mirror of
https://github.com/Gericom/teak-llvm.git
synced 2025-06-26 14:58:59 -04:00

Summary: This enables the X86-specific X86FloatingPointStackifierPass, and allow llvm-exegesis to generate and measure X87 latency/uops for some FP ops. Reviewers: gchatelet Subscribers: tschuett, llvm-commits Differential Revision: https://reviews.llvm.org/D48592 llvm-svn: 335815
221 lines
8.3 KiB
C++
221 lines
8.3 KiB
C++
//===-- BenchmarkRunner.cpp -------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <array>
|
|
#include <string>
|
|
|
|
#include "Assembler.h"
|
|
#include "BenchmarkRunner.h"
|
|
#include "MCInstrDescView.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Program.h"
|
|
|
|
namespace exegesis {
|
|
|
|
BenchmarkFailure::BenchmarkFailure(const llvm::Twine &S)
|
|
: llvm::StringError(S, llvm::inconvertibleErrorCode()) {}
|
|
|
|
BenchmarkRunner::BenchmarkRunner(const LLVMState &State,
|
|
InstructionBenchmark::ModeE Mode)
|
|
: State(State), RATC(State.getRegInfo(),
|
|
getFunctionReservedRegs(State.getTargetMachine())),
|
|
Mode(Mode) {}
|
|
|
|
BenchmarkRunner::~BenchmarkRunner() = default;
|
|
|
|
llvm::Expected<std::vector<InstructionBenchmark>>
|
|
BenchmarkRunner::run(unsigned Opcode, unsigned NumRepetitions) {
|
|
const llvm::MCInstrDesc &InstrDesc = State.getInstrInfo().get(Opcode);
|
|
// Ignore instructions that we cannot run.
|
|
if (InstrDesc.isPseudo())
|
|
return llvm::make_error<BenchmarkFailure>("Unsupported opcode: isPseudo");
|
|
if (InstrDesc.isBranch() || InstrDesc.isIndirectBranch())
|
|
return llvm::make_error<BenchmarkFailure>(
|
|
"Unsupported opcode: isBranch/isIndirectBranch");
|
|
if (InstrDesc.isCall() || InstrDesc.isReturn())
|
|
return llvm::make_error<BenchmarkFailure>(
|
|
"Unsupported opcode: isCall/isReturn");
|
|
|
|
llvm::Expected<std::vector<BenchmarkConfiguration>> ConfigurationOrError =
|
|
generateConfigurations(Opcode);
|
|
|
|
if (llvm::Error E = ConfigurationOrError.takeError())
|
|
return std::move(E);
|
|
|
|
std::vector<InstructionBenchmark> InstrBenchmarks;
|
|
for (const BenchmarkConfiguration &Conf : ConfigurationOrError.get())
|
|
InstrBenchmarks.push_back(runOne(Conf, Opcode, NumRepetitions));
|
|
return InstrBenchmarks;
|
|
}
|
|
|
|
InstructionBenchmark
|
|
BenchmarkRunner::runOne(const BenchmarkConfiguration &Configuration,
|
|
unsigned Opcode, unsigned NumRepetitions) const {
|
|
InstructionBenchmark InstrBenchmark;
|
|
InstrBenchmark.Mode = Mode;
|
|
InstrBenchmark.CpuName = State.getTargetMachine().getTargetCPU();
|
|
InstrBenchmark.LLVMTriple =
|
|
State.getTargetMachine().getTargetTriple().normalize();
|
|
InstrBenchmark.NumRepetitions = NumRepetitions;
|
|
InstrBenchmark.Info = Configuration.Info;
|
|
|
|
const std::vector<llvm::MCInst> &Snippet = Configuration.Snippet;
|
|
if (Snippet.empty()) {
|
|
InstrBenchmark.Error = "Empty snippet";
|
|
return InstrBenchmark;
|
|
}
|
|
|
|
InstrBenchmark.Key.Instructions = Snippet;
|
|
|
|
// Repeat the snippet until there are at least NumInstructions in the
|
|
// resulting code. The snippet is always repeated at least once.
|
|
const auto GenerateInstructions = [&Configuration](
|
|
const int MinInstructions) {
|
|
std::vector<llvm::MCInst> Code = Configuration.Snippet;
|
|
for (int I = 0; I < MinInstructions; ++I)
|
|
Code.push_back(Configuration.Snippet[I % Configuration.Snippet.size()]);
|
|
return Code;
|
|
};
|
|
|
|
// Assemble at least kMinInstructionsForSnippet instructions by repeating the
|
|
// snippet for debug/analysis. This is so that the user clearly understands
|
|
// that the inside instructions are repeated.
|
|
constexpr const int kMinInstructionsForSnippet = 16;
|
|
{
|
|
auto ObjectFilePath =
|
|
writeObjectFile(Configuration.SnippetSetup,
|
|
GenerateInstructions(kMinInstructionsForSnippet));
|
|
if (llvm::Error E = ObjectFilePath.takeError()) {
|
|
InstrBenchmark.Error = llvm::toString(std::move(E));
|
|
return InstrBenchmark;
|
|
}
|
|
const ExecutableFunction EF(State.createTargetMachine(),
|
|
getObjectFromFile(*ObjectFilePath));
|
|
const auto FnBytes = EF.getFunctionBytes();
|
|
InstrBenchmark.AssembledSnippet.assign(FnBytes.begin(), FnBytes.end());
|
|
}
|
|
|
|
// Assemble NumRepetitions instructions repetitions of the snippet for
|
|
// measurements.
|
|
auto ObjectFilePath =
|
|
writeObjectFile(Configuration.SnippetSetup,
|
|
GenerateInstructions(InstrBenchmark.NumRepetitions));
|
|
if (llvm::Error E = ObjectFilePath.takeError()) {
|
|
InstrBenchmark.Error = llvm::toString(std::move(E));
|
|
return InstrBenchmark;
|
|
}
|
|
llvm::outs() << "Check generated assembly with: /usr/bin/objdump -d "
|
|
<< *ObjectFilePath << "\n";
|
|
const ExecutableFunction EF(State.createTargetMachine(),
|
|
getObjectFromFile(*ObjectFilePath));
|
|
InstrBenchmark.Measurements = runMeasurements(EF, NumRepetitions);
|
|
|
|
return InstrBenchmark;
|
|
}
|
|
|
|
llvm::Expected<std::vector<BenchmarkConfiguration>>
|
|
BenchmarkRunner::generateConfigurations(unsigned Opcode) const {
|
|
if (auto E = generatePrototype(Opcode)) {
|
|
SnippetPrototype &Prototype = E.get();
|
|
// TODO: Generate as many configurations as needed here.
|
|
BenchmarkConfiguration Configuration;
|
|
Configuration.Info = Prototype.Explanation;
|
|
for (InstructionInstance &II : Prototype.Snippet) {
|
|
II.randomizeUnsetVariables();
|
|
Configuration.Snippet.push_back(II.build());
|
|
}
|
|
Configuration.SnippetSetup.RegsToDef = computeRegsToDef(Prototype.Snippet);
|
|
return std::vector<BenchmarkConfiguration>{Configuration};
|
|
} else
|
|
return E.takeError();
|
|
}
|
|
|
|
std::vector<unsigned> BenchmarkRunner::computeRegsToDef(
|
|
const std::vector<InstructionInstance> &Snippet) const {
|
|
// Collect all register uses and create an assignment for each of them.
|
|
// Loop invariant: DefinedRegs[i] is true iif it has been set at least once
|
|
// before the current instruction.
|
|
llvm::BitVector DefinedRegs = RATC.emptyRegisters();
|
|
std::vector<unsigned> RegsToDef;
|
|
for (const InstructionInstance &II : Snippet) {
|
|
// Returns the register that this Operand sets or uses, or 0 if this is not
|
|
// a register.
|
|
const auto GetOpReg = [&II](const Operand &Op) -> unsigned {
|
|
if (Op.ImplicitReg) {
|
|
return *Op.ImplicitReg;
|
|
} else if (Op.IsExplicit && II.getValueFor(Op).isReg()) {
|
|
return II.getValueFor(Op).getReg();
|
|
}
|
|
return 0;
|
|
};
|
|
// Collect used registers that have never been def'ed.
|
|
for (const Operand &Op : II.Instr.Operands) {
|
|
if (!Op.IsDef) {
|
|
const unsigned Reg = GetOpReg(Op);
|
|
if (Reg > 0 && !DefinedRegs.test(Reg)) {
|
|
RegsToDef.push_back(Reg);
|
|
DefinedRegs.set(Reg);
|
|
}
|
|
}
|
|
}
|
|
// Mark defs as having been def'ed.
|
|
for (const Operand &Op : II.Instr.Operands) {
|
|
if (Op.IsDef) {
|
|
const unsigned Reg = GetOpReg(Op);
|
|
if (Reg > 0) {
|
|
DefinedRegs.set(Reg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return RegsToDef;
|
|
}
|
|
|
|
llvm::Expected<std::string>
|
|
BenchmarkRunner::writeObjectFile(const BenchmarkConfiguration::Setup &Setup,
|
|
llvm::ArrayRef<llvm::MCInst> Code) const {
|
|
int ResultFD = 0;
|
|
llvm::SmallString<256> ResultPath;
|
|
if (llvm::Error E = llvm::errorCodeToError(llvm::sys::fs::createTemporaryFile(
|
|
"snippet", "o", ResultFD, ResultPath)))
|
|
return std::move(E);
|
|
llvm::raw_fd_ostream OFS(ResultFD, true /*ShouldClose*/);
|
|
assembleToStream(State.getExegesisTarget(), State.createTargetMachine(),
|
|
Setup.RegsToDef, Code, OFS);
|
|
return ResultPath.str();
|
|
}
|
|
|
|
llvm::Expected<SnippetPrototype> BenchmarkRunner::generateSelfAliasingPrototype(
|
|
const Instruction &Instr) const {
|
|
const AliasingConfigurations SelfAliasing(Instr, Instr);
|
|
if (SelfAliasing.empty()) {
|
|
return llvm::make_error<BenchmarkFailure>("empty self aliasing");
|
|
}
|
|
SnippetPrototype Prototype;
|
|
InstructionInstance II(Instr);
|
|
if (SelfAliasing.hasImplicitAliasing()) {
|
|
Prototype.Explanation = "implicit Self cycles, picking random values.";
|
|
} else {
|
|
Prototype.Explanation =
|
|
"explicit self cycles, selecting one aliasing Conf.";
|
|
// This is a self aliasing instruction so defs and uses are from the same
|
|
// instance, hence twice II in the following call.
|
|
setRandomAliasing(SelfAliasing, II, II);
|
|
}
|
|
Prototype.Snippet.push_back(std::move(II));
|
|
return std::move(Prototype);
|
|
}
|
|
|
|
} // namespace exegesis
|