teak-llvm/lldb/packages/Python/lldbsuite/test/lang/cpp/virtual/TestVirtual.py
Zachary Turner 7a5382de82 Move some of the common decorators to decorators.py.
This doesn't attempt to move every decorator.  The reason for
this is that it requires touching every single test file to import
decorators.py.  I would like to do this in a followup patch, but
in the interest of keeping the patches as bite-sized as possible,
I've only attempted to move the underlying common decorators first.
A few tests call these directly, so those tests are updated as part
of this patch.

llvm-svn: 259807
2016-02-04 18:03:01 +00:00

92 lines
3.3 KiB
Python

"""
Test C++ virtual function and virtual inheritance.
"""
from __future__ import print_function
import os, time
import re
import lldb
from lldbsuite.test.decorators import *
from lldbsuite.test.lldbtest import *
from lldbsuite.test import lldbutil
def Msg(expr, val):
return "'expression %s' matches the output (from compiled code): %s" % (expr, val)
class CppVirtualMadness(TestBase):
mydir = TestBase.compute_mydir(__file__)
# This is the pattern by design to match the "my_expr = 'value'" output from
# printf() stmts (see main.cpp).
pattern = re.compile("^([^=]*) = '([^=]*)'$")
# Assert message.
PRINTF_OUTPUT_GROKKED = "The printf output from compiled code is parsed correctly"
def setUp(self):
# Call super's setUp().
TestBase.setUp(self)
# Find the line number to break for main.cpp.
self.source = 'main.cpp'
self.line = line_number(self.source, '// Set first breakpoint here.')
@expectedFailureIcc('llvm.org/pr16808') # lldb does not call the correct virtual function with icc
@expectedFailureAll(oslist=['windows'])
def test_virtual_madness(self):
"""Test that expression works correctly with virtual inheritance as well as virtual function."""
self.build()
# Bring the program to the point where we can issue a series of
# 'expression' command to compare against the golden output.
self.dbg.SetAsync(False)
# Create a target by the debugger.
target = self.dbg.CreateTarget("a.out")
self.assertTrue(target, VALID_TARGET)
# Create the breakpoint inside function 'main'.
breakpoint = target.BreakpointCreateByLocation(self.source, self.line)
self.assertTrue(breakpoint, VALID_BREAKPOINT)
# Now launch the process, and do not stop at entry point.
process = target.LaunchSimple (None, None, self.get_process_working_directory())
self.assertTrue(process, PROCESS_IS_VALID)
self.assertTrue(process.GetState() == lldb.eStateStopped)
thread = lldbutil.get_stopped_thread(process, lldb.eStopReasonBreakpoint)
self.assertTrue(thread.IsValid(), "There should be a thread stopped due to breakpoint condition")
# First, capture the golden output from the program itself from the
# series of printf statements.
stdout = process.GetSTDOUT(1024)
self.assertIsNotNone(stdout, "Encountered an error reading the process's output")
# This golden list contains a list of "my_expr = 'value' pairs extracted
# from the golden output.
gl = []
# Scan the golden output line by line, looking for the pattern:
#
# my_expr = 'value'
#
for line in stdout.split(os.linesep):
match = self.pattern.search(line)
if match:
my_expr, val = match.group(1), match.group(2)
gl.append((my_expr, val))
#print("golden list:", gl)
# Now iterate through the golden list, comparing against the output from
# 'expression var'.
for my_expr, val in gl:
self.runCmd("expression %s" % my_expr)
output = self.res.GetOutput()
# The expression output must match the oracle.
self.expect(output, Msg(my_expr, val), exe=False,
substrs = [val])