
cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC;
}
return cpu_time;
}
int __kmp_read_system_info(struct kmp_sys_info *info) {
info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */
info->minflt = 0; /* the number of page faults serviced without any I/O */
info->majflt = 0; /* the number of page faults serviced that required I/O */
info->nswap = 0; // the number of times a process was "swapped" out of memory
info->inblock = 0; // the number of times the file system had to perform input
info->oublock = 0; // number of times the file system had to perform output
info->nvcsw = 0; /* the number of times a context switch was voluntarily */
info->nivcsw = 0; /* the number of times a context switch was forced */
return 1;
}
void __kmp_runtime_initialize(void) {
SYSTEM_INFO info;
kmp_str_buf_t path;
UINT path_size;
if (__kmp_init_runtime) {
return;
}
#if KMP_DYNAMIC_LIB
/* Pin dynamic library for the lifetime of application */
{
// First, turn off error message boxes
UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
HMODULE h;
BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
GET_MODULE_HANDLE_EX_FLAG_PIN,
(LPCTSTR)&__kmp_serial_initialize, &h);
KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded");
SetErrorMode(err_mode); // Restore error mode
KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n"));
}
#endif
InitializeCriticalSection(&__kmp_win32_section);
#if USE_ITT_BUILD
__kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section");
#endif /* USE_ITT_BUILD */
__kmp_initialize_system_tick();
#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
if (!__kmp_cpuinfo.initialized) {
__kmp_query_cpuid(&__kmp_cpuinfo);
}
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
/* Set up minimum number of threads to switch to TLS gtid */
#if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
// Windows* OS, static library.
/* New thread may use stack space previously used by another thread,
currently terminated. On Windows* OS, in case of static linking, we do not
know the moment of thread termination, and our structures (__kmp_threads
and __kmp_root arrays) are still keep info about dead threads. This leads
to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid
(by searching through stack addresses of all known threads) for
unregistered foreign tread.
Setting __kmp_tls_gtid_min to 0 workarounds this problem:
__kmp_get_global_thread_id() does not search through stacks, but get gtid
from TLS immediately.
--ln
*/
__kmp_tls_gtid_min = 0;
#else
__kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
#endif
/* for the static library */
if (!__kmp_gtid_threadprivate_key) {
__kmp_gtid_threadprivate_key = TlsAlloc();
if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) {
KMP_FATAL(TLSOutOfIndexes);
}
}
// Load ntdll.dll.
/* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue
(see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We
have to specify full path to the library. */
__kmp_str_buf_init(&path);
path_size = GetSystemDirectory(path.str, path.size);
KMP_DEBUG_ASSERT(path_size > 0);
if (path_size >= path.size) {
// Buffer is too short. Expand the buffer and try again.
__kmp_str_buf_reserve(&path, path_size);
path_size = GetSystemDirectory(path.str, path.size);
KMP_DEBUG_ASSERT(path_size > 0);
}
if (path_size > 0 && path_size < path.size) {
// Now we have system directory name in the buffer.
// Append backslash and name of dll to form full path,
path.used = path_size;
__kmp_str_buf_print(&path, "\\%s", "ntdll.dll");
// Now load ntdll using full path.
ntdll = GetModuleHandle(path.str);
}
KMP_DEBUG_ASSERT(ntdll != NULL);
if (ntdll != NULL) {
NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress(
ntdll, "NtQuerySystemInformation");
}
KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL);
#if KMP_GROUP_AFFINITY
// Load kernel32.dll.
// Same caveat - must use full system path name.
if (path_size > 0 && path_size < path.size) {
// Truncate the buffer back to just the system path length,
// discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
path.used = path_size;
__kmp_str_buf_print(&path, "\\%s", "kernel32.dll");
// Load kernel32.dll using full path.
kernel32 = GetModuleHandle(path.str);
KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str));
// Load the function pointers to kernel32.dll routines
// that may or may not exist on this system.
if (kernel32 != NULL) {
__kmp_GetActiveProcessorCount =
(kmp_GetActiveProcessorCount_t)GetProcAddress(
kernel32, "GetActiveProcessorCount");
__kmp_GetActiveProcessorGroupCount =
(kmp_GetActiveProcessorGroupCount_t)GetProcAddress(
kernel32, "GetActiveProcessorGroupCount");
__kmp_GetThreadGroupAffinity =
(kmp_GetThreadGroupAffinity_t)GetProcAddress(
kernel32, "GetThreadGroupAffinity");
__kmp_SetThreadGroupAffinity =
(kmp_SetThreadGroupAffinity_t)GetProcAddress(
kernel32, "SetThreadGroupAffinity");
KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount"
" = %p\n",
__kmp_GetActiveProcessorCount));
KA_TRACE(10, ("__kmp_runtime_initialize: "
"__kmp_GetActiveProcessorGroupCount = %p\n",
__kmp_GetActiveProcessorGroupCount));
KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity"
" = %p\n",
__kmp_GetThreadGroupAffinity));
KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity"
" = %p\n",
__kmp_SetThreadGroupAffinity));
KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n",
sizeof(kmp_affin_mask_t)));
// See if group affinity is supported on this system.
// If so, calculate the #groups and #procs.
//
// Group affinity was introduced with Windows* 7 OS and
// Windows* Server 2008 R2 OS.
if ((__kmp_GetActiveProcessorCount != NULL) &&
(__kmp_GetActiveProcessorGroupCount != NULL) &&
(__kmp_GetThreadGroupAffinity != NULL) &&
(__kmp_SetThreadGroupAffinity != NULL) &&
((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) >
1)) {
// Calculate the total number of active OS procs.
int i;
KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
" detected\n",
__kmp_num_proc_groups));
__kmp_xproc = 0;
for (i = 0; i < __kmp_num_proc_groups; i++) {
DWORD size = __kmp_GetActiveProcessorCount(i);
__kmp_xproc += size;
KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n",
i, size));
}
} else {
KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
" detected\n",
__kmp_num_proc_groups));
}
}
}
if (__kmp_num_proc_groups <= 1) {
GetSystemInfo(&info);
__kmp_xproc = info.dwNumberOfProcessors;
}
#else
GetSystemInfo(&info);
__kmp_xproc = info.dwNumberOfProcessors;
#endif /* KMP_GROUP_AFFINITY */
// If the OS said there were 0 procs, take a guess and use a value of 2.
// This is done for Linux* OS, also. Do we need error / warning?
if (__kmp_xproc <= 0) {
__kmp_xproc = 2;
}
KA_TRACE(5,
("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc));
__kmp_str_buf_free(&path);
#if USE_ITT_BUILD
__kmp_itt_initialize();
#endif /* USE_ITT_BUILD */
__kmp_init_runtime = TRUE;
} // __kmp_runtime_initialize
void __kmp_runtime_destroy(void) {
if (!__kmp_init_runtime) {
return;
}
#if USE_ITT_BUILD
__kmp_itt_destroy();
#endif /* USE_ITT_BUILD */
/* we can't DeleteCriticalsection( & __kmp_win32_section ); */
/* due to the KX_TRACE() commands */
KA_TRACE(40, ("__kmp_runtime_destroy\n"));
if (__kmp_gtid_threadprivate_key) {
TlsFree(__kmp_gtid_threadprivate_key);
__kmp_gtid_threadprivate_key = 0;
}
__kmp_affinity_uninitialize();
DeleteCriticalSection(&__kmp_win32_section);
ntdll = NULL;
NtQuerySystemInformation = NULL;
#if KMP_ARCH_X86_64
kernel32 = NULL;
__kmp_GetActiveProcessorCount = NULL;
__kmp_GetActiveProcessorGroupCount = NULL;
__kmp_GetThreadGroupAffinity = NULL;
__kmp_SetThreadGroupAffinity = NULL;
#endif // KMP_ARCH_X86_64
__kmp_init_runtime = FALSE;
}
void __kmp_terminate_thread(int gtid) {
kmp_info_t *th = __kmp_threads[gtid];
if (!th)
return;
KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) {
/* It's OK, the thread may have exited already */
}
__kmp_free_handle(th->th.th_info.ds.ds_thread);
}
void __kmp_clear_system_time(void) {
BOOL status;
LARGE_INTEGER time;
status = QueryPerformanceCounter(&time);
__kmp_win32_time = (kmp_int64)time.QuadPart;
}
void __kmp_initialize_system_tick(void) {
{
BOOL status;
LARGE_INTEGER freq;
status = QueryPerformanceFrequency(&freq);
if (!status) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"),
KMP_ERR(error), __kmp_msg_null);
} else {
__kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart;
}
}
}
/* Calculate the elapsed wall clock time for the user */
void __kmp_elapsed(double *t) {
BOOL status;
LARGE_INTEGER now;
status = QueryPerformanceCounter(&now);
*t = ((double)now.QuadPart) * __kmp_win32_tick;
}
/* Calculate the elapsed wall clock tick for the user */
void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; }
void __kmp_read_system_time(double *delta) {
if (delta != NULL) {
BOOL status;
LARGE_INTEGER now;
status = QueryPerformanceCounter(&now);
*delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) *
__kmp_win32_tick;
}
}
/* Return the current time stamp in nsec */
kmp_uint64 __kmp_now_nsec() {
LARGE_INTEGER now;
QueryPerformanceCounter(&now);
return 1e9 * __kmp_win32_tick * now.QuadPart;
}
extern "C"
void *__stdcall __kmp_launch_worker(void *arg) {
volatile void *stack_data;
void *exit_val;
void *padding = 0;
kmp_info_t *this_thr = (kmp_info_t *)arg;
int gtid;
gtid = this_thr->th.th_info.ds.ds_gtid;
__kmp_gtid_set_specific(gtid);
#ifdef KMP_TDATA_GTID
#error "This define causes problems with LoadLibrary() + declspec(thread) " \
"on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
"reference: http://support.microsoft.com/kb/118816"
//__kmp_gtid = gtid;
#endif
#if USE_ITT_BUILD
__kmp_itt_thread_name(gtid);
#endif /* USE_ITT_BUILD */
__kmp_affinity_set_init_mask(gtid, FALSE);
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
// Set FP control regs to be a copy of the parallel initialization thread's.
__kmp_clear_x87_fpu_status_word();
__kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
__kmp_load_mxcsr(&__kmp_init_mxcsr);
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
if (__kmp_stkoffset > 0 && gtid > 0) {
padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
}
KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
if (TCR_4(__kmp_gtid_mode) <
2) { // check stack only if it is used to get gtid
TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data);
KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE);
__kmp_check_stack_overlap(this_thr);
}
KMP_MB();
exit_val = __kmp_launch_thread(this_thr);
KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
KMP_MB();
return exit_val;
}
#if KMP_USE_MONITOR
/* The monitor thread controls all of the threads in the complex */
void *__stdcall __kmp_launch_monitor(void *arg) {
DWORD wait_status;
kmp_thread_t monitor;
int status;
int interval;
kmp_info_t *this_thr = (kmp_info_t *)arg;
KMP_DEBUG_ASSERT(__kmp_init_monitor);
TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started
// TODO: hide "2" in enum (like {true,false,started})
this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
KMP_MB(); /* Flush all pending memory write invalidates. */
KA_TRACE(10, ("__kmp_launch_monitor: launched\n"));
monitor = GetCurrentThread();
/* set thread priority */
status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST);
if (!status) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
}
/* register us as monitor */
__kmp_gtid_set_specific(KMP_GTID_MONITOR);
#ifdef KMP_TDATA_GTID
#error "This define causes problems with LoadLibrary() + declspec(thread) " \
"on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
"reference: http://support.microsoft.com/kb/118816"
//__kmp_gtid = KMP_GTID_MONITOR;
#endif
#if USE_ITT_BUILD
__kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore
// monitor thread.
#endif /* USE_ITT_BUILD */
KMP_MB(); /* Flush all pending memory write invalidates. */
interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */
while (!TCR_4(__kmp_global.g.g_done)) {
/* This thread monitors the state of the system */
KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
wait_status = WaitForSingleObject(__kmp_monitor_ev, interval);
if (wait_status == WAIT_TIMEOUT) {
TCW_4(__kmp_global.g.g_time.dt.t_value,
TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
}
KMP_MB(); /* Flush all pending memory write invalidates. */
}
KA_TRACE(10, ("__kmp_launch_monitor: finished\n"));
status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL);
if (!status) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
}
if (__kmp_global.g.g_abort != 0) {
/* now we need to terminate the worker threads */
/* the value of t_abort is the signal we caught */
int gtid;
KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n",
(__kmp_global.g.g_abort)));
/* terminate the OpenMP worker threads */
/* TODO this is not valid for sibling threads!!
* the uber master might not be 0 anymore.. */
for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
__kmp_terminate_thread(gtid);
__kmp_cleanup();
Sleep(0);
KA_TRACE(10,
("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort));
if (__kmp_global.g.g_abort > 0) {
raise(__kmp_global.g.g_abort);
}
}
TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
KMP_MB();
return arg;
}
#endif
void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
kmp_thread_t handle;
DWORD idThread;
KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
th->th.th_info.ds.ds_gtid = gtid;
if (KMP_UBER_GTID(gtid)) {
int stack_data;
/* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for
other threads to use. Is it appropriate to just use GetCurrentThread?
When should we close this handle? When unregistering the root? */
{
BOOL rc;
rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0,
FALSE, DUPLICATE_SAME_ACCESS);
KMP_ASSERT(rc);
KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, "
"handle = %" KMP_UINTPTR_SPEC "\n",
(LPVOID)th, th->th.th_info.ds.ds_thread));
th->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
}
if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid
/* we will dynamically update the stack range if gtid_mode == 1 */
TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
__kmp_check_stack_overlap(th);
}
} else {
KMP_MB(); /* Flush all pending memory write invalidates. */
/* Set stack size for this thread now. */
KA_TRACE(10,
("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n",
stack_size));
stack_size += gtid * __kmp_stkoffset;
TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size);
TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
KA_TRACE(10,
("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC
" bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n",
(SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
(LPVOID)th, &idThread));
handle = CreateThread(
NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker,
(LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
KA_TRACE(10,
("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC
" bytes, &__kmp_launch_worker = %p, th = %p, "
"idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n",
(SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
(LPVOID)th, idThread, handle));
if (handle == 0) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
} else {
th->th.th_info.ds.ds_thread = handle;
}
KMP_MB(); /* Flush all pending memory write invalidates. */
}
KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
}
int __kmp_still_running(kmp_info_t *th) {
return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0));
}
#if KMP_USE_MONITOR
void __kmp_create_monitor(kmp_info_t *th) {
kmp_thread_t handle;
DWORD idThread;
int ideal, new_ideal;
if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
// We don't need monitor thread in case of MAX_BLOCKTIME
KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
"MAX blocktime\n"));
th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
th->th.th_info.ds.ds_gtid = 0;
TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation
return;
}
KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
KMP_MB(); /* Flush all pending memory write invalidates. */
__kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL);
if (__kmp_monitor_ev == NULL) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null);
}
#if USE_ITT_BUILD
__kmp_itt_system_object_created(__kmp_monitor_ev, "Event");
#endif /* USE_ITT_BUILD */
th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
// FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
// to automatically expand stacksize based on CreateThread error code.
if (__kmp_monitor_stksize == 0) {
__kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
}
if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
__kmp_monitor_stksize = __kmp_sys_min_stksize;
}
KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
(int)__kmp_monitor_stksize));
TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
handle =
CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize,
(LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th,
STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
if (handle == 0) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
} else
th->th.th_info.ds.ds_thread = handle;
KMP_MB(); /* Flush all pending memory write invalidates. */
KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n",
(void *)th->th.th_info.ds.ds_thread));
}
#endif
/* Check to see if thread is still alive.
NOTE: The ExitProcess(code) system call causes all threads to Terminate
with a exit_val = code. Because of this we can not rely on exit_val having
any particular value. So this routine may return STILL_ALIVE in exit_val
even after the thread is dead. */
int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) {
DWORD rc;
rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val);
if (rc == 0) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error),
__kmp_msg_null);
}
return (*exit_val == STILL_ACTIVE);
}
void __kmp_exit_thread(int exit_status) {
ExitThread(exit_status);
} // __kmp_exit_thread
// This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
static void __kmp_reap_common(kmp_info_t *th) {
DWORD exit_val;
KMP_MB(); /* Flush all pending memory write invalidates. */
KA_TRACE(
10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid));
/* 2006-10-19:
There are two opposite situations:
1. Windows* OS keep thread alive after it resets ds_alive flag and
exits from thread function. (For example, see C70770/Q394281 "unloading of
dll based on OMP is very slow".)
2. Windows* OS may kill thread before it resets ds_alive flag.
Right solution seems to be waiting for *either* thread termination *or*
ds_alive resetting. */
{
// TODO: This code is very similar to KMP_WAIT_YIELD. Need to generalize
// KMP_WAIT_YIELD to cover this usage also.
void *obj = NULL;
kmp_uint32 spins;
#if USE_ITT_BUILD
KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive);
#endif /* USE_ITT_BUILD */
KMP_INIT_YIELD(spins);
do {
#if USE_ITT_BUILD
KMP_FSYNC_SPIN_PREPARE(obj);
#endif /* USE_ITT_BUILD */
__kmp_is_thread_alive(th, &exit_val);
KMP_YIELD(TCR_4(__kmp_nth) > __kmp_avail_proc);
KMP_YIELD_SPIN(spins);
} while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive));
#if USE_ITT_BUILD
if (exit_val == STILL_ACTIVE) {
KMP_FSYNC_CANCEL(obj);
} else {
KMP_FSYNC_SPIN_ACQUIRED(obj);
}
#endif /* USE_ITT_BUILD */
}
__kmp_free_handle(th->th.th_info.ds.ds_thread);
/* NOTE: The ExitProcess(code) system call causes all threads to Terminate
with a exit_val = code. Because of this we can not rely on exit_val having
any particular value. */
if (exit_val == STILL_ACTIVE) {
KA_TRACE(1, ("__kmp_reap_common: thread still active.\n"));
} else if ((void *)exit_val != (void *)th) {
KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n"));
}
KA_TRACE(10,
("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC
"\n",
th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread));
th->th.th_info.ds.ds_thread = 0;
th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
th->th.th_info.ds.ds_thread_id = 0;
KMP_MB(); /* Flush all pending memory write invalidates. */
}
#if KMP_USE_MONITOR
void __kmp_reap_monitor(kmp_info_t *th) {
int status;
KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n",
(void *)th->th.th_info.ds.ds_thread));
// If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
// If both tid and gtid are 0, it means the monitor did not ever start.
// If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
return;
}
KMP_MB(); /* Flush all pending memory write invalidates. */
status = SetEvent(__kmp_monitor_ev);
if (status == FALSE) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null);
}
KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n",
th->th.th_info.ds.ds_gtid));
__kmp_reap_common(th);
__kmp_free_handle(__kmp_monitor_ev);
KMP_MB(); /* Flush all pending memory write invalidates. */
}
#endif
void __kmp_reap_worker(kmp_info_t *th) {
KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n",
th->th.th_info.ds.ds_gtid));
__kmp_reap_common(th);
}
#if KMP_HANDLE_SIGNALS
static void __kmp_team_handler(int signo) {
if (__kmp_global.g.g_abort == 0) {
// Stage 1 signal handler, let's shut down all of the threads.
if (__kmp_debug_buf) {
__kmp_dump_debug_buffer();
}
KMP_MB(); // Flush all pending memory write invalidates.
TCW_4(__kmp_global.g.g_abort, signo);
KMP_MB(); // Flush all pending memory write invalidates.
TCW_4(__kmp_global.g.g_done, TRUE);
KMP_MB(); // Flush all pending memory write invalidates.
}
} // __kmp_team_handler
static sig_func_t __kmp_signal(int signum, sig_func_t handler) {
sig_func_t old = signal(signum, handler);
if (old == SIG_ERR) {
int error = errno;
__kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error),
__kmp_msg_null);
}
return old;
}
static void __kmp_install_one_handler(int sig, sig_func_t handler,
int parallel_init) {
sig_func_t old;
KMP_MB(); /* Flush all pending memory write invalidates. */
KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig));
if (parallel_init) {
old = __kmp_signal(sig, handler);
// SIG_DFL on Windows* OS in NULL or 0.
if (old == __kmp_sighldrs[sig]) {
__kmp_siginstalled[sig] = 1;
} else { // Restore/keep user's handler if one previously installed.
old = __kmp_signal(sig, old);
}
} else {
// Save initial/system signal handlers to see if user handlers installed.
// 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals
// called once with parallel_init == TRUE.
old = __kmp_signal(sig, SIG_DFL);
__kmp_sighldrs[sig] = old;
__kmp_signal(sig, old);
}
KMP_MB(); /* Flush all pending memory write invalidates. */
} // __kmp_install_one_handler
static void __kmp_remove_one_handler(int sig) {
if (__kmp_siginstalled[sig]) {
sig_func_t old;
KMP_MB(); // Flush all pending memory write invalidates.
KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig));
old = __kmp_signal(sig, __kmp_sighldrs[sig]);
if (old != __kmp_team_handler) {
KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
"restoring: sig=%d\n",
sig));
old = __kmp_signal(sig, old);
}
__kmp_sighldrs[sig] = NULL;
__kmp_siginstalled[sig] = 0;
KMP_MB(); // Flush all pending memory write invalidates.
}
} // __kmp_remove_one_handler
void __kmp_install_signals(int parallel_init) {
KB_TRACE(10, ("__kmp_install_signals: called\n"));
if (!__kmp_handle_signals) {
KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - "
"handlers not installed\n"));
return;
}
__kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
__kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
__kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
__kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
__kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
__kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
} // __kmp_install_signals
void __kmp_remove_signals(void) {
int sig;
KB_TRACE(10, ("__kmp_remove_signals: called\n"));
for (sig = 1; sig < NSIG; ++sig) {
__kmp_remove_one_handler(sig);
}
} // __kmp_remove_signals
#endif // KMP_HANDLE_SIGNALS
/* Put the thread to sleep for a time period */
void __kmp_thread_sleep(int millis) {
DWORD status;
status = SleepEx((DWORD)millis, FALSE);
if (status) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error),
__kmp_msg_null);
}
}
// Determine whether the given address is mapped into the current address space.
int __kmp_is_address_mapped(void *addr) {
DWORD status;
MEMORY_BASIC_INFORMATION lpBuffer;
SIZE_T dwLength;
dwLength = sizeof(MEMORY_BASIC_INFORMATION);
status = VirtualQuery(addr, &lpBuffer, dwLength);
return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) ||
((lpBuffer.Protect == PAGE_NOACCESS) ||
(lpBuffer.Protect == PAGE_EXECUTE)));
}
kmp_uint64 __kmp_hardware_timestamp(void) {
kmp_uint64 r = 0;
QueryPerformanceCounter((LARGE_INTEGER *)&r);
return r;
}
/* Free handle and check the error code */
void __kmp_free_handle(kmp_thread_t tHandle) {
/* called with parameter type HANDLE also, thus suppose kmp_thread_t defined
* as HANDLE */
BOOL rc;
rc = CloseHandle(tHandle);
if (!rc) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null);
}
}
int __kmp_get_load_balance(int max) {
static ULONG glb_buff_size = 100 * 1024;
// Saved count of the running threads for the thread balance algortihm
static int glb_running_threads = 0;
static double glb_call_time = 0; /* Thread balance algorithm call time */
int running_threads = 0; // Number of running threads in the system.
NTSTATUS status = 0;
ULONG buff_size = 0;
ULONG info_size = 0;
void *buffer = NULL;
PSYSTEM_PROCESS_INFORMATION spi = NULL;
int first_time = 1;
double call_time = 0.0; // start, finish;
__kmp_elapsed(&call_time);
if (glb_call_time &&
(call_time - glb_call_time < __kmp_load_balance_interval)) {
running_threads = glb_running_threads;
goto finish;
}
glb_call_time = call_time;
// Do not spend time on running algorithm if we have a permanent error.
if (NtQuerySystemInformation == NULL) {
running_threads = -1;
goto finish;
}
if (max <= 0) {
max = INT_MAX;
}
do {
if (first_time) {
buff_size = glb_buff_size;
} else {
buff_size = 2 * buff_size;
}
buffer = KMP_INTERNAL_REALLOC(buffer, buff_size);
if (buffer == NULL) {
running_threads = -1;
goto finish;
}
status = NtQuerySystemInformation(SystemProcessInformation, buffer,
buff_size, &info_size);
first_time = 0;
} while (status == STATUS_INFO_LENGTH_MISMATCH);
glb_buff_size = buff_size;
#define CHECK(cond) \
{ \
KMP_DEBUG_ASSERT(cond); \
if (!(cond)) { \
running_threads = -1; \
goto finish; \
} \
}
CHECK(buff_size >= info_size);
spi = PSYSTEM_PROCESS_INFORMATION(buffer);
for (;;) {
ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer);
CHECK(0 <= offset &&
offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size);
HANDLE pid = spi->ProcessId;
ULONG num = spi->NumberOfThreads;
CHECK(num >= 1);
size_t spi_size =
sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1);
CHECK(offset + spi_size <
info_size); // Make sure process info record fits the buffer.
if (spi->NextEntryOffset != 0) {
CHECK(spi_size <=
spi->NextEntryOffset); // And do not overlap with the next record.
}
// pid == 0 corresponds to the System Idle Process. It always has running
// threads on all cores. So, we don't consider the running threads of this
// process.
if (pid != 0) {
for (int i = 0; i < num; ++i) {
THREAD_STATE state = spi->Threads[i].State;
// Count threads that have Ready or Running state.
// !!! TODO: Why comment does not match the code???
if (state == StateRunning) {
++running_threads;
// Stop counting running threads if the number is already greater than
// the number of available cores
if (running_threads >= max) {
goto finish;
}
}
}
}
if (spi->NextEntryOffset == 0) {
break;
}
spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset);
}
#undef CHECK
finish: // Clean up and exit.
if (buffer != NULL) {
KMP_INTERNAL_FREE(buffer);
}
glb_running_threads = running_threads;
return running_threads;
} //__kmp_get_load_balance()