teak-llvm/clang/lib/StaticAnalyzer/Core/LoopUnrolling.cpp
Artem Dergachev 4e53032d9b [CFG] NFC: Remove implicit conversion from CFGTerminator to Stmt *.
Turn it into a variant class instead. This conversion does indeed save some code
but there's a plan to add support for more kinds of terminators that aren't
necessarily based on statements, and with those in mind it becomes more and more
confusing to have CFGTerminators implicitly convertible to a Stmt *.

Differential Revision: https://reviews.llvm.org/D61814

llvm-svn: 361586
2019-05-24 01:34:22 +00:00

294 lines
11 KiB
C++

//===--- LoopUnrolling.cpp - Unroll loops -----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This file contains functions which are used to decide if a loop worth to be
/// unrolled. Moreover, these functions manages the stack of loop which is
/// tracked by the ProgramState.
///
//===----------------------------------------------------------------------===//
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/LoopUnrolling.h"
using namespace clang;
using namespace ento;
using namespace clang::ast_matchers;
static const int MAXIMUM_STEP_UNROLLED = 128;
struct LoopState {
private:
enum Kind { Normal, Unrolled } K;
const Stmt *LoopStmt;
const LocationContext *LCtx;
unsigned maxStep;
LoopState(Kind InK, const Stmt *S, const LocationContext *L, unsigned N)
: K(InK), LoopStmt(S), LCtx(L), maxStep(N) {}
public:
static LoopState getNormal(const Stmt *S, const LocationContext *L,
unsigned N) {
return LoopState(Normal, S, L, N);
}
static LoopState getUnrolled(const Stmt *S, const LocationContext *L,
unsigned N) {
return LoopState(Unrolled, S, L, N);
}
bool isUnrolled() const { return K == Unrolled; }
unsigned getMaxStep() const { return maxStep; }
const Stmt *getLoopStmt() const { return LoopStmt; }
const LocationContext *getLocationContext() const { return LCtx; }
bool operator==(const LoopState &X) const {
return K == X.K && LoopStmt == X.LoopStmt;
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddInteger(K);
ID.AddPointer(LoopStmt);
ID.AddPointer(LCtx);
ID.AddInteger(maxStep);
}
};
// The tracked stack of loops. The stack indicates that which loops the
// simulated element contained by. The loops are marked depending if we decided
// to unroll them.
// TODO: The loop stack should not need to be in the program state since it is
// lexical in nature. Instead, the stack of loops should be tracked in the
// LocationContext.
REGISTER_LIST_WITH_PROGRAMSTATE(LoopStack, LoopState)
namespace clang {
namespace ento {
static bool isLoopStmt(const Stmt *S) {
return S && (isa<ForStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S));
}
ProgramStateRef processLoopEnd(const Stmt *LoopStmt, ProgramStateRef State) {
auto LS = State->get<LoopStack>();
if (!LS.isEmpty() && LS.getHead().getLoopStmt() == LoopStmt)
State = State->set<LoopStack>(LS.getTail());
return State;
}
static internal::Matcher<Stmt> simpleCondition(StringRef BindName) {
return binaryOperator(anyOf(hasOperatorName("<"), hasOperatorName(">"),
hasOperatorName("<="), hasOperatorName(">="),
hasOperatorName("!=")),
hasEitherOperand(ignoringParenImpCasts(declRefExpr(
to(varDecl(hasType(isInteger())).bind(BindName))))),
hasEitherOperand(ignoringParenImpCasts(
integerLiteral().bind("boundNum"))))
.bind("conditionOperator");
}
static internal::Matcher<Stmt>
changeIntBoundNode(internal::Matcher<Decl> VarNodeMatcher) {
return anyOf(
unaryOperator(anyOf(hasOperatorName("--"), hasOperatorName("++")),
hasUnaryOperand(ignoringParenImpCasts(
declRefExpr(to(varDecl(VarNodeMatcher)))))),
binaryOperator(isAssignmentOperator(),
hasLHS(ignoringParenImpCasts(
declRefExpr(to(varDecl(VarNodeMatcher)))))));
}
static internal::Matcher<Stmt>
callByRef(internal::Matcher<Decl> VarNodeMatcher) {
return callExpr(forEachArgumentWithParam(
declRefExpr(to(varDecl(VarNodeMatcher))),
parmVarDecl(hasType(references(qualType(unless(isConstQualified())))))));
}
static internal::Matcher<Stmt>
assignedToRef(internal::Matcher<Decl> VarNodeMatcher) {
return declStmt(hasDescendant(varDecl(
allOf(hasType(referenceType()),
hasInitializer(anyOf(
initListExpr(has(declRefExpr(to(varDecl(VarNodeMatcher))))),
declRefExpr(to(varDecl(VarNodeMatcher)))))))));
}
static internal::Matcher<Stmt>
getAddrTo(internal::Matcher<Decl> VarNodeMatcher) {
return unaryOperator(
hasOperatorName("&"),
hasUnaryOperand(declRefExpr(hasDeclaration(VarNodeMatcher))));
}
static internal::Matcher<Stmt> hasSuspiciousStmt(StringRef NodeName) {
return hasDescendant(stmt(
anyOf(gotoStmt(), switchStmt(), returnStmt(),
// Escaping and not known mutation of the loop counter is handled
// by exclusion of assigning and address-of operators and
// pass-by-ref function calls on the loop counter from the body.
changeIntBoundNode(equalsBoundNode(NodeName)),
callByRef(equalsBoundNode(NodeName)),
getAddrTo(equalsBoundNode(NodeName)),
assignedToRef(equalsBoundNode(NodeName)))));
}
static internal::Matcher<Stmt> forLoopMatcher() {
return forStmt(
hasCondition(simpleCondition("initVarName")),
// Initialization should match the form: 'int i = 6' or 'i = 42'.
hasLoopInit(
anyOf(declStmt(hasSingleDecl(
varDecl(allOf(hasInitializer(ignoringParenImpCasts(
integerLiteral().bind("initNum"))),
equalsBoundNode("initVarName"))))),
binaryOperator(hasLHS(declRefExpr(to(varDecl(
equalsBoundNode("initVarName"))))),
hasRHS(ignoringParenImpCasts(
integerLiteral().bind("initNum")))))),
// Incrementation should be a simple increment or decrement
// operator call.
hasIncrement(unaryOperator(
anyOf(hasOperatorName("++"), hasOperatorName("--")),
hasUnaryOperand(declRefExpr(
to(varDecl(allOf(equalsBoundNode("initVarName"),
hasType(isInteger())))))))),
unless(hasBody(hasSuspiciousStmt("initVarName")))).bind("forLoop");
}
static bool isPossiblyEscaped(const VarDecl *VD, ExplodedNode *N) {
// Global variables assumed as escaped variables.
if (VD->hasGlobalStorage())
return true;
while (!N->pred_empty()) {
const Stmt *S = PathDiagnosticLocation::getStmt(N);
if (!S) {
N = N->getFirstPred();
continue;
}
if (const DeclStmt *DS = dyn_cast<DeclStmt>(S)) {
for (const Decl *D : DS->decls()) {
// Once we reach the declaration of the VD we can return.
if (D->getCanonicalDecl() == VD)
return false;
}
}
// Check the usage of the pass-by-ref function calls and adress-of operator
// on VD and reference initialized by VD.
ASTContext &ASTCtx =
N->getLocationContext()->getAnalysisDeclContext()->getASTContext();
auto Match =
match(stmt(anyOf(callByRef(equalsNode(VD)), getAddrTo(equalsNode(VD)),
assignedToRef(equalsNode(VD)))),
*S, ASTCtx);
if (!Match.empty())
return true;
N = N->getFirstPred();
}
llvm_unreachable("Reached root without finding the declaration of VD");
}
bool shouldCompletelyUnroll(const Stmt *LoopStmt, ASTContext &ASTCtx,
ExplodedNode *Pred, unsigned &maxStep) {
if (!isLoopStmt(LoopStmt))
return false;
// TODO: Match the cases where the bound is not a concrete literal but an
// integer with known value
auto Matches = match(forLoopMatcher(), *LoopStmt, ASTCtx);
if (Matches.empty())
return false;
auto CounterVar = Matches[0].getNodeAs<VarDecl>("initVarName");
llvm::APInt BoundNum =
Matches[0].getNodeAs<IntegerLiteral>("boundNum")->getValue();
llvm::APInt InitNum =
Matches[0].getNodeAs<IntegerLiteral>("initNum")->getValue();
auto CondOp = Matches[0].getNodeAs<BinaryOperator>("conditionOperator");
if (InitNum.getBitWidth() != BoundNum.getBitWidth()) {
InitNum = InitNum.zextOrSelf(BoundNum.getBitWidth());
BoundNum = BoundNum.zextOrSelf(InitNum.getBitWidth());
}
if (CondOp->getOpcode() == BO_GE || CondOp->getOpcode() == BO_LE)
maxStep = (BoundNum - InitNum + 1).abs().getZExtValue();
else
maxStep = (BoundNum - InitNum).abs().getZExtValue();
// Check if the counter of the loop is not escaped before.
return !isPossiblyEscaped(CounterVar->getCanonicalDecl(), Pred);
}
bool madeNewBranch(ExplodedNode *N, const Stmt *LoopStmt) {
const Stmt *S = nullptr;
while (!N->pred_empty()) {
if (N->succ_size() > 1)
return true;
ProgramPoint P = N->getLocation();
if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>())
S = BE->getBlock()->getTerminatorStmt();
if (S == LoopStmt)
return false;
N = N->getFirstPred();
}
llvm_unreachable("Reached root without encountering the previous step");
}
// updateLoopStack is called on every basic block, therefore it needs to be fast
ProgramStateRef updateLoopStack(const Stmt *LoopStmt, ASTContext &ASTCtx,
ExplodedNode *Pred, unsigned maxVisitOnPath) {
auto State = Pred->getState();
auto LCtx = Pred->getLocationContext();
if (!isLoopStmt(LoopStmt))
return State;
auto LS = State->get<LoopStack>();
if (!LS.isEmpty() && LoopStmt == LS.getHead().getLoopStmt() &&
LCtx == LS.getHead().getLocationContext()) {
if (LS.getHead().isUnrolled() && madeNewBranch(Pred, LoopStmt)) {
State = State->set<LoopStack>(LS.getTail());
State = State->add<LoopStack>(
LoopState::getNormal(LoopStmt, LCtx, maxVisitOnPath));
}
return State;
}
unsigned maxStep;
if (!shouldCompletelyUnroll(LoopStmt, ASTCtx, Pred, maxStep)) {
State = State->add<LoopStack>(
LoopState::getNormal(LoopStmt, LCtx, maxVisitOnPath));
return State;
}
unsigned outerStep = (LS.isEmpty() ? 1 : LS.getHead().getMaxStep());
unsigned innerMaxStep = maxStep * outerStep;
if (innerMaxStep > MAXIMUM_STEP_UNROLLED)
State = State->add<LoopStack>(
LoopState::getNormal(LoopStmt, LCtx, maxVisitOnPath));
else
State = State->add<LoopStack>(
LoopState::getUnrolled(LoopStmt, LCtx, innerMaxStep));
return State;
}
bool isUnrolledState(ProgramStateRef State) {
auto LS = State->get<LoopStack>();
if (LS.isEmpty() || !LS.getHead().isUnrolled())
return false;
return true;
}
}
}