mirror of
https://github.com/Gericom/teak-llvm.git
synced 2025-06-23 05:25:50 -04:00
422 lines
15 KiB
C++
422 lines
15 KiB
C++
//===--- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the DeltaTree and related classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Rewrite/DeltaTree.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include <cstring>
|
|
using namespace clang;
|
|
using llvm::cast;
|
|
using llvm::dyn_cast;
|
|
|
|
namespace {
|
|
struct SourceDelta;
|
|
class DeltaTreeNode;
|
|
class DeltaTreeInteriorNode;
|
|
}
|
|
|
|
/// The DeltaTree class is a multiway search tree (BTree) structure with some
|
|
/// fancy features. B-Trees are are generally more memory and cache efficient
|
|
/// than binary trees, because they store multiple keys/values in each node.
|
|
///
|
|
/// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing
|
|
/// fast lookup by FileIndex. However, an added (important) bonus is that it
|
|
/// can also efficiently tell us the full accumulated delta for a specific
|
|
/// file offset as well, without traversing the whole tree.
|
|
///
|
|
/// The nodes of the tree are made up of instances of two classes:
|
|
/// DeltaTreeNode and DeltaTreeInteriorNode. The later subclasses the
|
|
/// former and adds children pointers. Each node knows the full delta of all
|
|
/// entries (recursively) contained inside of it, which allows us to get the
|
|
/// full delta implied by a whole subtree in constant time.
|
|
|
|
namespace {
|
|
/// SourceDelta - As code in the original input buffer is added and deleted,
|
|
/// SourceDelta records are used to keep track of how the input SourceLocation
|
|
/// object is mapped into the output buffer.
|
|
struct SourceDelta {
|
|
unsigned FileLoc;
|
|
int Delta;
|
|
|
|
static SourceDelta get(unsigned Loc, int D) {
|
|
SourceDelta Delta;
|
|
Delta.FileLoc = Loc;
|
|
Delta.Delta = D;
|
|
return Delta;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
/// DeltaTreeNode - The common part of all nodes.
|
|
///
|
|
class DeltaTreeNode {
|
|
friend class DeltaTreeInteriorNode;
|
|
|
|
/// WidthFactor - This controls the number of K/V slots held in the BTree:
|
|
/// how wide it is. Each level of the BTree is guaranteed to have at least
|
|
/// WidthFactor-1 K/V pairs (unless the whole tree is less full than that)
|
|
/// and may have at most 2*WidthFactor-1 K/V pairs.
|
|
enum { WidthFactor = 8 };
|
|
|
|
/// Values - This tracks the SourceDelta's currently in this node.
|
|
///
|
|
SourceDelta Values[2*WidthFactor-1];
|
|
|
|
/// NumValuesUsed - This tracks the number of values this node currently
|
|
/// holds.
|
|
unsigned char NumValuesUsed;
|
|
|
|
/// IsLeaf - This is true if this is a leaf of the btree. If false, this is
|
|
/// an interior node, and is actually an instance of DeltaTreeInteriorNode.
|
|
bool IsLeaf;
|
|
|
|
/// FullDelta - This is the full delta of all the values in this node and
|
|
/// all children nodes.
|
|
int FullDelta;
|
|
public:
|
|
DeltaTreeNode(bool isLeaf = true)
|
|
: NumValuesUsed(0), IsLeaf(isLeaf), FullDelta(0) {}
|
|
|
|
bool isLeaf() const { return IsLeaf; }
|
|
int getFullDelta() const { return FullDelta; }
|
|
bool isFull() const { return NumValuesUsed == 2*WidthFactor-1; }
|
|
|
|
unsigned getNumValuesUsed() const { return NumValuesUsed; }
|
|
const SourceDelta &getValue(unsigned i) const {
|
|
assert(i < NumValuesUsed && "Invalid value #");
|
|
return Values[i];
|
|
}
|
|
SourceDelta &getValue(unsigned i) {
|
|
assert(i < NumValuesUsed && "Invalid value #");
|
|
return Values[i];
|
|
}
|
|
|
|
/// AddDeltaNonFull - Add a delta to this tree and/or it's children, knowing
|
|
/// that this node is not currently full.
|
|
void AddDeltaNonFull(unsigned FileIndex, int Delta);
|
|
|
|
/// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
|
|
/// local walk over our contained deltas.
|
|
void RecomputeFullDeltaLocally();
|
|
|
|
void Destroy();
|
|
|
|
static inline bool classof(const DeltaTreeNode *) { return true; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
/// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers.
|
|
/// This class tracks them.
|
|
class DeltaTreeInteriorNode : public DeltaTreeNode {
|
|
DeltaTreeNode *Children[2*WidthFactor];
|
|
~DeltaTreeInteriorNode() {
|
|
for (unsigned i = 0, e = NumValuesUsed+1; i != e; ++i)
|
|
Children[i]->Destroy();
|
|
}
|
|
friend class DeltaTreeNode;
|
|
public:
|
|
DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {}
|
|
|
|
DeltaTreeInteriorNode(DeltaTreeNode *FirstChild)
|
|
: DeltaTreeNode(false /*nonleaf*/) {
|
|
FullDelta = FirstChild->FullDelta;
|
|
Children[0] = FirstChild;
|
|
}
|
|
|
|
const DeltaTreeNode *getChild(unsigned i) const {
|
|
assert(i < getNumValuesUsed()+1 && "Invalid child");
|
|
return Children[i];
|
|
}
|
|
DeltaTreeNode *getChild(unsigned i) {
|
|
assert(i < getNumValuesUsed()+1 && "Invalid child");
|
|
return Children[i];
|
|
}
|
|
|
|
static inline bool classof(const DeltaTreeInteriorNode *) { return true; }
|
|
static inline bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); }
|
|
private:
|
|
void SplitChild(unsigned ChildNo);
|
|
};
|
|
}
|
|
|
|
|
|
/// Destroy - A 'virtual' destructor.
|
|
void DeltaTreeNode::Destroy() {
|
|
if (isLeaf())
|
|
delete this;
|
|
else
|
|
delete cast<DeltaTreeInteriorNode>(this);
|
|
}
|
|
|
|
/// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
|
|
/// local walk over our contained deltas.
|
|
void DeltaTreeNode::RecomputeFullDeltaLocally() {
|
|
int NewFullDelta = 0;
|
|
for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i)
|
|
NewFullDelta += Values[i].Delta;
|
|
if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this))
|
|
for (unsigned i = 0, e = getNumValuesUsed()+1; i != e; ++i)
|
|
NewFullDelta += IN->getChild(i)->getFullDelta();
|
|
FullDelta = NewFullDelta;
|
|
}
|
|
|
|
|
|
/// AddDeltaNonFull - Add a delta to this tree and/or it's children, knowing
|
|
/// that this node is not currently full.
|
|
void DeltaTreeNode::AddDeltaNonFull(unsigned FileIndex, int Delta) {
|
|
assert(!isFull() && "AddDeltaNonFull on a full tree?");
|
|
|
|
// Maintain full delta for this node.
|
|
FullDelta += Delta;
|
|
|
|
// Find the insertion point, the first delta whose index is >= FileIndex.
|
|
unsigned i = 0, e = getNumValuesUsed();
|
|
while (i != e && FileIndex > getValue(i).FileLoc)
|
|
++i;
|
|
|
|
// If we found an a record for exactly this file index, just merge this
|
|
// value into the preexisting record and finish early.
|
|
if (i != e && getValue(i).FileLoc == FileIndex) {
|
|
// NOTE: Delta could drop to zero here. This means that the next delta
|
|
// entry is useless and could be removed. Supporting erases is
|
|
// significantly more complex though, so we just leave an entry with
|
|
// Delta=0 in the tree.
|
|
Values[i].Delta += Delta;
|
|
return;
|
|
}
|
|
|
|
if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
|
|
// Insertion into an interior node propagates the value down to a child.
|
|
DeltaTreeNode *Child = IN->getChild(i);
|
|
|
|
// If the child tree is full, split it, pulling an element up into our
|
|
// node.
|
|
if (Child->isFull()) {
|
|
IN->SplitChild(i);
|
|
SourceDelta &MedianVal = getValue(i);
|
|
|
|
// If the median value we pulled up is exactly our insert position, add
|
|
// the delta and return.
|
|
if (MedianVal.FileLoc == FileIndex) {
|
|
MedianVal.Delta += Delta;
|
|
return;
|
|
}
|
|
|
|
// If the median value pulled up is less than our current search point,
|
|
// include those deltas and search down the RHS now.
|
|
if (MedianVal.FileLoc < FileIndex)
|
|
Child = IN->getChild(i+1);
|
|
}
|
|
|
|
Child->AddDeltaNonFull(FileIndex, Delta);
|
|
} else {
|
|
// For an insertion into a non-full leaf node, just insert the value in
|
|
// its sorted position. This requires moving later values over.
|
|
if (i != e)
|
|
memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i));
|
|
Values[i] = SourceDelta::get(FileIndex, Delta);
|
|
++NumValuesUsed;
|
|
}
|
|
}
|
|
|
|
/// SplitChild - At this point, we know that the current node is not full and
|
|
/// that the specified child of this node is. Split the child in half at its
|
|
/// median, propagating one value up into us. Child may be either an interior
|
|
/// or leaf node.
|
|
void DeltaTreeInteriorNode::SplitChild(unsigned ChildNo) {
|
|
DeltaTreeNode *Child = getChild(ChildNo);
|
|
assert(!isFull() && Child->isFull() && "Inconsistent constraints");
|
|
|
|
// Since the child is full, it contains 2*WidthFactor-1 values. We move
|
|
// the first 'WidthFactor-1' values to the LHS child (which we leave in the
|
|
// original child), propagate one value up into us, and move the last
|
|
// 'WidthFactor-1' values into thew RHS child.
|
|
|
|
// Create the new child node.
|
|
DeltaTreeNode *NewNode;
|
|
if (DeltaTreeInteriorNode *CIN = dyn_cast<DeltaTreeInteriorNode>(Child)) {
|
|
// If the child is an interior node, also move over 'WidthFactor' grand
|
|
// children into the new node.
|
|
NewNode = new DeltaTreeInteriorNode();
|
|
memcpy(&((DeltaTreeInteriorNode*)NewNode)->Children[0],
|
|
&CIN->Children[WidthFactor],
|
|
WidthFactor*sizeof(CIN->Children[0]));
|
|
} else {
|
|
// Just create the child node.
|
|
NewNode = new DeltaTreeNode();
|
|
}
|
|
|
|
// Move over the last 'WidthFactor-1' values from Child to NewNode.
|
|
memcpy(&NewNode->Values[0], &Child->Values[WidthFactor],
|
|
(WidthFactor-1)*sizeof(Child->Values[0]));
|
|
|
|
// Decrease the number of values in the two children.
|
|
NewNode->NumValuesUsed = Child->NumValuesUsed = WidthFactor-1;
|
|
|
|
// Recompute the two children's full delta. Our delta hasn't changed, but
|
|
// their delta has.
|
|
NewNode->RecomputeFullDeltaLocally();
|
|
Child->RecomputeFullDeltaLocally();
|
|
|
|
// Now that we have two nodes and a new element, insert the median value
|
|
// into ourself by moving all the later values/children down, then inserting
|
|
// the new one.
|
|
if (getNumValuesUsed() != ChildNo)
|
|
memmove(&Children[ChildNo+2], &Children[ChildNo+1],
|
|
(getNumValuesUsed()-ChildNo)*sizeof(Children[0]));
|
|
Children[ChildNo+1] = NewNode;
|
|
|
|
if (getNumValuesUsed() != ChildNo)
|
|
memmove(&Values[ChildNo+1], &Values[ChildNo],
|
|
(getNumValuesUsed()-ChildNo)*sizeof(Values[0]));
|
|
Values[ChildNo] = Child->Values[WidthFactor-1];
|
|
++NumValuesUsed;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DeltaTree Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//#define VERIFY_TREE
|
|
|
|
#ifdef VERIFY_TREE
|
|
/// VerifyTree - Walk the btree performing assertions on various properties to
|
|
/// verify consistency. This is useful for debugging new changes to the tree.
|
|
static void VerifyTree(const DeltaTreeNode *N) {
|
|
const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(N);
|
|
if (IN == 0) {
|
|
// Verify leaves, just ensure that FullDelta matches up and the elements
|
|
// are in proper order.
|
|
int FullDelta = 0;
|
|
for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) {
|
|
if (i)
|
|
assert(N->getValue(i-1).FileLoc < N->getValue(i).FileLoc);
|
|
FullDelta += N->getValue(i).Delta;
|
|
}
|
|
assert(FullDelta == N->getFullDelta());
|
|
return;
|
|
}
|
|
|
|
// Verify interior nodes: Ensure that FullDelta matches up and the
|
|
// elements are in proper order and the children are in proper order.
|
|
int FullDelta = 0;
|
|
for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) {
|
|
const SourceDelta &IVal = N->getValue(i);
|
|
const DeltaTreeNode *IChild = IN->getChild(i);
|
|
if (i)
|
|
assert(IN->getValue(i-1).FileLoc < IVal.FileLoc);
|
|
FullDelta += IVal.Delta;
|
|
FullDelta += IChild->getFullDelta();
|
|
|
|
// The largest value in child #i should be smaller than FileLoc.
|
|
assert(IChild->getValue(IChild->getNumValuesUsed()-1).FileLoc <
|
|
IVal.FileLoc);
|
|
|
|
// The smallest value in child #i+1 should be larger than FileLoc.
|
|
assert(IN->getChild(i+1)->getValue(0).FileLoc > IVal.FileLoc);
|
|
VerifyTree(IChild);
|
|
}
|
|
|
|
FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta();
|
|
|
|
assert(FullDelta == N->getFullDelta());
|
|
}
|
|
#endif // VERIFY_TREE
|
|
|
|
static DeltaTreeNode *getRoot(void *Root) {
|
|
return (DeltaTreeNode*)Root;
|
|
}
|
|
|
|
DeltaTree::DeltaTree() {
|
|
Root = new DeltaTreeNode();
|
|
}
|
|
DeltaTree::DeltaTree(const DeltaTree &RHS) {
|
|
// Currently we only support copying when the RHS is empty.
|
|
assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 &&
|
|
"Can only copy empty tree");
|
|
Root = new DeltaTreeNode();
|
|
}
|
|
|
|
DeltaTree::~DeltaTree() {
|
|
getRoot(Root)->Destroy();
|
|
}
|
|
|
|
/// getDeltaAt - Return the accumulated delta at the specified file offset.
|
|
/// This includes all insertions or delections that occurred *before* the
|
|
/// specified file index.
|
|
int DeltaTree::getDeltaAt(unsigned FileIndex) const {
|
|
const DeltaTreeNode *Node = getRoot(Root);
|
|
|
|
int Result = 0;
|
|
|
|
// Walk down the tree.
|
|
while (1) {
|
|
// For all nodes, include any local deltas before the specified file
|
|
// index by summing them up directly. Keep track of how many were
|
|
// included.
|
|
unsigned NumValsGreater = 0;
|
|
for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e;
|
|
++NumValsGreater) {
|
|
const SourceDelta &Val = Node->getValue(NumValsGreater);
|
|
|
|
if (Val.FileLoc >= FileIndex)
|
|
break;
|
|
Result += Val.Delta;
|
|
}
|
|
|
|
// If we have an interior node, include information about children and
|
|
// recurse. Otherwise, if we have a leaf, we're done.
|
|
const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(Node);
|
|
if (!IN) return Result;
|
|
|
|
// Include any children to the left of the values we skipped, all of
|
|
// their deltas should be included as well.
|
|
for (unsigned i = 0; i != NumValsGreater; ++i)
|
|
Result += IN->getChild(i)->getFullDelta();
|
|
|
|
// If we found exactly the value we were looking for, break off the
|
|
// search early. There is no need to search the RHS of the value for
|
|
// partial results.
|
|
if (NumValsGreater != Node->getNumValuesUsed() &&
|
|
Node->getValue(NumValsGreater).FileLoc == FileIndex)
|
|
return Result;
|
|
|
|
// Otherwise, traverse down the tree. The selected subtree may be
|
|
// partially included in the range.
|
|
Node = IN->getChild(NumValsGreater);
|
|
}
|
|
// NOT REACHED.
|
|
}
|
|
|
|
|
|
/// AddDelta - When a change is made that shifts around the text buffer,
|
|
/// this method is used to record that info. It inserts a delta of 'Delta'
|
|
/// into the current DeltaTree at offset FileIndex.
|
|
void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
|
|
assert(Delta && "Adding a noop?");
|
|
|
|
// If the root is full, create a new dummy (non-empty) interior node that
|
|
// points to it, allowing the old root to be split.
|
|
if (getRoot(Root)->isFull())
|
|
Root = new DeltaTreeInteriorNode(getRoot(Root));
|
|
|
|
getRoot(Root)->AddDeltaNonFull(FileIndex, Delta);
|
|
|
|
#ifdef VERIFY_TREE
|
|
VerifyTree(Root);
|
|
#endif
|
|
}
|
|
|