teak-llvm/clang/lib/StaticAnalyzer/Core/ExprEngine.cpp
Artem Dergachev 6b39f10a00 [analyzer] Introduce a simplified API for adding custom path notes.
Almost all path-sensitive checkers need to tell the user when something specific
to that checker happens along the execution path but does not constitute a bug
on its own. For instance, a call to operator delete in C++ has consequences
that are specific to a use-after-free bug. Deleting an object is not a bug
on its own, but when the Analyzer finds an execution path on which a deleted
object is used, it'll have to explain to the user when exactly during that path
did the deallocation take place.

Historically such custom notes were added by implementing "bug report visitors".
These visitors were post-processing bug reports by visiting every ExplodedNode
along the path and emitting path notes whenever they noticed that a change that
is relevant to a bug report occurs within the program state. For example,
it emits a "memory is deallocated" note when it notices that a pointer changes
its state from "allocated" to "deleted".

The "visitor" approach is powerful and efficient but hard to use because
such preprocessing implies that the developer first models the effects
of the event (say, changes the pointer's state from "allocated" to "deleted"
as part of operator delete()'s transfer function) and then forgets what happened
and later tries to reverse-engineer itself and figure out what did it do
by looking at the report.

The proposed approach tries to avoid discarding the information that was
available when the transfer function was evaluated. Instead, it allows the
developer to capture all the necessary information into a closure that
will be automatically invoked later in order to produce the actual note.

This should reduce boilerplate and avoid very painful logic duplication.

On the technical side, the closure is a lambda that's put into a special kind of
a program point tag, and a special bug report visitor visits all nodes in the
report and invokes all note-producing closures it finds along the path.

For now it is up to the lambda to make sure that the note is actually relevant
to the report. For instance, a memory deallocation note would be irrelevant when
we're reporting a division by zero bug or if we're reporting a use-after-free
of a different, unrelated chunk of memory. The lambda can figure these thing out
by looking at the bug report object that's passed into it.

A single checker is refactored to make use of the new functionality: MIGChecker.
Its program state is trivial, making it an easy testing ground for the first
version of the API.

Differential Revision: https://reviews.llvm.org/D58367

llvm-svn: 357323
2019-03-29 22:21:00 +00:00

3119 lines
116 KiB
C++

//===- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a meta-engine for path-sensitive dataflow analysis that
// is built on GREngine, but provides the boilerplate to execute transfer
// functions and build the ExplodedGraph at the expression level.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "PrettyStackTraceLocationContext.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/ConstructionContext.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/PrettyStackTrace.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/LoopUnrolling.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/LoopWidening.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/ImmutableSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace clang;
using namespace ento;
#define DEBUG_TYPE "ExprEngine"
STATISTIC(NumRemoveDeadBindings,
"The # of times RemoveDeadBindings is called");
STATISTIC(NumMaxBlockCountReached,
"The # of aborted paths due to reaching the maximum block count in "
"a top level function");
STATISTIC(NumMaxBlockCountReachedInInlined,
"The # of aborted paths due to reaching the maximum block count in "
"an inlined function");
STATISTIC(NumTimesRetriedWithoutInlining,
"The # of times we re-evaluated a call without inlining");
//===----------------------------------------------------------------------===//
// Internal program state traits.
//===----------------------------------------------------------------------===//
namespace {
// When modeling a C++ constructor, for a variety of reasons we need to track
// the location of the object for the duration of its ConstructionContext.
// ObjectsUnderConstruction maps statements within the construction context
// to the object's location, so that on every such statement the location
// could have been retrieved.
/// ConstructedObjectKey is used for being able to find the path-sensitive
/// memory region of a freshly constructed object while modeling the AST node
/// that syntactically represents the object that is being constructed.
/// Semantics of such nodes may sometimes require access to the region that's
/// not otherwise present in the program state, or to the very fact that
/// the construction context was present and contained references to these
/// AST nodes.
class ConstructedObjectKey {
typedef std::pair<ConstructionContextItem, const LocationContext *>
ConstructedObjectKeyImpl;
const ConstructedObjectKeyImpl Impl;
const void *getAnyASTNodePtr() const {
if (const Stmt *S = getItem().getStmtOrNull())
return S;
else
return getItem().getCXXCtorInitializer();
}
public:
explicit ConstructedObjectKey(const ConstructionContextItem &Item,
const LocationContext *LC)
: Impl(Item, LC) {}
const ConstructionContextItem &getItem() const { return Impl.first; }
const LocationContext *getLocationContext() const { return Impl.second; }
ASTContext &getASTContext() const {
return getLocationContext()->getDecl()->getASTContext();
}
void print(llvm::raw_ostream &OS, PrinterHelper *Helper, PrintingPolicy &PP) {
OS << "(LC" << getLocationContext()->getID() << ',';
if (const Stmt *S = getItem().getStmtOrNull())
OS << 'S' << S->getID(getASTContext());
else
OS << 'I' << getItem().getCXXCtorInitializer()->getID(getASTContext());
OS << ',' << getItem().getKindAsString();
if (getItem().getKind() == ConstructionContextItem::ArgumentKind)
OS << " #" << getItem().getIndex();
OS << ") ";
if (const Stmt *S = getItem().getStmtOrNull()) {
S->printPretty(OS, Helper, PP);
} else {
const CXXCtorInitializer *I = getItem().getCXXCtorInitializer();
OS << I->getAnyMember()->getNameAsString();
}
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.Add(Impl.first);
ID.AddPointer(Impl.second);
}
bool operator==(const ConstructedObjectKey &RHS) const {
return Impl == RHS.Impl;
}
bool operator<(const ConstructedObjectKey &RHS) const {
return Impl < RHS.Impl;
}
};
} // namespace
typedef llvm::ImmutableMap<ConstructedObjectKey, SVal>
ObjectsUnderConstructionMap;
REGISTER_TRAIT_WITH_PROGRAMSTATE(ObjectsUnderConstruction,
ObjectsUnderConstructionMap)
//===----------------------------------------------------------------------===//
// Engine construction and deletion.
//===----------------------------------------------------------------------===//
static const char* TagProviderName = "ExprEngine";
ExprEngine::ExprEngine(cross_tu::CrossTranslationUnitContext &CTU,
AnalysisManager &mgr,
SetOfConstDecls *VisitedCalleesIn,
FunctionSummariesTy *FS,
InliningModes HowToInlineIn)
: CTU(CTU), AMgr(mgr),
AnalysisDeclContexts(mgr.getAnalysisDeclContextManager()),
Engine(*this, FS, mgr.getAnalyzerOptions()), G(Engine.getGraph()),
StateMgr(getContext(), mgr.getStoreManagerCreator(),
mgr.getConstraintManagerCreator(), G.getAllocator(),
this),
SymMgr(StateMgr.getSymbolManager()),
MRMgr(StateMgr.getRegionManager()),
svalBuilder(StateMgr.getSValBuilder()),
ObjCNoRet(mgr.getASTContext()),
BR(mgr, *this),
VisitedCallees(VisitedCalleesIn),
HowToInline(HowToInlineIn),
NoteTags(G.getAllocator()) {
unsigned TrimInterval = mgr.options.GraphTrimInterval;
if (TrimInterval != 0) {
// Enable eager node reclamation when constructing the ExplodedGraph.
G.enableNodeReclamation(TrimInterval);
}
}
ExprEngine::~ExprEngine() {
BR.FlushReports();
}
//===----------------------------------------------------------------------===//
// Utility methods.
//===----------------------------------------------------------------------===//
ProgramStateRef ExprEngine::getInitialState(const LocationContext *InitLoc) {
ProgramStateRef state = StateMgr.getInitialState(InitLoc);
const Decl *D = InitLoc->getDecl();
// Preconditions.
// FIXME: It would be nice if we had a more general mechanism to add
// such preconditions. Some day.
do {
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
// Precondition: the first argument of 'main' is an integer guaranteed
// to be > 0.
const IdentifierInfo *II = FD->getIdentifier();
if (!II || !(II->getName() == "main" && FD->getNumParams() > 0))
break;
const ParmVarDecl *PD = FD->getParamDecl(0);
QualType T = PD->getType();
const auto *BT = dyn_cast<BuiltinType>(T);
if (!BT || !BT->isInteger())
break;
const MemRegion *R = state->getRegion(PD, InitLoc);
if (!R)
break;
SVal V = state->getSVal(loc::MemRegionVal(R));
SVal Constraint_untested = evalBinOp(state, BO_GT, V,
svalBuilder.makeZeroVal(T),
svalBuilder.getConditionType());
Optional<DefinedOrUnknownSVal> Constraint =
Constraint_untested.getAs<DefinedOrUnknownSVal>();
if (!Constraint)
break;
if (ProgramStateRef newState = state->assume(*Constraint, true))
state = newState;
}
break;
}
while (false);
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
// Precondition: 'self' is always non-null upon entry to an Objective-C
// method.
const ImplicitParamDecl *SelfD = MD->getSelfDecl();
const MemRegion *R = state->getRegion(SelfD, InitLoc);
SVal V = state->getSVal(loc::MemRegionVal(R));
if (Optional<Loc> LV = V.getAs<Loc>()) {
// Assume that the pointer value in 'self' is non-null.
state = state->assume(*LV, true);
assert(state && "'self' cannot be null");
}
}
if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
if (!MD->isStatic()) {
// Precondition: 'this' is always non-null upon entry to the
// top-level function. This is our starting assumption for
// analyzing an "open" program.
const StackFrameContext *SFC = InitLoc->getStackFrame();
if (SFC->getParent() == nullptr) {
loc::MemRegionVal L = svalBuilder.getCXXThis(MD, SFC);
SVal V = state->getSVal(L);
if (Optional<Loc> LV = V.getAs<Loc>()) {
state = state->assume(*LV, true);
assert(state && "'this' cannot be null");
}
}
}
}
return state;
}
ProgramStateRef ExprEngine::createTemporaryRegionIfNeeded(
ProgramStateRef State, const LocationContext *LC,
const Expr *InitWithAdjustments, const Expr *Result,
const SubRegion **OutRegionWithAdjustments) {
// FIXME: This function is a hack that works around the quirky AST
// we're often having with respect to C++ temporaries. If only we modelled
// the actual execution order of statements properly in the CFG,
// all the hassle with adjustments would not be necessary,
// and perhaps the whole function would be removed.
SVal InitValWithAdjustments = State->getSVal(InitWithAdjustments, LC);
if (!Result) {
// If we don't have an explicit result expression, we're in "if needed"
// mode. Only create a region if the current value is a NonLoc.
if (!InitValWithAdjustments.getAs<NonLoc>()) {
if (OutRegionWithAdjustments)
*OutRegionWithAdjustments = nullptr;
return State;
}
Result = InitWithAdjustments;
} else {
// We need to create a region no matter what. For sanity, make sure we don't
// try to stuff a Loc into a non-pointer temporary region.
assert(!InitValWithAdjustments.getAs<Loc>() ||
Loc::isLocType(Result->getType()) ||
Result->getType()->isMemberPointerType());
}
ProgramStateManager &StateMgr = State->getStateManager();
MemRegionManager &MRMgr = StateMgr.getRegionManager();
StoreManager &StoreMgr = StateMgr.getStoreManager();
// MaterializeTemporaryExpr may appear out of place, after a few field and
// base-class accesses have been made to the object, even though semantically
// it is the whole object that gets materialized and lifetime-extended.
//
// For example:
//
// `-MaterializeTemporaryExpr
// `-MemberExpr
// `-CXXTemporaryObjectExpr
//
// instead of the more natural
//
// `-MemberExpr
// `-MaterializeTemporaryExpr
// `-CXXTemporaryObjectExpr
//
// Use the usual methods for obtaining the expression of the base object,
// and record the adjustments that we need to make to obtain the sub-object
// that the whole expression 'Ex' refers to. This trick is usual,
// in the sense that CodeGen takes a similar route.
SmallVector<const Expr *, 2> CommaLHSs;
SmallVector<SubobjectAdjustment, 2> Adjustments;
const Expr *Init = InitWithAdjustments->skipRValueSubobjectAdjustments(
CommaLHSs, Adjustments);
// Take the region for Init, i.e. for the whole object. If we do not remember
// the region in which the object originally was constructed, come up with
// a new temporary region out of thin air and copy the contents of the object
// (which are currently present in the Environment, because Init is an rvalue)
// into that region. This is not correct, but it is better than nothing.
const TypedValueRegion *TR = nullptr;
if (const auto *MT = dyn_cast<MaterializeTemporaryExpr>(Result)) {
if (Optional<SVal> V = getObjectUnderConstruction(State, MT, LC)) {
State = finishObjectConstruction(State, MT, LC);
State = State->BindExpr(Result, LC, *V);
return State;
} else {
StorageDuration SD = MT->getStorageDuration();
// If this object is bound to a reference with static storage duration, we
// put it in a different region to prevent "address leakage" warnings.
if (SD == SD_Static || SD == SD_Thread) {
TR = MRMgr.getCXXStaticTempObjectRegion(Init);
} else {
TR = MRMgr.getCXXTempObjectRegion(Init, LC);
}
}
} else {
TR = MRMgr.getCXXTempObjectRegion(Init, LC);
}
SVal Reg = loc::MemRegionVal(TR);
SVal BaseReg = Reg;
// Make the necessary adjustments to obtain the sub-object.
for (auto I = Adjustments.rbegin(), E = Adjustments.rend(); I != E; ++I) {
const SubobjectAdjustment &Adj = *I;
switch (Adj.Kind) {
case SubobjectAdjustment::DerivedToBaseAdjustment:
Reg = StoreMgr.evalDerivedToBase(Reg, Adj.DerivedToBase.BasePath);
break;
case SubobjectAdjustment::FieldAdjustment:
Reg = StoreMgr.getLValueField(Adj.Field, Reg);
break;
case SubobjectAdjustment::MemberPointerAdjustment:
// FIXME: Unimplemented.
State = State->invalidateRegions(Reg, InitWithAdjustments,
currBldrCtx->blockCount(), LC, true,
nullptr, nullptr, nullptr);
return State;
}
}
// What remains is to copy the value of the object to the new region.
// FIXME: In other words, what we should always do is copy value of the
// Init expression (which corresponds to the bigger object) to the whole
// temporary region TR. However, this value is often no longer present
// in the Environment. If it has disappeared, we instead invalidate TR.
// Still, what we can do is assign the value of expression Ex (which
// corresponds to the sub-object) to the TR's sub-region Reg. At least,
// values inside Reg would be correct.
SVal InitVal = State->getSVal(Init, LC);
if (InitVal.isUnknown()) {
InitVal = getSValBuilder().conjureSymbolVal(Result, LC, Init->getType(),
currBldrCtx->blockCount());
State = State->bindLoc(BaseReg.castAs<Loc>(), InitVal, LC, false);
// Then we'd need to take the value that certainly exists and bind it
// over.
if (InitValWithAdjustments.isUnknown()) {
// Try to recover some path sensitivity in case we couldn't
// compute the value.
InitValWithAdjustments = getSValBuilder().conjureSymbolVal(
Result, LC, InitWithAdjustments->getType(),
currBldrCtx->blockCount());
}
State =
State->bindLoc(Reg.castAs<Loc>(), InitValWithAdjustments, LC, false);
} else {
State = State->bindLoc(BaseReg.castAs<Loc>(), InitVal, LC, false);
}
// The result expression would now point to the correct sub-region of the
// newly created temporary region. Do this last in order to getSVal of Init
// correctly in case (Result == Init).
if (Result->isGLValue()) {
State = State->BindExpr(Result, LC, Reg);
} else {
State = State->BindExpr(Result, LC, InitValWithAdjustments);
}
// Notify checkers once for two bindLoc()s.
State = processRegionChange(State, TR, LC);
if (OutRegionWithAdjustments)
*OutRegionWithAdjustments = cast<SubRegion>(Reg.getAsRegion());
return State;
}
ProgramStateRef
ExprEngine::addObjectUnderConstruction(ProgramStateRef State,
const ConstructionContextItem &Item,
const LocationContext *LC, SVal V) {
ConstructedObjectKey Key(Item, LC->getStackFrame());
// FIXME: Currently the state might already contain the marker due to
// incorrect handling of temporaries bound to default parameters.
assert(!State->get<ObjectsUnderConstruction>(Key) ||
Key.getItem().getKind() ==
ConstructionContextItem::TemporaryDestructorKind);
return State->set<ObjectsUnderConstruction>(Key, V);
}
Optional<SVal>
ExprEngine::getObjectUnderConstruction(ProgramStateRef State,
const ConstructionContextItem &Item,
const LocationContext *LC) {
ConstructedObjectKey Key(Item, LC->getStackFrame());
return Optional<SVal>::create(State->get<ObjectsUnderConstruction>(Key));
}
ProgramStateRef
ExprEngine::finishObjectConstruction(ProgramStateRef State,
const ConstructionContextItem &Item,
const LocationContext *LC) {
ConstructedObjectKey Key(Item, LC->getStackFrame());
assert(State->contains<ObjectsUnderConstruction>(Key));
return State->remove<ObjectsUnderConstruction>(Key);
}
ProgramStateRef ExprEngine::elideDestructor(ProgramStateRef State,
const CXXBindTemporaryExpr *BTE,
const LocationContext *LC) {
ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC);
// FIXME: Currently the state might already contain the marker due to
// incorrect handling of temporaries bound to default parameters.
return State->set<ObjectsUnderConstruction>(Key, UnknownVal());
}
ProgramStateRef
ExprEngine::cleanupElidedDestructor(ProgramStateRef State,
const CXXBindTemporaryExpr *BTE,
const LocationContext *LC) {
ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC);
assert(State->contains<ObjectsUnderConstruction>(Key));
return State->remove<ObjectsUnderConstruction>(Key);
}
bool ExprEngine::isDestructorElided(ProgramStateRef State,
const CXXBindTemporaryExpr *BTE,
const LocationContext *LC) {
ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC);
return State->contains<ObjectsUnderConstruction>(Key);
}
bool ExprEngine::areAllObjectsFullyConstructed(ProgramStateRef State,
const LocationContext *FromLC,
const LocationContext *ToLC) {
const LocationContext *LC = FromLC;
while (LC != ToLC) {
assert(LC && "ToLC must be a parent of FromLC!");
for (auto I : State->get<ObjectsUnderConstruction>())
if (I.first.getLocationContext() == LC)
return false;
LC = LC->getParent();
}
return true;
}
//===----------------------------------------------------------------------===//
// Top-level transfer function logic (Dispatcher).
//===----------------------------------------------------------------------===//
/// evalAssume - Called by ConstraintManager. Used to call checker-specific
/// logic for handling assumptions on symbolic values.
ProgramStateRef ExprEngine::processAssume(ProgramStateRef state,
SVal cond, bool assumption) {
return getCheckerManager().runCheckersForEvalAssume(state, cond, assumption);
}
ProgramStateRef
ExprEngine::processRegionChanges(ProgramStateRef state,
const InvalidatedSymbols *invalidated,
ArrayRef<const MemRegion *> Explicits,
ArrayRef<const MemRegion *> Regions,
const LocationContext *LCtx,
const CallEvent *Call) {
return getCheckerManager().runCheckersForRegionChanges(state, invalidated,
Explicits, Regions,
LCtx, Call);
}
static void printObjectsUnderConstructionForContext(raw_ostream &Out,
ProgramStateRef State,
const char *NL,
const LocationContext *LC) {
PrintingPolicy PP =
LC->getAnalysisDeclContext()->getASTContext().getPrintingPolicy();
for (auto I : State->get<ObjectsUnderConstruction>()) {
ConstructedObjectKey Key = I.first;
SVal Value = I.second;
if (Key.getLocationContext() != LC)
continue;
Key.print(Out, nullptr, PP);
Out << " : " << Value << NL;
}
}
void ExprEngine::printState(raw_ostream &Out, ProgramStateRef State,
const char *NL, const char *Sep,
const LocationContext *LCtx) {
if (LCtx) {
if (!State->get<ObjectsUnderConstruction>().isEmpty()) {
Out << Sep << "Objects under construction:" << NL;
LCtx->dumpStack(Out, "", NL, Sep, [&](const LocationContext *LC) {
printObjectsUnderConstructionForContext(Out, State, NL, LC);
});
}
}
getCheckerManager().runCheckersForPrintState(Out, State, NL, Sep);
}
void ExprEngine::processEndWorklist() {
getCheckerManager().runCheckersForEndAnalysis(G, BR, *this);
}
void ExprEngine::processCFGElement(const CFGElement E, ExplodedNode *Pred,
unsigned StmtIdx, NodeBuilderContext *Ctx) {
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
currStmtIdx = StmtIdx;
currBldrCtx = Ctx;
switch (E.getKind()) {
case CFGElement::Statement:
case CFGElement::Constructor:
case CFGElement::CXXRecordTypedCall:
ProcessStmt(E.castAs<CFGStmt>().getStmt(), Pred);
return;
case CFGElement::Initializer:
ProcessInitializer(E.castAs<CFGInitializer>(), Pred);
return;
case CFGElement::NewAllocator:
ProcessNewAllocator(E.castAs<CFGNewAllocator>().getAllocatorExpr(),
Pred);
return;
case CFGElement::AutomaticObjectDtor:
case CFGElement::DeleteDtor:
case CFGElement::BaseDtor:
case CFGElement::MemberDtor:
case CFGElement::TemporaryDtor:
ProcessImplicitDtor(E.castAs<CFGImplicitDtor>(), Pred);
return;
case CFGElement::LoopExit:
ProcessLoopExit(E.castAs<CFGLoopExit>().getLoopStmt(), Pred);
return;
case CFGElement::LifetimeEnds:
case CFGElement::ScopeBegin:
case CFGElement::ScopeEnd:
return;
}
}
static bool shouldRemoveDeadBindings(AnalysisManager &AMgr,
const Stmt *S,
const ExplodedNode *Pred,
const LocationContext *LC) {
// Are we never purging state values?
if (AMgr.options.AnalysisPurgeOpt == PurgeNone)
return false;
// Is this the beginning of a basic block?
if (Pred->getLocation().getAs<BlockEntrance>())
return true;
// Is this on a non-expression?
if (!isa<Expr>(S))
return true;
// Run before processing a call.
if (CallEvent::isCallStmt(S))
return true;
// Is this an expression that is consumed by another expression? If so,
// postpone cleaning out the state.
ParentMap &PM = LC->getAnalysisDeclContext()->getParentMap();
return !PM.isConsumedExpr(cast<Expr>(S));
}
void ExprEngine::removeDead(ExplodedNode *Pred, ExplodedNodeSet &Out,
const Stmt *ReferenceStmt,
const LocationContext *LC,
const Stmt *DiagnosticStmt,
ProgramPoint::Kind K) {
assert((K == ProgramPoint::PreStmtPurgeDeadSymbolsKind ||
ReferenceStmt == nullptr || isa<ReturnStmt>(ReferenceStmt))
&& "PostStmt is not generally supported by the SymbolReaper yet");
assert(LC && "Must pass the current (or expiring) LocationContext");
if (!DiagnosticStmt) {
DiagnosticStmt = ReferenceStmt;
assert(DiagnosticStmt && "Required for clearing a LocationContext");
}
NumRemoveDeadBindings++;
ProgramStateRef CleanedState = Pred->getState();
// LC is the location context being destroyed, but SymbolReaper wants a
// location context that is still live. (If this is the top-level stack
// frame, this will be null.)
if (!ReferenceStmt) {
assert(K == ProgramPoint::PostStmtPurgeDeadSymbolsKind &&
"Use PostStmtPurgeDeadSymbolsKind for clearing a LocationContext");
LC = LC->getParent();
}
const StackFrameContext *SFC = LC ? LC->getStackFrame() : nullptr;
SymbolReaper SymReaper(SFC, ReferenceStmt, SymMgr, getStoreManager());
for (auto I : CleanedState->get<ObjectsUnderConstruction>()) {
if (SymbolRef Sym = I.second.getAsSymbol())
SymReaper.markLive(Sym);
if (const MemRegion *MR = I.second.getAsRegion())
SymReaper.markLive(MR);
}
getCheckerManager().runCheckersForLiveSymbols(CleanedState, SymReaper);
// Create a state in which dead bindings are removed from the environment
// and the store. TODO: The function should just return new env and store,
// not a new state.
CleanedState = StateMgr.removeDeadBindings(CleanedState, SFC, SymReaper);
// Process any special transfer function for dead symbols.
// A tag to track convenience transitions, which can be removed at cleanup.
static SimpleProgramPointTag cleanupTag(TagProviderName, "Clean Node");
// Call checkers with the non-cleaned state so that they could query the
// values of the soon to be dead symbols.
ExplodedNodeSet CheckedSet;
getCheckerManager().runCheckersForDeadSymbols(CheckedSet, Pred, SymReaper,
DiagnosticStmt, *this, K);
// For each node in CheckedSet, generate CleanedNodes that have the
// environment, the store, and the constraints cleaned up but have the
// user-supplied states as the predecessors.
StmtNodeBuilder Bldr(CheckedSet, Out, *currBldrCtx);
for (const auto I : CheckedSet) {
ProgramStateRef CheckerState = I->getState();
// The constraint manager has not been cleaned up yet, so clean up now.
CheckerState =
getConstraintManager().removeDeadBindings(CheckerState, SymReaper);
assert(StateMgr.haveEqualEnvironments(CheckerState, Pred->getState()) &&
"Checkers are not allowed to modify the Environment as a part of "
"checkDeadSymbols processing.");
assert(StateMgr.haveEqualStores(CheckerState, Pred->getState()) &&
"Checkers are not allowed to modify the Store as a part of "
"checkDeadSymbols processing.");
// Create a state based on CleanedState with CheckerState GDM and
// generate a transition to that state.
ProgramStateRef CleanedCheckerSt =
StateMgr.getPersistentStateWithGDM(CleanedState, CheckerState);
Bldr.generateNode(DiagnosticStmt, I, CleanedCheckerSt, &cleanupTag, K);
}
}
void ExprEngine::ProcessStmt(const Stmt *currStmt, ExplodedNode *Pred) {
// Reclaim any unnecessary nodes in the ExplodedGraph.
G.reclaimRecentlyAllocatedNodes();
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
currStmt->getBeginLoc(),
"Error evaluating statement");
// Remove dead bindings and symbols.
ExplodedNodeSet CleanedStates;
if (shouldRemoveDeadBindings(AMgr, currStmt, Pred,
Pred->getLocationContext())) {
removeDead(Pred, CleanedStates, currStmt,
Pred->getLocationContext());
} else
CleanedStates.Add(Pred);
// Visit the statement.
ExplodedNodeSet Dst;
for (const auto I : CleanedStates) {
ExplodedNodeSet DstI;
// Visit the statement.
Visit(currStmt, I, DstI);
Dst.insert(DstI);
}
// Enqueue the new nodes onto the work list.
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
}
void ExprEngine::ProcessLoopExit(const Stmt* S, ExplodedNode *Pred) {
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
S->getBeginLoc(),
"Error evaluating end of the loop");
ExplodedNodeSet Dst;
Dst.Add(Pred);
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
ProgramStateRef NewState = Pred->getState();
if(AMgr.options.ShouldUnrollLoops)
NewState = processLoopEnd(S, NewState);
LoopExit PP(S, Pred->getLocationContext());
Bldr.generateNode(PP, NewState, Pred);
// Enqueue the new nodes onto the work list.
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
}
void ExprEngine::ProcessInitializer(const CFGInitializer CFGInit,
ExplodedNode *Pred) {
const CXXCtorInitializer *BMI = CFGInit.getInitializer();
const Expr *Init = BMI->getInit()->IgnoreImplicit();
const LocationContext *LC = Pred->getLocationContext();
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
BMI->getSourceLocation(),
"Error evaluating initializer");
// We don't clean up dead bindings here.
const auto *stackFrame = cast<StackFrameContext>(Pred->getLocationContext());
const auto *decl = cast<CXXConstructorDecl>(stackFrame->getDecl());
ProgramStateRef State = Pred->getState();
SVal thisVal = State->getSVal(svalBuilder.getCXXThis(decl, stackFrame));
ExplodedNodeSet Tmp;
SVal FieldLoc;
// Evaluate the initializer, if necessary
if (BMI->isAnyMemberInitializer()) {
// Constructors build the object directly in the field,
// but non-objects must be copied in from the initializer.
if (getObjectUnderConstruction(State, BMI, LC)) {
// The field was directly constructed, so there is no need to bind.
// But we still need to stop tracking the object under construction.
State = finishObjectConstruction(State, BMI, LC);
NodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
PostStore PS(Init, LC, /*Loc*/ nullptr, /*tag*/ nullptr);
Bldr.generateNode(PS, State, Pred);
} else {
const ValueDecl *Field;
if (BMI->isIndirectMemberInitializer()) {
Field = BMI->getIndirectMember();
FieldLoc = State->getLValue(BMI->getIndirectMember(), thisVal);
} else {
Field = BMI->getMember();
FieldLoc = State->getLValue(BMI->getMember(), thisVal);
}
SVal InitVal;
if (Init->getType()->isArrayType()) {
// Handle arrays of trivial type. We can represent this with a
// primitive load/copy from the base array region.
const ArraySubscriptExpr *ASE;
while ((ASE = dyn_cast<ArraySubscriptExpr>(Init)))
Init = ASE->getBase()->IgnoreImplicit();
SVal LValue = State->getSVal(Init, stackFrame);
if (!Field->getType()->isReferenceType())
if (Optional<Loc> LValueLoc = LValue.getAs<Loc>())
InitVal = State->getSVal(*LValueLoc);
// If we fail to get the value for some reason, use a symbolic value.
if (InitVal.isUnknownOrUndef()) {
SValBuilder &SVB = getSValBuilder();
InitVal = SVB.conjureSymbolVal(BMI->getInit(), stackFrame,
Field->getType(),
currBldrCtx->blockCount());
}
} else {
InitVal = State->getSVal(BMI->getInit(), stackFrame);
}
PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame);
evalBind(Tmp, Init, Pred, FieldLoc, InitVal, /*isInit=*/true, &PP);
}
} else {
assert(BMI->isBaseInitializer() || BMI->isDelegatingInitializer());
Tmp.insert(Pred);
// We already did all the work when visiting the CXXConstructExpr.
}
// Construct PostInitializer nodes whether the state changed or not,
// so that the diagnostics don't get confused.
PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame);
ExplodedNodeSet Dst;
NodeBuilder Bldr(Tmp, Dst, *currBldrCtx);
for (const auto I : Tmp) {
ProgramStateRef State = I->getState();
Bldr.generateNode(PP, State, I);
}
// Enqueue the new nodes onto the work list.
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
}
void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D,
ExplodedNode *Pred) {
ExplodedNodeSet Dst;
switch (D.getKind()) {
case CFGElement::AutomaticObjectDtor:
ProcessAutomaticObjDtor(D.castAs<CFGAutomaticObjDtor>(), Pred, Dst);
break;
case CFGElement::BaseDtor:
ProcessBaseDtor(D.castAs<CFGBaseDtor>(), Pred, Dst);
break;
case CFGElement::MemberDtor:
ProcessMemberDtor(D.castAs<CFGMemberDtor>(), Pred, Dst);
break;
case CFGElement::TemporaryDtor:
ProcessTemporaryDtor(D.castAs<CFGTemporaryDtor>(), Pred, Dst);
break;
case CFGElement::DeleteDtor:
ProcessDeleteDtor(D.castAs<CFGDeleteDtor>(), Pred, Dst);
break;
default:
llvm_unreachable("Unexpected dtor kind.");
}
// Enqueue the new nodes onto the work list.
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
}
void ExprEngine::ProcessNewAllocator(const CXXNewExpr *NE,
ExplodedNode *Pred) {
ExplodedNodeSet Dst;
AnalysisManager &AMgr = getAnalysisManager();
AnalyzerOptions &Opts = AMgr.options;
// TODO: We're not evaluating allocators for all cases just yet as
// we're not handling the return value correctly, which causes false
// positives when the alpha.cplusplus.NewDeleteLeaks check is on.
if (Opts.MayInlineCXXAllocator)
VisitCXXNewAllocatorCall(NE, Pred, Dst);
else {
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
const LocationContext *LCtx = Pred->getLocationContext();
PostImplicitCall PP(NE->getOperatorNew(), NE->getBeginLoc(), LCtx);
Bldr.generateNode(PP, Pred->getState(), Pred);
}
Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx);
}
void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor Dtor,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
const VarDecl *varDecl = Dtor.getVarDecl();
QualType varType = varDecl->getType();
ProgramStateRef state = Pred->getState();
SVal dest = state->getLValue(varDecl, Pred->getLocationContext());
const MemRegion *Region = dest.castAs<loc::MemRegionVal>().getRegion();
if (varType->isReferenceType()) {
const MemRegion *ValueRegion = state->getSVal(Region).getAsRegion();
if (!ValueRegion) {
// FIXME: This should not happen. The language guarantees a presence
// of a valid initializer here, so the reference shall not be undefined.
// It seems that we're calling destructors over variables that
// were not initialized yet.
return;
}
Region = ValueRegion->getBaseRegion();
varType = cast<TypedValueRegion>(Region)->getValueType();
}
// FIXME: We need to run the same destructor on every element of the array.
// This workaround will just run the first destructor (which will still
// invalidate the entire array).
EvalCallOptions CallOpts;
Region = makeZeroElementRegion(state, loc::MemRegionVal(Region), varType,
CallOpts.IsArrayCtorOrDtor).getAsRegion();
VisitCXXDestructor(varType, Region, Dtor.getTriggerStmt(), /*IsBase=*/ false,
Pred, Dst, CallOpts);
}
void ExprEngine::ProcessDeleteDtor(const CFGDeleteDtor Dtor,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
ProgramStateRef State = Pred->getState();
const LocationContext *LCtx = Pred->getLocationContext();
const CXXDeleteExpr *DE = Dtor.getDeleteExpr();
const Stmt *Arg = DE->getArgument();
QualType DTy = DE->getDestroyedType();
SVal ArgVal = State->getSVal(Arg, LCtx);
// If the argument to delete is known to be a null value,
// don't run destructor.
if (State->isNull(ArgVal).isConstrainedTrue()) {
QualType BTy = getContext().getBaseElementType(DTy);
const CXXRecordDecl *RD = BTy->getAsCXXRecordDecl();
const CXXDestructorDecl *Dtor = RD->getDestructor();
PostImplicitCall PP(Dtor, DE->getBeginLoc(), LCtx);
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
Bldr.generateNode(PP, Pred->getState(), Pred);
return;
}
EvalCallOptions CallOpts;
const MemRegion *ArgR = ArgVal.getAsRegion();
if (DE->isArrayForm()) {
// FIXME: We need to run the same destructor on every element of the array.
// This workaround will just run the first destructor (which will still
// invalidate the entire array).
CallOpts.IsArrayCtorOrDtor = true;
// Yes, it may even be a multi-dimensional array.
while (const auto *AT = getContext().getAsArrayType(DTy))
DTy = AT->getElementType();
if (ArgR)
ArgR = getStoreManager().GetElementZeroRegion(cast<SubRegion>(ArgR), DTy);
}
VisitCXXDestructor(DTy, ArgR, DE, /*IsBase=*/false, Pred, Dst, CallOpts);
}
void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D,
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
const LocationContext *LCtx = Pred->getLocationContext();
const auto *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl());
Loc ThisPtr = getSValBuilder().getCXXThis(CurDtor,
LCtx->getStackFrame());
SVal ThisVal = Pred->getState()->getSVal(ThisPtr);
// Create the base object region.
const CXXBaseSpecifier *Base = D.getBaseSpecifier();
QualType BaseTy = Base->getType();
SVal BaseVal = getStoreManager().evalDerivedToBase(ThisVal, BaseTy,
Base->isVirtual());
VisitCXXDestructor(BaseTy, BaseVal.castAs<loc::MemRegionVal>().getRegion(),
CurDtor->getBody(), /*IsBase=*/ true, Pred, Dst, {});
}
void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D,
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
const FieldDecl *Member = D.getFieldDecl();
QualType T = Member->getType();
ProgramStateRef State = Pred->getState();
const LocationContext *LCtx = Pred->getLocationContext();
const auto *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl());
Loc ThisVal = getSValBuilder().getCXXThis(CurDtor,
LCtx->getStackFrame());
SVal FieldVal =
State->getLValue(Member, State->getSVal(ThisVal).castAs<Loc>());
// FIXME: We need to run the same destructor on every element of the array.
// This workaround will just run the first destructor (which will still
// invalidate the entire array).
EvalCallOptions CallOpts;
FieldVal = makeZeroElementRegion(State, FieldVal, T,
CallOpts.IsArrayCtorOrDtor);
VisitCXXDestructor(T, FieldVal.castAs<loc::MemRegionVal>().getRegion(),
CurDtor->getBody(), /*IsBase=*/false, Pred, Dst, CallOpts);
}
void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
const CXXBindTemporaryExpr *BTE = D.getBindTemporaryExpr();
ProgramStateRef State = Pred->getState();
const LocationContext *LC = Pred->getLocationContext();
const MemRegion *MR = nullptr;
if (Optional<SVal> V =
getObjectUnderConstruction(State, D.getBindTemporaryExpr(),
Pred->getLocationContext())) {
// FIXME: Currently we insert temporary destructors for default parameters,
// but we don't insert the constructors, so the entry in
// ObjectsUnderConstruction may be missing.
State = finishObjectConstruction(State, D.getBindTemporaryExpr(),
Pred->getLocationContext());
MR = V->getAsRegion();
}
// If copy elision has occurred, and the constructor corresponding to the
// destructor was elided, we need to skip the destructor as well.
if (isDestructorElided(State, BTE, LC)) {
State = cleanupElidedDestructor(State, BTE, LC);
NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
PostImplicitCall PP(D.getDestructorDecl(getContext()),
D.getBindTemporaryExpr()->getBeginLoc(),
Pred->getLocationContext());
Bldr.generateNode(PP, State, Pred);
return;
}
ExplodedNodeSet CleanDtorState;
StmtNodeBuilder StmtBldr(Pred, CleanDtorState, *currBldrCtx);
StmtBldr.generateNode(D.getBindTemporaryExpr(), Pred, State);
QualType T = D.getBindTemporaryExpr()->getSubExpr()->getType();
// FIXME: Currently CleanDtorState can be empty here due to temporaries being
// bound to default parameters.
assert(CleanDtorState.size() <= 1);
ExplodedNode *CleanPred =
CleanDtorState.empty() ? Pred : *CleanDtorState.begin();
EvalCallOptions CallOpts;
CallOpts.IsTemporaryCtorOrDtor = true;
if (!MR) {
CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion = true;
// If we have no MR, we still need to unwrap the array to avoid destroying
// the whole array at once. Regardless, we'd eventually need to model array
// destructors properly, element-by-element.
while (const ArrayType *AT = getContext().getAsArrayType(T)) {
T = AT->getElementType();
CallOpts.IsArrayCtorOrDtor = true;
}
} else {
// We'd eventually need to makeZeroElementRegion() trick here,
// but for now we don't have the respective construction contexts,
// so MR would always be null in this case. Do nothing for now.
}
VisitCXXDestructor(T, MR, D.getBindTemporaryExpr(),
/*IsBase=*/false, CleanPred, Dst, CallOpts);
}
void ExprEngine::processCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
NodeBuilderContext &BldCtx,
ExplodedNode *Pred,
ExplodedNodeSet &Dst,
const CFGBlock *DstT,
const CFGBlock *DstF) {
BranchNodeBuilder TempDtorBuilder(Pred, Dst, BldCtx, DstT, DstF);
ProgramStateRef State = Pred->getState();
const LocationContext *LC = Pred->getLocationContext();
if (getObjectUnderConstruction(State, BTE, LC)) {
TempDtorBuilder.markInfeasible(false);
TempDtorBuilder.generateNode(State, true, Pred);
} else {
TempDtorBuilder.markInfeasible(true);
TempDtorBuilder.generateNode(State, false, Pred);
}
}
void ExprEngine::VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *BTE,
ExplodedNodeSet &PreVisit,
ExplodedNodeSet &Dst) {
// This is a fallback solution in case we didn't have a construction
// context when we were constructing the temporary. Otherwise the map should
// have been populated there.
if (!getAnalysisManager().options.ShouldIncludeTemporaryDtorsInCFG) {
// In case we don't have temporary destructors in the CFG, do not mark
// the initialization - we would otherwise never clean it up.
Dst = PreVisit;
return;
}
StmtNodeBuilder StmtBldr(PreVisit, Dst, *currBldrCtx);
for (ExplodedNode *Node : PreVisit) {
ProgramStateRef State = Node->getState();
const LocationContext *LC = Node->getLocationContext();
if (!getObjectUnderConstruction(State, BTE, LC)) {
// FIXME: Currently the state might also already contain the marker due to
// incorrect handling of temporaries bound to default parameters; for
// those, we currently skip the CXXBindTemporaryExpr but rely on adding
// temporary destructor nodes.
State = addObjectUnderConstruction(State, BTE, LC, UnknownVal());
}
StmtBldr.generateNode(BTE, Node, State);
}
}
ProgramStateRef ExprEngine::escapeValue(ProgramStateRef State, SVal V,
PointerEscapeKind K) const {
class CollectReachableSymbolsCallback final : public SymbolVisitor {
InvalidatedSymbols Symbols;
public:
explicit CollectReachableSymbolsCallback(ProgramStateRef) {}
const InvalidatedSymbols &getSymbols() const { return Symbols; }
bool VisitSymbol(SymbolRef Sym) override {
Symbols.insert(Sym);
return true;
}
};
const CollectReachableSymbolsCallback &Scanner =
State->scanReachableSymbols<CollectReachableSymbolsCallback>(V);
return getCheckerManager().runCheckersForPointerEscape(
State, Scanner.getSymbols(), /*CallEvent*/ nullptr, K, nullptr);
}
void ExprEngine::Visit(const Stmt *S, ExplodedNode *Pred,
ExplodedNodeSet &DstTop) {
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
S->getBeginLoc(), "Error evaluating statement");
ExplodedNodeSet Dst;
StmtNodeBuilder Bldr(Pred, DstTop, *currBldrCtx);
assert(!isa<Expr>(S) || S == cast<Expr>(S)->IgnoreParens());
switch (S->getStmtClass()) {
// C++, OpenMP and ARC stuff we don't support yet.
case Expr::ObjCIndirectCopyRestoreExprClass:
case Stmt::CXXDependentScopeMemberExprClass:
case Stmt::CXXInheritedCtorInitExprClass:
case Stmt::CXXTryStmtClass:
case Stmt::CXXTypeidExprClass:
case Stmt::CXXUuidofExprClass:
case Stmt::CXXFoldExprClass:
case Stmt::MSPropertyRefExprClass:
case Stmt::MSPropertySubscriptExprClass:
case Stmt::CXXUnresolvedConstructExprClass:
case Stmt::DependentScopeDeclRefExprClass:
case Stmt::ArrayTypeTraitExprClass:
case Stmt::ExpressionTraitExprClass:
case Stmt::UnresolvedLookupExprClass:
case Stmt::UnresolvedMemberExprClass:
case Stmt::TypoExprClass:
case Stmt::CXXNoexceptExprClass:
case Stmt::PackExpansionExprClass:
case Stmt::SubstNonTypeTemplateParmPackExprClass:
case Stmt::FunctionParmPackExprClass:
case Stmt::CoroutineBodyStmtClass:
case Stmt::CoawaitExprClass:
case Stmt::DependentCoawaitExprClass:
case Stmt::CoreturnStmtClass:
case Stmt::CoyieldExprClass:
case Stmt::SEHTryStmtClass:
case Stmt::SEHExceptStmtClass:
case Stmt::SEHLeaveStmtClass:
case Stmt::SEHFinallyStmtClass:
case Stmt::OMPParallelDirectiveClass:
case Stmt::OMPSimdDirectiveClass:
case Stmt::OMPForDirectiveClass:
case Stmt::OMPForSimdDirectiveClass:
case Stmt::OMPSectionsDirectiveClass:
case Stmt::OMPSectionDirectiveClass:
case Stmt::OMPSingleDirectiveClass:
case Stmt::OMPMasterDirectiveClass:
case Stmt::OMPCriticalDirectiveClass:
case Stmt::OMPParallelForDirectiveClass:
case Stmt::OMPParallelForSimdDirectiveClass:
case Stmt::OMPParallelSectionsDirectiveClass:
case Stmt::OMPTaskDirectiveClass:
case Stmt::OMPTaskyieldDirectiveClass:
case Stmt::OMPBarrierDirectiveClass:
case Stmt::OMPTaskwaitDirectiveClass:
case Stmt::OMPTaskgroupDirectiveClass:
case Stmt::OMPFlushDirectiveClass:
case Stmt::OMPOrderedDirectiveClass:
case Stmt::OMPAtomicDirectiveClass:
case Stmt::OMPTargetDirectiveClass:
case Stmt::OMPTargetDataDirectiveClass:
case Stmt::OMPTargetEnterDataDirectiveClass:
case Stmt::OMPTargetExitDataDirectiveClass:
case Stmt::OMPTargetParallelDirectiveClass:
case Stmt::OMPTargetParallelForDirectiveClass:
case Stmt::OMPTargetUpdateDirectiveClass:
case Stmt::OMPTeamsDirectiveClass:
case Stmt::OMPCancellationPointDirectiveClass:
case Stmt::OMPCancelDirectiveClass:
case Stmt::OMPTaskLoopDirectiveClass:
case Stmt::OMPTaskLoopSimdDirectiveClass:
case Stmt::OMPDistributeDirectiveClass:
case Stmt::OMPDistributeParallelForDirectiveClass:
case Stmt::OMPDistributeParallelForSimdDirectiveClass:
case Stmt::OMPDistributeSimdDirectiveClass:
case Stmt::OMPTargetParallelForSimdDirectiveClass:
case Stmt::OMPTargetSimdDirectiveClass:
case Stmt::OMPTeamsDistributeDirectiveClass:
case Stmt::OMPTeamsDistributeSimdDirectiveClass:
case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
case Stmt::OMPTargetTeamsDirectiveClass:
case Stmt::OMPTargetTeamsDistributeDirectiveClass:
case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
case Stmt::CapturedStmtClass: {
const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState());
Engine.addAbortedBlock(node, currBldrCtx->getBlock());
break;
}
case Stmt::ParenExprClass:
llvm_unreachable("ParenExprs already handled.");
case Stmt::GenericSelectionExprClass:
llvm_unreachable("GenericSelectionExprs already handled.");
// Cases that should never be evaluated simply because they shouldn't
// appear in the CFG.
case Stmt::BreakStmtClass:
case Stmt::CaseStmtClass:
case Stmt::CompoundStmtClass:
case Stmt::ContinueStmtClass:
case Stmt::CXXForRangeStmtClass:
case Stmt::DefaultStmtClass:
case Stmt::DoStmtClass:
case Stmt::ForStmtClass:
case Stmt::GotoStmtClass:
case Stmt::IfStmtClass:
case Stmt::IndirectGotoStmtClass:
case Stmt::LabelStmtClass:
case Stmt::NoStmtClass:
case Stmt::NullStmtClass:
case Stmt::SwitchStmtClass:
case Stmt::WhileStmtClass:
case Expr::MSDependentExistsStmtClass:
llvm_unreachable("Stmt should not be in analyzer evaluation loop");
case Stmt::ObjCSubscriptRefExprClass:
case Stmt::ObjCPropertyRefExprClass:
llvm_unreachable("These are handled by PseudoObjectExpr");
case Stmt::GNUNullExprClass: {
// GNU __null is a pointer-width integer, not an actual pointer.
ProgramStateRef state = Pred->getState();
state = state->BindExpr(S, Pred->getLocationContext(),
svalBuilder.makeIntValWithPtrWidth(0, false));
Bldr.generateNode(S, Pred, state);
break;
}
case Stmt::ObjCAtSynchronizedStmtClass:
Bldr.takeNodes(Pred);
VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Expr::ConstantExprClass:
case Stmt::ExprWithCleanupsClass:
// Handled due to fully linearised CFG.
break;
case Stmt::CXXBindTemporaryExprClass: {
Bldr.takeNodes(Pred);
ExplodedNodeSet PreVisit;
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
ExplodedNodeSet Next;
VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), PreVisit, Next);
getCheckerManager().runCheckersForPostStmt(Dst, Next, S, *this);
Bldr.addNodes(Dst);
break;
}
// Cases not handled yet; but will handle some day.
case Stmt::DesignatedInitExprClass:
case Stmt::DesignatedInitUpdateExprClass:
case Stmt::ArrayInitLoopExprClass:
case Stmt::ArrayInitIndexExprClass:
case Stmt::ExtVectorElementExprClass:
case Stmt::ImaginaryLiteralClass:
case Stmt::ObjCAtCatchStmtClass:
case Stmt::ObjCAtFinallyStmtClass:
case Stmt::ObjCAtTryStmtClass:
case Stmt::ObjCAutoreleasePoolStmtClass:
case Stmt::ObjCEncodeExprClass:
case Stmt::ObjCIsaExprClass:
case Stmt::ObjCProtocolExprClass:
case Stmt::ObjCSelectorExprClass:
case Stmt::ParenListExprClass:
case Stmt::ShuffleVectorExprClass:
case Stmt::ConvertVectorExprClass:
case Stmt::VAArgExprClass:
case Stmt::CUDAKernelCallExprClass:
case Stmt::OpaqueValueExprClass:
case Stmt::AsTypeExprClass:
// Fall through.
// Cases we intentionally don't evaluate, since they don't need
// to be explicitly evaluated.
case Stmt::PredefinedExprClass:
case Stmt::AddrLabelExprClass:
case Stmt::AttributedStmtClass:
case Stmt::IntegerLiteralClass:
case Stmt::FixedPointLiteralClass:
case Stmt::CharacterLiteralClass:
case Stmt::ImplicitValueInitExprClass:
case Stmt::CXXScalarValueInitExprClass:
case Stmt::CXXBoolLiteralExprClass:
case Stmt::ObjCBoolLiteralExprClass:
case Stmt::ObjCAvailabilityCheckExprClass:
case Stmt::FloatingLiteralClass:
case Stmt::NoInitExprClass:
case Stmt::SizeOfPackExprClass:
case Stmt::StringLiteralClass:
case Stmt::ObjCStringLiteralClass:
case Stmt::CXXPseudoDestructorExprClass:
case Stmt::SubstNonTypeTemplateParmExprClass:
case Stmt::CXXNullPtrLiteralExprClass:
case Stmt::OMPArraySectionExprClass:
case Stmt::TypeTraitExprClass: {
Bldr.takeNodes(Pred);
ExplodedNodeSet preVisit;
getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
getCheckerManager().runCheckersForPostStmt(Dst, preVisit, S, *this);
Bldr.addNodes(Dst);
break;
}
case Stmt::CXXDefaultArgExprClass:
case Stmt::CXXDefaultInitExprClass: {
Bldr.takeNodes(Pred);
ExplodedNodeSet PreVisit;
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
ExplodedNodeSet Tmp;
StmtNodeBuilder Bldr2(PreVisit, Tmp, *currBldrCtx);
const Expr *ArgE;
if (const auto *DefE = dyn_cast<CXXDefaultArgExpr>(S))
ArgE = DefE->getExpr();
else if (const auto *DefE = dyn_cast<CXXDefaultInitExpr>(S))
ArgE = DefE->getExpr();
else
llvm_unreachable("unknown constant wrapper kind");
bool IsTemporary = false;
if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(ArgE)) {
ArgE = MTE->GetTemporaryExpr();
IsTemporary = true;
}
Optional<SVal> ConstantVal = svalBuilder.getConstantVal(ArgE);
if (!ConstantVal)
ConstantVal = UnknownVal();
const LocationContext *LCtx = Pred->getLocationContext();
for (const auto I : PreVisit) {
ProgramStateRef State = I->getState();
State = State->BindExpr(S, LCtx, *ConstantVal);
if (IsTemporary)
State = createTemporaryRegionIfNeeded(State, LCtx,
cast<Expr>(S),
cast<Expr>(S));
Bldr2.generateNode(S, I, State);
}
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
Bldr.addNodes(Dst);
break;
}
// Cases we evaluate as opaque expressions, conjuring a symbol.
case Stmt::CXXStdInitializerListExprClass:
case Expr::ObjCArrayLiteralClass:
case Expr::ObjCDictionaryLiteralClass:
case Expr::ObjCBoxedExprClass: {
Bldr.takeNodes(Pred);
ExplodedNodeSet preVisit;
getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this);
ExplodedNodeSet Tmp;
StmtNodeBuilder Bldr2(preVisit, Tmp, *currBldrCtx);
const auto *Ex = cast<Expr>(S);
QualType resultType = Ex->getType();
for (const auto N : preVisit) {
const LocationContext *LCtx = N->getLocationContext();
SVal result = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
resultType,
currBldrCtx->blockCount());
ProgramStateRef State = N->getState()->BindExpr(Ex, LCtx, result);
// Escape pointers passed into the list, unless it's an ObjC boxed
// expression which is not a boxable C structure.
if (!(isa<ObjCBoxedExpr>(Ex) &&
!cast<ObjCBoxedExpr>(Ex)->getSubExpr()
->getType()->isRecordType()))
for (auto Child : Ex->children()) {
assert(Child);
SVal Val = State->getSVal(Child, LCtx);
State = escapeValue(State, Val, PSK_EscapeOther);
}
Bldr2.generateNode(S, N, State);
}
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this);
Bldr.addNodes(Dst);
break;
}
case Stmt::ArraySubscriptExprClass:
Bldr.takeNodes(Pred);
VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::GCCAsmStmtClass:
Bldr.takeNodes(Pred);
VisitGCCAsmStmt(cast<GCCAsmStmt>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::MSAsmStmtClass:
Bldr.takeNodes(Pred);
VisitMSAsmStmt(cast<MSAsmStmt>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::BlockExprClass:
Bldr.takeNodes(Pred);
VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::LambdaExprClass:
if (AMgr.options.ShouldInlineLambdas) {
Bldr.takeNodes(Pred);
VisitLambdaExpr(cast<LambdaExpr>(S), Pred, Dst);
Bldr.addNodes(Dst);
} else {
const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState());
Engine.addAbortedBlock(node, currBldrCtx->getBlock());
}
break;
case Stmt::BinaryOperatorClass: {
const auto *B = cast<BinaryOperator>(S);
if (B->isLogicalOp()) {
Bldr.takeNodes(Pred);
VisitLogicalExpr(B, Pred, Dst);
Bldr.addNodes(Dst);
break;
}
else if (B->getOpcode() == BO_Comma) {
ProgramStateRef state = Pred->getState();
Bldr.generateNode(B, Pred,
state->BindExpr(B, Pred->getLocationContext(),
state->getSVal(B->getRHS(),
Pred->getLocationContext())));
break;
}
Bldr.takeNodes(Pred);
if (AMgr.options.ShouldEagerlyAssume &&
(B->isRelationalOp() || B->isEqualityOp())) {
ExplodedNodeSet Tmp;
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp);
evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, cast<Expr>(S));
}
else
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
}
case Stmt::CXXOperatorCallExprClass: {
const auto *OCE = cast<CXXOperatorCallExpr>(S);
// For instance method operators, make sure the 'this' argument has a
// valid region.
const Decl *Callee = OCE->getCalleeDecl();
if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Callee)) {
if (MD->isInstance()) {
ProgramStateRef State = Pred->getState();
const LocationContext *LCtx = Pred->getLocationContext();
ProgramStateRef NewState =
createTemporaryRegionIfNeeded(State, LCtx, OCE->getArg(0));
if (NewState != State) {
Pred = Bldr.generateNode(OCE, Pred, NewState, /*Tag=*/nullptr,
ProgramPoint::PreStmtKind);
// Did we cache out?
if (!Pred)
break;
}
}
}
// FALLTHROUGH
LLVM_FALLTHROUGH;
}
case Stmt::CallExprClass:
case Stmt::CXXMemberCallExprClass:
case Stmt::UserDefinedLiteralClass:
Bldr.takeNodes(Pred);
VisitCallExpr(cast<CallExpr>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::CXXCatchStmtClass:
Bldr.takeNodes(Pred);
VisitCXXCatchStmt(cast<CXXCatchStmt>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::CXXTemporaryObjectExprClass:
case Stmt::CXXConstructExprClass:
Bldr.takeNodes(Pred);
VisitCXXConstructExpr(cast<CXXConstructExpr>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::CXXNewExprClass: {
Bldr.takeNodes(Pred);
ExplodedNodeSet PreVisit;
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
ExplodedNodeSet PostVisit;
for (const auto i : PreVisit)
VisitCXXNewExpr(cast<CXXNewExpr>(S), i, PostVisit);
getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
Bldr.addNodes(Dst);
break;
}
case Stmt::CXXDeleteExprClass: {
Bldr.takeNodes(Pred);
ExplodedNodeSet PreVisit;
const auto *CDE = cast<CXXDeleteExpr>(S);
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
for (const auto i : PreVisit)
VisitCXXDeleteExpr(CDE, i, Dst);
Bldr.addNodes(Dst);
break;
}
// FIXME: ChooseExpr is really a constant. We need to fix
// the CFG do not model them as explicit control-flow.
case Stmt::ChooseExprClass: { // __builtin_choose_expr
Bldr.takeNodes(Pred);
const auto *C = cast<ChooseExpr>(S);
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
Bldr.addNodes(Dst);
break;
}
case Stmt::CompoundAssignOperatorClass:
Bldr.takeNodes(Pred);
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::CompoundLiteralExprClass:
Bldr.takeNodes(Pred);
VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::BinaryConditionalOperatorClass:
case Stmt::ConditionalOperatorClass: { // '?' operator
Bldr.takeNodes(Pred);
const auto *C = cast<AbstractConditionalOperator>(S);
VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst);
Bldr.addNodes(Dst);
break;
}
case Stmt::CXXThisExprClass:
Bldr.takeNodes(Pred);
VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::DeclRefExprClass: {
Bldr.takeNodes(Pred);
const auto *DE = cast<DeclRefExpr>(S);
VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst);
Bldr.addNodes(Dst);
break;
}
case Stmt::DeclStmtClass:
Bldr.takeNodes(Pred);
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::ImplicitCastExprClass:
case Stmt::CStyleCastExprClass:
case Stmt::CXXStaticCastExprClass:
case Stmt::CXXDynamicCastExprClass:
case Stmt::CXXReinterpretCastExprClass:
case Stmt::CXXConstCastExprClass:
case Stmt::CXXFunctionalCastExprClass:
case Stmt::ObjCBridgedCastExprClass: {
Bldr.takeNodes(Pred);
const auto *C = cast<CastExpr>(S);
ExplodedNodeSet dstExpr;
VisitCast(C, C->getSubExpr(), Pred, dstExpr);
// Handle the postvisit checks.
getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, C, *this);
Bldr.addNodes(Dst);
break;
}
case Expr::MaterializeTemporaryExprClass: {
Bldr.takeNodes(Pred);
const auto *MTE = cast<MaterializeTemporaryExpr>(S);
ExplodedNodeSet dstPrevisit;
getCheckerManager().runCheckersForPreStmt(dstPrevisit, Pred, MTE, *this);
ExplodedNodeSet dstExpr;
for (const auto i : dstPrevisit)
CreateCXXTemporaryObject(MTE, i, dstExpr);
getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, MTE, *this);
Bldr.addNodes(Dst);
break;
}
case Stmt::InitListExprClass:
Bldr.takeNodes(Pred);
VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::MemberExprClass:
Bldr.takeNodes(Pred);
VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::AtomicExprClass:
Bldr.takeNodes(Pred);
VisitAtomicExpr(cast<AtomicExpr>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::ObjCIvarRefExprClass:
Bldr.takeNodes(Pred);
VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::ObjCForCollectionStmtClass:
Bldr.takeNodes(Pred);
VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::ObjCMessageExprClass:
Bldr.takeNodes(Pred);
VisitObjCMessage(cast<ObjCMessageExpr>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::ObjCAtThrowStmtClass:
case Stmt::CXXThrowExprClass:
// FIXME: This is not complete. We basically treat @throw as
// an abort.
Bldr.generateSink(S, Pred, Pred->getState());
break;
case Stmt::ReturnStmtClass:
Bldr.takeNodes(Pred);
VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::OffsetOfExprClass: {
Bldr.takeNodes(Pred);
ExplodedNodeSet PreVisit;
getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this);
ExplodedNodeSet PostVisit;
for (const auto Node : PreVisit)
VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Node, PostVisit);
getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this);
Bldr.addNodes(Dst);
break;
}
case Stmt::UnaryExprOrTypeTraitExprClass:
Bldr.takeNodes(Pred);
VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
Pred, Dst);
Bldr.addNodes(Dst);
break;
case Stmt::StmtExprClass: {
const auto *SE = cast<StmtExpr>(S);
if (SE->getSubStmt()->body_empty()) {
// Empty statement expression.
assert(SE->getType() == getContext().VoidTy
&& "Empty statement expression must have void type.");
break;
}
if (const auto *LastExpr =
dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) {
ProgramStateRef state = Pred->getState();
Bldr.generateNode(SE, Pred,
state->BindExpr(SE, Pred->getLocationContext(),
state->getSVal(LastExpr,
Pred->getLocationContext())));
}
break;
}
case Stmt::UnaryOperatorClass: {
Bldr.takeNodes(Pred);
const auto *U = cast<UnaryOperator>(S);
if (AMgr.options.ShouldEagerlyAssume && (U->getOpcode() == UO_LNot)) {
ExplodedNodeSet Tmp;
VisitUnaryOperator(U, Pred, Tmp);
evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, U);
}
else
VisitUnaryOperator(U, Pred, Dst);
Bldr.addNodes(Dst);
break;
}
case Stmt::PseudoObjectExprClass: {
Bldr.takeNodes(Pred);
ProgramStateRef state = Pred->getState();
const auto *PE = cast<PseudoObjectExpr>(S);
if (const Expr *Result = PE->getResultExpr()) {
SVal V = state->getSVal(Result, Pred->getLocationContext());
Bldr.generateNode(S, Pred,
state->BindExpr(S, Pred->getLocationContext(), V));
}
else
Bldr.generateNode(S, Pred,
state->BindExpr(S, Pred->getLocationContext(),
UnknownVal()));
Bldr.addNodes(Dst);
break;
}
}
}
bool ExprEngine::replayWithoutInlining(ExplodedNode *N,
const LocationContext *CalleeLC) {
const StackFrameContext *CalleeSF = CalleeLC->getStackFrame();
const StackFrameContext *CallerSF = CalleeSF->getParent()->getStackFrame();
assert(CalleeSF && CallerSF);
ExplodedNode *BeforeProcessingCall = nullptr;
const Stmt *CE = CalleeSF->getCallSite();
// Find the first node before we started processing the call expression.
while (N) {
ProgramPoint L = N->getLocation();
BeforeProcessingCall = N;
N = N->pred_empty() ? nullptr : *(N->pred_begin());
// Skip the nodes corresponding to the inlined code.
if (L.getStackFrame() != CallerSF)
continue;
// We reached the caller. Find the node right before we started
// processing the call.
if (L.isPurgeKind())
continue;
if (L.getAs<PreImplicitCall>())
continue;
if (L.getAs<CallEnter>())
continue;
if (Optional<StmtPoint> SP = L.getAs<StmtPoint>())
if (SP->getStmt() == CE)
continue;
break;
}
if (!BeforeProcessingCall)
return false;
// TODO: Clean up the unneeded nodes.
// Build an Epsilon node from which we will restart the analyzes.
// Note that CE is permitted to be NULL!
ProgramPoint NewNodeLoc =
EpsilonPoint(BeforeProcessingCall->getLocationContext(), CE);
// Add the special flag to GDM to signal retrying with no inlining.
// Note, changing the state ensures that we are not going to cache out.
ProgramStateRef NewNodeState = BeforeProcessingCall->getState();
NewNodeState =
NewNodeState->set<ReplayWithoutInlining>(const_cast<Stmt *>(CE));
// Make the new node a successor of BeforeProcessingCall.
bool IsNew = false;
ExplodedNode *NewNode = G.getNode(NewNodeLoc, NewNodeState, false, &IsNew);
// We cached out at this point. Caching out is common due to us backtracking
// from the inlined function, which might spawn several paths.
if (!IsNew)
return true;
NewNode->addPredecessor(BeforeProcessingCall, G);
// Add the new node to the work list.
Engine.enqueueStmtNode(NewNode, CalleeSF->getCallSiteBlock(),
CalleeSF->getIndex());
NumTimesRetriedWithoutInlining++;
return true;
}
/// Block entrance. (Update counters).
void ExprEngine::processCFGBlockEntrance(const BlockEdge &L,
NodeBuilderWithSinks &nodeBuilder,
ExplodedNode *Pred) {
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
// If we reach a loop which has a known bound (and meets
// other constraints) then consider completely unrolling it.
if(AMgr.options.ShouldUnrollLoops) {
unsigned maxBlockVisitOnPath = AMgr.options.maxBlockVisitOnPath;
const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminator();
if (Term) {
ProgramStateRef NewState = updateLoopStack(Term, AMgr.getASTContext(),
Pred, maxBlockVisitOnPath);
if (NewState != Pred->getState()) {
ExplodedNode *UpdatedNode = nodeBuilder.generateNode(NewState, Pred);
if (!UpdatedNode)
return;
Pred = UpdatedNode;
}
}
// Is we are inside an unrolled loop then no need the check the counters.
if(isUnrolledState(Pred->getState()))
return;
}
// If this block is terminated by a loop and it has already been visited the
// maximum number of times, widen the loop.
unsigned int BlockCount = nodeBuilder.getContext().blockCount();
if (BlockCount == AMgr.options.maxBlockVisitOnPath - 1 &&
AMgr.options.ShouldWidenLoops) {
const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminator();
if (!(Term &&
(isa<ForStmt>(Term) || isa<WhileStmt>(Term) || isa<DoStmt>(Term))))
return;
// Widen.
const LocationContext *LCtx = Pred->getLocationContext();
ProgramStateRef WidenedState =
getWidenedLoopState(Pred->getState(), LCtx, BlockCount, Term);
nodeBuilder.generateNode(WidenedState, Pred);
return;
}
// FIXME: Refactor this into a checker.
if (BlockCount >= AMgr.options.maxBlockVisitOnPath) {
static SimpleProgramPointTag tag(TagProviderName, "Block count exceeded");
const ExplodedNode *Sink =
nodeBuilder.generateSink(Pred->getState(), Pred, &tag);
// Check if we stopped at the top level function or not.
// Root node should have the location context of the top most function.
const LocationContext *CalleeLC = Pred->getLocation().getLocationContext();
const LocationContext *CalleeSF = CalleeLC->getStackFrame();
const LocationContext *RootLC =
(*G.roots_begin())->getLocation().getLocationContext();
if (RootLC->getStackFrame() != CalleeSF) {
Engine.FunctionSummaries->markReachedMaxBlockCount(CalleeSF->getDecl());
// Re-run the call evaluation without inlining it, by storing the
// no-inlining policy in the state and enqueuing the new work item on
// the list. Replay should almost never fail. Use the stats to catch it
// if it does.
if ((!AMgr.options.NoRetryExhausted &&
replayWithoutInlining(Pred, CalleeLC)))
return;
NumMaxBlockCountReachedInInlined++;
} else
NumMaxBlockCountReached++;
// Make sink nodes as exhausted(for stats) only if retry failed.
Engine.blocksExhausted.push_back(std::make_pair(L, Sink));
}
}
//===----------------------------------------------------------------------===//
// Branch processing.
//===----------------------------------------------------------------------===//
/// RecoverCastedSymbol - A helper function for ProcessBranch that is used
/// to try to recover some path-sensitivity for casts of symbolic
/// integers that promote their values (which are currently not tracked well).
/// This function returns the SVal bound to Condition->IgnoreCasts if all the
// cast(s) did was sign-extend the original value.
static SVal RecoverCastedSymbol(ProgramStateRef state,
const Stmt *Condition,
const LocationContext *LCtx,
ASTContext &Ctx) {
const auto *Ex = dyn_cast<Expr>(Condition);
if (!Ex)
return UnknownVal();
uint64_t bits = 0;
bool bitsInit = false;
while (const auto *CE = dyn_cast<CastExpr>(Ex)) {
QualType T = CE->getType();
if (!T->isIntegralOrEnumerationType())
return UnknownVal();
uint64_t newBits = Ctx.getTypeSize(T);
if (!bitsInit || newBits < bits) {
bitsInit = true;
bits = newBits;
}
Ex = CE->getSubExpr();
}
// We reached a non-cast. Is it a symbolic value?
QualType T = Ex->getType();
if (!bitsInit || !T->isIntegralOrEnumerationType() ||
Ctx.getTypeSize(T) > bits)
return UnknownVal();
return state->getSVal(Ex, LCtx);
}
#ifndef NDEBUG
static const Stmt *getRightmostLeaf(const Stmt *Condition) {
while (Condition) {
const auto *BO = dyn_cast<BinaryOperator>(Condition);
if (!BO || !BO->isLogicalOp()) {
return Condition;
}
Condition = BO->getRHS()->IgnoreParens();
}
return nullptr;
}
#endif
// Returns the condition the branch at the end of 'B' depends on and whose value
// has been evaluated within 'B'.
// In most cases, the terminator condition of 'B' will be evaluated fully in
// the last statement of 'B'; in those cases, the resolved condition is the
// given 'Condition'.
// If the condition of the branch is a logical binary operator tree, the CFG is
// optimized: in that case, we know that the expression formed by all but the
// rightmost leaf of the logical binary operator tree must be true, and thus
// the branch condition is at this point equivalent to the truth value of that
// rightmost leaf; the CFG block thus only evaluates this rightmost leaf
// expression in its final statement. As the full condition in that case was
// not evaluated, and is thus not in the SVal cache, we need to use that leaf
// expression to evaluate the truth value of the condition in the current state
// space.
static const Stmt *ResolveCondition(const Stmt *Condition,
const CFGBlock *B) {
if (const auto *Ex = dyn_cast<Expr>(Condition))
Condition = Ex->IgnoreParens();
const auto *BO = dyn_cast<BinaryOperator>(Condition);
if (!BO || !BO->isLogicalOp())
return Condition;
assert(!B->getTerminator().isTemporaryDtorsBranch() &&
"Temporary destructor branches handled by processBindTemporary.");
// For logical operations, we still have the case where some branches
// use the traditional "merge" approach and others sink the branch
// directly into the basic blocks representing the logical operation.
// We need to distinguish between those two cases here.
// The invariants are still shifting, but it is possible that the
// last element in a CFGBlock is not a CFGStmt. Look for the last
// CFGStmt as the value of the condition.
CFGBlock::const_reverse_iterator I = B->rbegin(), E = B->rend();
for (; I != E; ++I) {
CFGElement Elem = *I;
Optional<CFGStmt> CS = Elem.getAs<CFGStmt>();
if (!CS)
continue;
const Stmt *LastStmt = CS->getStmt();
assert(LastStmt == Condition || LastStmt == getRightmostLeaf(Condition));
return LastStmt;
}
llvm_unreachable("could not resolve condition");
}
void ExprEngine::processBranch(const Stmt *Condition,
NodeBuilderContext& BldCtx,
ExplodedNode *Pred,
ExplodedNodeSet &Dst,
const CFGBlock *DstT,
const CFGBlock *DstF) {
assert((!Condition || !isa<CXXBindTemporaryExpr>(Condition)) &&
"CXXBindTemporaryExprs are handled by processBindTemporary.");
const LocationContext *LCtx = Pred->getLocationContext();
PrettyStackTraceLocationContext StackCrashInfo(LCtx);
currBldrCtx = &BldCtx;
// Check for NULL conditions; e.g. "for(;;)"
if (!Condition) {
BranchNodeBuilder NullCondBldr(Pred, Dst, BldCtx, DstT, DstF);
NullCondBldr.markInfeasible(false);
NullCondBldr.generateNode(Pred->getState(), true, Pred);
return;
}
if (const auto *Ex = dyn_cast<Expr>(Condition))
Condition = Ex->IgnoreParens();
Condition = ResolveCondition(Condition, BldCtx.getBlock());
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
Condition->getBeginLoc(),
"Error evaluating branch");
ExplodedNodeSet CheckersOutSet;
getCheckerManager().runCheckersForBranchCondition(Condition, CheckersOutSet,
Pred, *this);
// We generated only sinks.
if (CheckersOutSet.empty())
return;
BranchNodeBuilder builder(CheckersOutSet, Dst, BldCtx, DstT, DstF);
for (const auto PredI : CheckersOutSet) {
if (PredI->isSink())
continue;
ProgramStateRef PrevState = PredI->getState();
SVal X = PrevState->getSVal(Condition, PredI->getLocationContext());
if (X.isUnknownOrUndef()) {
// Give it a chance to recover from unknown.
if (const auto *Ex = dyn_cast<Expr>(Condition)) {
if (Ex->getType()->isIntegralOrEnumerationType()) {
// Try to recover some path-sensitivity. Right now casts of symbolic
// integers that promote their values are currently not tracked well.
// If 'Condition' is such an expression, try and recover the
// underlying value and use that instead.
SVal recovered = RecoverCastedSymbol(PrevState, Condition,
PredI->getLocationContext(),
getContext());
if (!recovered.isUnknown()) {
X = recovered;
}
}
}
}
// If the condition is still unknown, give up.
if (X.isUnknownOrUndef()) {
builder.generateNode(PrevState, true, PredI);
builder.generateNode(PrevState, false, PredI);
continue;
}
DefinedSVal V = X.castAs<DefinedSVal>();
ProgramStateRef StTrue, StFalse;
std::tie(StTrue, StFalse) = PrevState->assume(V);
// Process the true branch.
if (builder.isFeasible(true)) {
if (StTrue)
builder.generateNode(StTrue, true, PredI);
else
builder.markInfeasible(true);
}
// Process the false branch.
if (builder.isFeasible(false)) {
if (StFalse)
builder.generateNode(StFalse, false, PredI);
else
builder.markInfeasible(false);
}
}
currBldrCtx = nullptr;
}
/// The GDM component containing the set of global variables which have been
/// previously initialized with explicit initializers.
REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedGlobalsSet,
llvm::ImmutableSet<const VarDecl *>)
void ExprEngine::processStaticInitializer(const DeclStmt *DS,
NodeBuilderContext &BuilderCtx,
ExplodedNode *Pred,
ExplodedNodeSet &Dst,
const CFGBlock *DstT,
const CFGBlock *DstF) {
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
currBldrCtx = &BuilderCtx;
const auto *VD = cast<VarDecl>(DS->getSingleDecl());
ProgramStateRef state = Pred->getState();
bool initHasRun = state->contains<InitializedGlobalsSet>(VD);
BranchNodeBuilder builder(Pred, Dst, BuilderCtx, DstT, DstF);
if (!initHasRun) {
state = state->add<InitializedGlobalsSet>(VD);
}
builder.generateNode(state, initHasRun, Pred);
builder.markInfeasible(!initHasRun);
currBldrCtx = nullptr;
}
/// processIndirectGoto - Called by CoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a computed goto jump.
void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) {
ProgramStateRef state = builder.getState();
SVal V = state->getSVal(builder.getTarget(), builder.getLocationContext());
// Three possibilities:
//
// (1) We know the computed label.
// (2) The label is NULL (or some other constant), or Undefined.
// (3) We have no clue about the label. Dispatch to all targets.
//
using iterator = IndirectGotoNodeBuilder::iterator;
if (Optional<loc::GotoLabel> LV = V.getAs<loc::GotoLabel>()) {
const LabelDecl *L = LV->getLabel();
for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) {
if (I.getLabel() == L) {
builder.generateNode(I, state);
return;
}
}
llvm_unreachable("No block with label.");
}
if (V.getAs<loc::ConcreteInt>() || V.getAs<UndefinedVal>()) {
// Dispatch to the first target and mark it as a sink.
//ExplodedNode* N = builder.generateNode(builder.begin(), state, true);
// FIXME: add checker visit.
// UndefBranches.insert(N);
return;
}
// This is really a catch-all. We don't support symbolics yet.
// FIXME: Implement dispatch for symbolic pointers.
for (iterator I = builder.begin(), E = builder.end(); I != E; ++I)
builder.generateNode(I, state);
}
void ExprEngine::processBeginOfFunction(NodeBuilderContext &BC,
ExplodedNode *Pred,
ExplodedNodeSet &Dst,
const BlockEdge &L) {
SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
getCheckerManager().runCheckersForBeginFunction(Dst, L, Pred, *this);
}
/// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path
/// nodes when the control reaches the end of a function.
void ExprEngine::processEndOfFunction(NodeBuilderContext& BC,
ExplodedNode *Pred,
const ReturnStmt *RS) {
ProgramStateRef State = Pred->getState();
if (!Pred->getStackFrame()->inTopFrame())
State = finishArgumentConstruction(
State, *getStateManager().getCallEventManager().getCaller(
Pred->getStackFrame(), Pred->getState()));
// FIXME: We currently cannot assert that temporaries are clear, because
// lifetime extended temporaries are not always modelled correctly. In some
// cases when we materialize the temporary, we do
// createTemporaryRegionIfNeeded(), and the region changes, and also the
// respective destructor becomes automatic from temporary. So for now clean up
// the state manually before asserting. Ideally, this braced block of code
// should go away.
{
const LocationContext *FromLC = Pred->getLocationContext();
const LocationContext *ToLC = FromLC->getStackFrame()->getParent();
const LocationContext *LC = FromLC;
while (LC != ToLC) {
assert(LC && "ToLC must be a parent of FromLC!");
for (auto I : State->get<ObjectsUnderConstruction>())
if (I.first.getLocationContext() == LC) {
// The comment above only pardons us for not cleaning up a
// temporary destructor. If any other statements are found here,
// it must be a separate problem.
assert(I.first.getItem().getKind() ==
ConstructionContextItem::TemporaryDestructorKind ||
I.first.getItem().getKind() ==
ConstructionContextItem::ElidedDestructorKind);
State = State->remove<ObjectsUnderConstruction>(I.first);
}
LC = LC->getParent();
}
}
// Perform the transition with cleanups.
if (State != Pred->getState()) {
ExplodedNodeSet PostCleanup;
NodeBuilder Bldr(Pred, PostCleanup, BC);
Pred = Bldr.generateNode(Pred->getLocation(), State, Pred);
if (!Pred) {
// The node with clean temporaries already exists. We might have reached
// it on a path on which we initialize different temporaries.
return;
}
}
assert(areAllObjectsFullyConstructed(Pred->getState(),
Pred->getLocationContext(),
Pred->getStackFrame()->getParent()));
PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext());
StateMgr.EndPath(Pred->getState());
ExplodedNodeSet Dst;
if (Pred->getLocationContext()->inTopFrame()) {
// Remove dead symbols.
ExplodedNodeSet AfterRemovedDead;
removeDeadOnEndOfFunction(BC, Pred, AfterRemovedDead);
// Notify checkers.
for (const auto I : AfterRemovedDead)
getCheckerManager().runCheckersForEndFunction(BC, Dst, I, *this, RS);
} else {
getCheckerManager().runCheckersForEndFunction(BC, Dst, Pred, *this, RS);
}
Engine.enqueueEndOfFunction(Dst, RS);
}
/// ProcessSwitch - Called by CoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a switch statement.
void ExprEngine::processSwitch(SwitchNodeBuilder& builder) {
using iterator = SwitchNodeBuilder::iterator;
ProgramStateRef state = builder.getState();
const Expr *CondE = builder.getCondition();
SVal CondV_untested = state->getSVal(CondE, builder.getLocationContext());
if (CondV_untested.isUndef()) {
//ExplodedNode* N = builder.generateDefaultCaseNode(state, true);
// FIXME: add checker
//UndefBranches.insert(N);
return;
}
DefinedOrUnknownSVal CondV = CondV_untested.castAs<DefinedOrUnknownSVal>();
ProgramStateRef DefaultSt = state;
iterator I = builder.begin(), EI = builder.end();
bool defaultIsFeasible = I == EI;
for ( ; I != EI; ++I) {
// Successor may be pruned out during CFG construction.
if (!I.getBlock())
continue;
const CaseStmt *Case = I.getCase();
// Evaluate the LHS of the case value.
llvm::APSInt V1 = Case->getLHS()->EvaluateKnownConstInt(getContext());
assert(V1.getBitWidth() == getContext().getIntWidth(CondE->getType()));
// Get the RHS of the case, if it exists.
llvm::APSInt V2;
if (const Expr *E = Case->getRHS())
V2 = E->EvaluateKnownConstInt(getContext());
else
V2 = V1;
ProgramStateRef StateCase;
if (Optional<NonLoc> NL = CondV.getAs<NonLoc>())
std::tie(StateCase, DefaultSt) =
DefaultSt->assumeInclusiveRange(*NL, V1, V2);
else // UnknownVal
StateCase = DefaultSt;
if (StateCase)
builder.generateCaseStmtNode(I, StateCase);
// Now "assume" that the case doesn't match. Add this state
// to the default state (if it is feasible).
if (DefaultSt)
defaultIsFeasible = true;
else {
defaultIsFeasible = false;
break;
}
}
if (!defaultIsFeasible)
return;
// If we have switch(enum value), the default branch is not
// feasible if all of the enum constants not covered by 'case:' statements
// are not feasible values for the switch condition.
//
// Note that this isn't as accurate as it could be. Even if there isn't
// a case for a particular enum value as long as that enum value isn't
// feasible then it shouldn't be considered for making 'default:' reachable.
const SwitchStmt *SS = builder.getSwitch();
const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts();
if (CondExpr->getType()->getAs<EnumType>()) {
if (SS->isAllEnumCasesCovered())
return;
}
builder.generateDefaultCaseNode(DefaultSt);
}
//===----------------------------------------------------------------------===//
// Transfer functions: Loads and stores.
//===----------------------------------------------------------------------===//
void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D,
ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
ProgramStateRef state = Pred->getState();
const LocationContext *LCtx = Pred->getLocationContext();
if (const auto *VD = dyn_cast<VarDecl>(D)) {
// C permits "extern void v", and if you cast the address to a valid type,
// you can even do things with it. We simply pretend
assert(Ex->isGLValue() || VD->getType()->isVoidType());
const LocationContext *LocCtxt = Pred->getLocationContext();
const Decl *D = LocCtxt->getDecl();
const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
const auto *DeclRefEx = dyn_cast<DeclRefExpr>(Ex);
Optional<std::pair<SVal, QualType>> VInfo;
if (AMgr.options.ShouldInlineLambdas && DeclRefEx &&
DeclRefEx->refersToEnclosingVariableOrCapture() && MD &&
MD->getParent()->isLambda()) {
// Lookup the field of the lambda.
const CXXRecordDecl *CXXRec = MD->getParent();
llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
FieldDecl *LambdaThisCaptureField;
CXXRec->getCaptureFields(LambdaCaptureFields, LambdaThisCaptureField);
// Sema follows a sequence of complex rules to determine whether the
// variable should be captured.
if (const FieldDecl *FD = LambdaCaptureFields[VD]) {
Loc CXXThis =
svalBuilder.getCXXThis(MD, LocCtxt->getStackFrame());
SVal CXXThisVal = state->getSVal(CXXThis);
VInfo = std::make_pair(state->getLValue(FD, CXXThisVal), FD->getType());
}
}
if (!VInfo)
VInfo = std::make_pair(state->getLValue(VD, LocCtxt), VD->getType());
SVal V = VInfo->first;
bool IsReference = VInfo->second->isReferenceType();
// For references, the 'lvalue' is the pointer address stored in the
// reference region.
if (IsReference) {
if (const MemRegion *R = V.getAsRegion())
V = state->getSVal(R);
else
V = UnknownVal();
}
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
ProgramPoint::PostLValueKind);
return;
}
if (const auto *ED = dyn_cast<EnumConstantDecl>(D)) {
assert(!Ex->isGLValue());
SVal V = svalBuilder.makeIntVal(ED->getInitVal());
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V));
return;
}
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
SVal V = svalBuilder.getFunctionPointer(FD);
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
ProgramPoint::PostLValueKind);
return;
}
if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) {
// FIXME: Compute lvalue of field pointers-to-member.
// Right now we just use a non-null void pointer, so that it gives proper
// results in boolean contexts.
// FIXME: Maybe delegate this to the surrounding operator&.
// Note how this expression is lvalue, however pointer-to-member is NonLoc.
SVal V = svalBuilder.conjureSymbolVal(Ex, LCtx, getContext().VoidPtrTy,
currBldrCtx->blockCount());
state = state->assume(V.castAs<DefinedOrUnknownSVal>(), true);
Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr,
ProgramPoint::PostLValueKind);
return;
}
if (isa<BindingDecl>(D)) {
// FIXME: proper support for bound declarations.
// For now, let's just prevent crashing.
return;
}
llvm_unreachable("Support for this Decl not implemented.");
}
/// VisitArraySubscriptExpr - Transfer function for array accesses
void ExprEngine::VisitArraySubscriptExpr(const ArraySubscriptExpr *A,
ExplodedNode *Pred,
ExplodedNodeSet &Dst){
const Expr *Base = A->getBase()->IgnoreParens();
const Expr *Idx = A->getIdx()->IgnoreParens();
ExplodedNodeSet CheckerPreStmt;
getCheckerManager().runCheckersForPreStmt(CheckerPreStmt, Pred, A, *this);
ExplodedNodeSet EvalSet;
StmtNodeBuilder Bldr(CheckerPreStmt, EvalSet, *currBldrCtx);
bool IsVectorType = A->getBase()->getType()->isVectorType();
// The "like" case is for situations where C standard prohibits the type to
// be an lvalue, e.g. taking the address of a subscript of an expression of
// type "void *".
bool IsGLValueLike = A->isGLValue() ||
(A->getType().isCForbiddenLValueType() && !AMgr.getLangOpts().CPlusPlus);
for (auto *Node : CheckerPreStmt) {
const LocationContext *LCtx = Node->getLocationContext();
ProgramStateRef state = Node->getState();
if (IsGLValueLike) {
QualType T = A->getType();
// One of the forbidden LValue types! We still need to have sensible
// symbolic locations to represent this stuff. Note that arithmetic on
// void pointers is a GCC extension.
if (T->isVoidType())
T = getContext().CharTy;
SVal V = state->getLValue(T,
state->getSVal(Idx, LCtx),
state->getSVal(Base, LCtx));
Bldr.generateNode(A, Node, state->BindExpr(A, LCtx, V), nullptr,
ProgramPoint::PostLValueKind);
} else if (IsVectorType) {
// FIXME: non-glvalue vector reads are not modelled.
Bldr.generateNode(A, Node, state, nullptr);
} else {
llvm_unreachable("Array subscript should be an lValue when not \
a vector and not a forbidden lvalue type");
}
}
getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, A, *this);
}
/// VisitMemberExpr - Transfer function for member expressions.
void ExprEngine::VisitMemberExpr(const MemberExpr *M, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
// FIXME: Prechecks eventually go in ::Visit().
ExplodedNodeSet CheckedSet;
getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, M, *this);
ExplodedNodeSet EvalSet;
ValueDecl *Member = M->getMemberDecl();
// Handle static member variables and enum constants accessed via
// member syntax.
if (isa<VarDecl>(Member) || isa<EnumConstantDecl>(Member)) {
for (const auto I : CheckedSet)
VisitCommonDeclRefExpr(M, Member, I, EvalSet);
} else {
StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
ExplodedNodeSet Tmp;
for (const auto I : CheckedSet) {
ProgramStateRef state = I->getState();
const LocationContext *LCtx = I->getLocationContext();
Expr *BaseExpr = M->getBase();
// Handle C++ method calls.
if (const auto *MD = dyn_cast<CXXMethodDecl>(Member)) {
if (MD->isInstance())
state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr);
SVal MDVal = svalBuilder.getFunctionPointer(MD);
state = state->BindExpr(M, LCtx, MDVal);
Bldr.generateNode(M, I, state);
continue;
}
// Handle regular struct fields / member variables.
const SubRegion *MR = nullptr;
state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr,
/*Result=*/nullptr,
/*OutRegionWithAdjustments=*/&MR);
SVal baseExprVal =
MR ? loc::MemRegionVal(MR) : state->getSVal(BaseExpr, LCtx);
const auto *field = cast<FieldDecl>(Member);
SVal L = state->getLValue(field, baseExprVal);
if (M->isGLValue() || M->getType()->isArrayType()) {
// We special-case rvalues of array type because the analyzer cannot
// reason about them, since we expect all regions to be wrapped in Locs.
// We instead treat these as lvalues and assume that they will decay to
// pointers as soon as they are used.
if (!M->isGLValue()) {
assert(M->getType()->isArrayType());
const auto *PE =
dyn_cast<ImplicitCastExpr>(I->getParentMap().getParentIgnoreParens(M));
if (!PE || PE->getCastKind() != CK_ArrayToPointerDecay) {
llvm_unreachable("should always be wrapped in ArrayToPointerDecay");
}
}
if (field->getType()->isReferenceType()) {
if (const MemRegion *R = L.getAsRegion())
L = state->getSVal(R);
else
L = UnknownVal();
}
Bldr.generateNode(M, I, state->BindExpr(M, LCtx, L), nullptr,
ProgramPoint::PostLValueKind);
} else {
Bldr.takeNodes(I);
evalLoad(Tmp, M, M, I, state, L);
Bldr.addNodes(Tmp);
}
}
}
getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, M, *this);
}
void ExprEngine::VisitAtomicExpr(const AtomicExpr *AE, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
ExplodedNodeSet AfterPreSet;
getCheckerManager().runCheckersForPreStmt(AfterPreSet, Pred, AE, *this);
// For now, treat all the arguments to C11 atomics as escaping.
// FIXME: Ideally we should model the behavior of the atomics precisely here.
ExplodedNodeSet AfterInvalidateSet;
StmtNodeBuilder Bldr(AfterPreSet, AfterInvalidateSet, *currBldrCtx);
for (const auto I : AfterPreSet) {
ProgramStateRef State = I->getState();
const LocationContext *LCtx = I->getLocationContext();
SmallVector<SVal, 8> ValuesToInvalidate;
for (unsigned SI = 0, Count = AE->getNumSubExprs(); SI != Count; SI++) {
const Expr *SubExpr = AE->getSubExprs()[SI];
SVal SubExprVal = State->getSVal(SubExpr, LCtx);
ValuesToInvalidate.push_back(SubExprVal);
}
State = State->invalidateRegions(ValuesToInvalidate, AE,
currBldrCtx->blockCount(),
LCtx,
/*CausedByPointerEscape*/true,
/*Symbols=*/nullptr);
SVal ResultVal = UnknownVal();
State = State->BindExpr(AE, LCtx, ResultVal);
Bldr.generateNode(AE, I, State, nullptr,
ProgramPoint::PostStmtKind);
}
getCheckerManager().runCheckersForPostStmt(Dst, AfterInvalidateSet, AE, *this);
}
// A value escapes in three possible cases:
// (1) We are binding to something that is not a memory region.
// (2) We are binding to a MemrRegion that does not have stack storage.
// (3) We are binding to a MemRegion with stack storage that the store
// does not understand.
ProgramStateRef ExprEngine::processPointerEscapedOnBind(ProgramStateRef State,
SVal Loc,
SVal Val,
const LocationContext *LCtx) {
// Are we storing to something that causes the value to "escape"?
bool escapes = true;
// TODO: Move to StoreManager.
if (Optional<loc::MemRegionVal> regionLoc = Loc.getAs<loc::MemRegionVal>()) {
escapes = !regionLoc->getRegion()->hasStackStorage();
if (!escapes) {
// To test (3), generate a new state with the binding added. If it is
// the same state, then it escapes (since the store cannot represent
// the binding).
// Do this only if we know that the store is not supposed to generate the
// same state.
SVal StoredVal = State->getSVal(regionLoc->getRegion());
if (StoredVal != Val)
escapes = (State == (State->bindLoc(*regionLoc, Val, LCtx)));
}
}
// If our store can represent the binding and we aren't storing to something
// that doesn't have local storage then just return and have the simulation
// state continue as is.
if (!escapes)
return State;
// Otherwise, find all symbols referenced by 'val' that we are tracking
// and stop tracking them.
State = escapeValue(State, Val, PSK_EscapeOnBind);
return State;
}
ProgramStateRef
ExprEngine::notifyCheckersOfPointerEscape(ProgramStateRef State,
const InvalidatedSymbols *Invalidated,
ArrayRef<const MemRegion *> ExplicitRegions,
const CallEvent *Call,
RegionAndSymbolInvalidationTraits &ITraits) {
if (!Invalidated || Invalidated->empty())
return State;
if (!Call)
return getCheckerManager().runCheckersForPointerEscape(State,
*Invalidated,
nullptr,
PSK_EscapeOther,
&ITraits);
// If the symbols were invalidated by a call, we want to find out which ones
// were invalidated directly due to being arguments to the call.
InvalidatedSymbols SymbolsDirectlyInvalidated;
for (const auto I : ExplicitRegions) {
if (const SymbolicRegion *R = I->StripCasts()->getAs<SymbolicRegion>())
SymbolsDirectlyInvalidated.insert(R->getSymbol());
}
InvalidatedSymbols SymbolsIndirectlyInvalidated;
for (const auto &sym : *Invalidated) {
if (SymbolsDirectlyInvalidated.count(sym))
continue;
SymbolsIndirectlyInvalidated.insert(sym);
}
if (!SymbolsDirectlyInvalidated.empty())
State = getCheckerManager().runCheckersForPointerEscape(State,
SymbolsDirectlyInvalidated, Call, PSK_DirectEscapeOnCall, &ITraits);
// Notify about the symbols that get indirectly invalidated by the call.
if (!SymbolsIndirectlyInvalidated.empty())
State = getCheckerManager().runCheckersForPointerEscape(State,
SymbolsIndirectlyInvalidated, Call, PSK_IndirectEscapeOnCall, &ITraits);
return State;
}
/// evalBind - Handle the semantics of binding a value to a specific location.
/// This method is used by evalStore and (soon) VisitDeclStmt, and others.
void ExprEngine::evalBind(ExplodedNodeSet &Dst, const Stmt *StoreE,
ExplodedNode *Pred,
SVal location, SVal Val,
bool atDeclInit, const ProgramPoint *PP) {
const LocationContext *LC = Pred->getLocationContext();
PostStmt PS(StoreE, LC);
if (!PP)
PP = &PS;
// Do a previsit of the bind.
ExplodedNodeSet CheckedSet;
getCheckerManager().runCheckersForBind(CheckedSet, Pred, location, Val,
StoreE, *this, *PP);
StmtNodeBuilder Bldr(CheckedSet, Dst, *currBldrCtx);
// If the location is not a 'Loc', it will already be handled by
// the checkers. There is nothing left to do.
if (!location.getAs<Loc>()) {
const ProgramPoint L = PostStore(StoreE, LC, /*Loc*/nullptr,
/*tag*/nullptr);
ProgramStateRef state = Pred->getState();
state = processPointerEscapedOnBind(state, location, Val, LC);
Bldr.generateNode(L, state, Pred);
return;
}
for (const auto PredI : CheckedSet) {
ProgramStateRef state = PredI->getState();
state = processPointerEscapedOnBind(state, location, Val, LC);
// When binding the value, pass on the hint that this is a initialization.
// For initializations, we do not need to inform clients of region
// changes.
state = state->bindLoc(location.castAs<Loc>(),
Val, LC, /* notifyChanges = */ !atDeclInit);
const MemRegion *LocReg = nullptr;
if (Optional<loc::MemRegionVal> LocRegVal =
location.getAs<loc::MemRegionVal>()) {
LocReg = LocRegVal->getRegion();
}
const ProgramPoint L = PostStore(StoreE, LC, LocReg, nullptr);
Bldr.generateNode(L, state, PredI);
}
}
/// evalStore - Handle the semantics of a store via an assignment.
/// @param Dst The node set to store generated state nodes
/// @param AssignE The assignment expression if the store happens in an
/// assignment.
/// @param LocationE The location expression that is stored to.
/// @param state The current simulation state
/// @param location The location to store the value
/// @param Val The value to be stored
void ExprEngine::evalStore(ExplodedNodeSet &Dst, const Expr *AssignE,
const Expr *LocationE,
ExplodedNode *Pred,
ProgramStateRef state, SVal location, SVal Val,
const ProgramPointTag *tag) {
// Proceed with the store. We use AssignE as the anchor for the PostStore
// ProgramPoint if it is non-NULL, and LocationE otherwise.
const Expr *StoreE = AssignE ? AssignE : LocationE;
// Evaluate the location (checks for bad dereferences).
ExplodedNodeSet Tmp;
evalLocation(Tmp, AssignE, LocationE, Pred, state, location, false);
if (Tmp.empty())
return;
if (location.isUndef())
return;
for (const auto I : Tmp)
evalBind(Dst, StoreE, I, location, Val, false);
}
void ExprEngine::evalLoad(ExplodedNodeSet &Dst,
const Expr *NodeEx,
const Expr *BoundEx,
ExplodedNode *Pred,
ProgramStateRef state,
SVal location,
const ProgramPointTag *tag,
QualType LoadTy) {
assert(!location.getAs<NonLoc>() && "location cannot be a NonLoc.");
assert(NodeEx);
assert(BoundEx);
// Evaluate the location (checks for bad dereferences).
ExplodedNodeSet Tmp;
evalLocation(Tmp, NodeEx, BoundEx, Pred, state, location, true);
if (Tmp.empty())
return;
StmtNodeBuilder Bldr(Tmp, Dst, *currBldrCtx);
if (location.isUndef())
return;
// Proceed with the load.
for (const auto I : Tmp) {
state = I->getState();
const LocationContext *LCtx = I->getLocationContext();
SVal V = UnknownVal();
if (location.isValid()) {
if (LoadTy.isNull())
LoadTy = BoundEx->getType();
V = state->getSVal(location.castAs<Loc>(), LoadTy);
}
Bldr.generateNode(NodeEx, I, state->BindExpr(BoundEx, LCtx, V), tag,
ProgramPoint::PostLoadKind);
}
}
void ExprEngine::evalLocation(ExplodedNodeSet &Dst,
const Stmt *NodeEx,
const Stmt *BoundEx,
ExplodedNode *Pred,
ProgramStateRef state,
SVal location,
bool isLoad) {
StmtNodeBuilder BldrTop(Pred, Dst, *currBldrCtx);
// Early checks for performance reason.
if (location.isUnknown()) {
return;
}
ExplodedNodeSet Src;
BldrTop.takeNodes(Pred);
StmtNodeBuilder Bldr(Pred, Src, *currBldrCtx);
if (Pred->getState() != state) {
// Associate this new state with an ExplodedNode.
// FIXME: If I pass null tag, the graph is incorrect, e.g for
// int *p;
// p = 0;
// *p = 0xDEADBEEF;
// "p = 0" is not noted as "Null pointer value stored to 'p'" but
// instead "int *p" is noted as
// "Variable 'p' initialized to a null pointer value"
static SimpleProgramPointTag tag(TagProviderName, "Location");
Bldr.generateNode(NodeEx, Pred, state, &tag);
}
ExplodedNodeSet Tmp;
getCheckerManager().runCheckersForLocation(Tmp, Src, location, isLoad,
NodeEx, BoundEx, *this);
BldrTop.addNodes(Tmp);
}
std::pair<const ProgramPointTag *, const ProgramPointTag*>
ExprEngine::geteagerlyAssumeBinOpBifurcationTags() {
static SimpleProgramPointTag
eagerlyAssumeBinOpBifurcationTrue(TagProviderName,
"Eagerly Assume True"),
eagerlyAssumeBinOpBifurcationFalse(TagProviderName,
"Eagerly Assume False");
return std::make_pair(&eagerlyAssumeBinOpBifurcationTrue,
&eagerlyAssumeBinOpBifurcationFalse);
}
void ExprEngine::evalEagerlyAssumeBinOpBifurcation(ExplodedNodeSet &Dst,
ExplodedNodeSet &Src,
const Expr *Ex) {
StmtNodeBuilder Bldr(Src, Dst, *currBldrCtx);
for (const auto Pred : Src) {
// Test if the previous node was as the same expression. This can happen
// when the expression fails to evaluate to anything meaningful and
// (as an optimization) we don't generate a node.
ProgramPoint P = Pred->getLocation();
if (!P.getAs<PostStmt>() || P.castAs<PostStmt>().getStmt() != Ex) {
continue;
}
ProgramStateRef state = Pred->getState();
SVal V = state->getSVal(Ex, Pred->getLocationContext());
Optional<nonloc::SymbolVal> SEV = V.getAs<nonloc::SymbolVal>();
if (SEV && SEV->isExpression()) {
const std::pair<const ProgramPointTag *, const ProgramPointTag*> &tags =
geteagerlyAssumeBinOpBifurcationTags();
ProgramStateRef StateTrue, StateFalse;
std::tie(StateTrue, StateFalse) = state->assume(*SEV);
// First assume that the condition is true.
if (StateTrue) {
SVal Val = svalBuilder.makeIntVal(1U, Ex->getType());
StateTrue = StateTrue->BindExpr(Ex, Pred->getLocationContext(), Val);
Bldr.generateNode(Ex, Pred, StateTrue, tags.first);
}
// Next, assume that the condition is false.
if (StateFalse) {
SVal Val = svalBuilder.makeIntVal(0U, Ex->getType());
StateFalse = StateFalse->BindExpr(Ex, Pred->getLocationContext(), Val);
Bldr.generateNode(Ex, Pred, StateFalse, tags.second);
}
}
}
}
void ExprEngine::VisitGCCAsmStmt(const GCCAsmStmt *A, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
// We have processed both the inputs and the outputs. All of the outputs
// should evaluate to Locs. Nuke all of their values.
// FIXME: Some day in the future it would be nice to allow a "plug-in"
// which interprets the inline asm and stores proper results in the
// outputs.
ProgramStateRef state = Pred->getState();
for (const Expr *O : A->outputs()) {
SVal X = state->getSVal(O, Pred->getLocationContext());
assert(!X.getAs<NonLoc>()); // Should be an Lval, or unknown, undef.
if (Optional<Loc> LV = X.getAs<Loc>())
state = state->bindLoc(*LV, UnknownVal(), Pred->getLocationContext());
}
Bldr.generateNode(A, Pred, state);
}
void ExprEngine::VisitMSAsmStmt(const MSAsmStmt *A, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
Bldr.generateNode(A, Pred, Pred->getState());
}
//===----------------------------------------------------------------------===//
// Visualization.
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
namespace llvm {
template<>
struct DOTGraphTraits<ExplodedGraph*> : public DefaultDOTGraphTraits {
DOTGraphTraits (bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
static bool nodeHasBugReport(const ExplodedNode *N) {
BugReporter &BR = static_cast<ExprEngine &>(
N->getState()->getStateManager().getOwningEngine()).getBugReporter();
const auto EQClasses =
llvm::make_range(BR.EQClasses_begin(), BR.EQClasses_end());
for (const auto &EQ : EQClasses) {
for (const BugReport &Report : EQ) {
if (Report.getErrorNode() == N)
return true;
}
}
return false;
}
/// \p PreCallback: callback before break.
/// \p PostCallback: callback after break.
/// \p Stop: stop iteration if returns {@code true}
/// \return Whether {@code Stop} ever returned {@code true}.
static bool traverseHiddenNodes(
const ExplodedNode *N,
llvm::function_ref<void(const ExplodedNode *)> PreCallback,
llvm::function_ref<void(const ExplodedNode *)> PostCallback,
llvm::function_ref<bool(const ExplodedNode *)> Stop) {
const ExplodedNode *FirstHiddenNode = N;
while (FirstHiddenNode->pred_size() == 1 &&
isNodeHidden(*FirstHiddenNode->pred_begin())) {
FirstHiddenNode = *FirstHiddenNode->pred_begin();
}
const ExplodedNode *OtherNode = FirstHiddenNode;
while (true) {
PreCallback(OtherNode);
if (Stop(OtherNode))
return true;
if (OtherNode == N)
break;
PostCallback(OtherNode);
OtherNode = *OtherNode->succ_begin();
}
return false;
}
static std::string getNodeAttributes(const ExplodedNode *N,
ExplodedGraph *) {
SmallVector<StringRef, 10> Out;
auto Noop = [](const ExplodedNode*){};
if (traverseHiddenNodes(N, Noop, Noop, &nodeHasBugReport)) {
Out.push_back("style=filled");
Out.push_back("fillcolor=red");
}
if (traverseHiddenNodes(N, Noop, Noop,
[](const ExplodedNode *C) { return C->isSink(); }))
Out.push_back("color=blue");
return llvm::join(Out, ",");
}
static bool isNodeHidden(const ExplodedNode *N) {
return N->isTrivial();
}
static std::string getNodeLabel(const ExplodedNode *N, ExplodedGraph *G){
std::string sbuf;
llvm::raw_string_ostream Out(sbuf);
ProgramStateRef State = N->getState();
// Dump program point for all the previously skipped nodes.
traverseHiddenNodes(
N,
[&](const ExplodedNode *OtherNode) {
OtherNode->getLocation().print(/*CR=*/"\\l", Out);
if (const ProgramPointTag *Tag = OtherNode->getLocation().getTag())
Out << "\\lTag:" << Tag->getTagDescription();
if (N->isSink())
Out << "\\lNode is sink\\l";
if (nodeHasBugReport(N))
Out << "\\lBug report attached\\l";
},
[&](const ExplodedNode *) { Out << "\\l--------\\l"; },
[&](const ExplodedNode *) { return false; });
Out << "\\l\\|";
Out << "StateID: ST" << State->getID() << ", NodeID: N" << N->getID(G)
<< " <" << (const void *)N << ">\\|";
bool SameAsAllPredecessors =
std::all_of(N->pred_begin(), N->pred_end(), [&](const ExplodedNode *P) {
return P->getState() == State;
});
if (!SameAsAllPredecessors)
State->printDOT(Out, N->getLocationContext());
return Out.str();
}
};
} // namespace llvm
#endif
void ExprEngine::ViewGraph(bool trim) {
#ifndef NDEBUG
std::string Filename = DumpGraph(trim);
llvm::DisplayGraph(Filename, false, llvm::GraphProgram::DOT);
#endif
llvm::errs() << "Warning: viewing graph requires assertions" << "\n";
}
void ExprEngine::ViewGraph(ArrayRef<const ExplodedNode*> Nodes) {
#ifndef NDEBUG
std::string Filename = DumpGraph(Nodes);
llvm::DisplayGraph(Filename, false, llvm::GraphProgram::DOT);
#endif
llvm::errs() << "Warning: viewing graph requires assertions" << "\n";
}
std::string ExprEngine::DumpGraph(bool trim, StringRef Filename) {
#ifndef NDEBUG
if (trim) {
std::vector<const ExplodedNode *> Src;
// Iterate through the reports and get their nodes.
for (BugReporter::EQClasses_iterator
EI = BR.EQClasses_begin(), EE = BR.EQClasses_end(); EI != EE; ++EI) {
const auto *N = const_cast<ExplodedNode *>(EI->begin()->getErrorNode());
if (N) Src.push_back(N);
}
return DumpGraph(Src, Filename);
} else {
return llvm::WriteGraph(&G, "ExprEngine", /*ShortNames=*/false,
/*Title=*/"Exploded Graph", /*Filename=*/Filename);
}
#endif
llvm::errs() << "Warning: dumping graph requires assertions" << "\n";
return "";
}
std::string ExprEngine::DumpGraph(ArrayRef<const ExplodedNode*> Nodes,
StringRef Filename) {
#ifndef NDEBUG
std::unique_ptr<ExplodedGraph> TrimmedG(G.trim(Nodes));
if (!TrimmedG.get()) {
llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n";
} else {
return llvm::WriteGraph(TrimmedG.get(), "TrimmedExprEngine",
/*ShortNames=*/false,
/*Title=*/"Trimmed Exploded Graph",
/*Filename=*/Filename);
}
#endif
llvm::errs() << "Warning: dumping graph requires assertions" << "\n";
return "";
}
void *ProgramStateTrait<ReplayWithoutInlining>::GDMIndex() {
static int index = 0;
return &index;
}