teak-llvm/lldb/source/Plugins/Process/Windows/MiniDump/ProcessWinMiniDump.cpp
Jim Ingham 583bbb1dd4 Change over the broadcaster/listener process to hold shared or weak pointers
to each other.  This should remove some infrequent teardown crashes when the
listener is not the debugger's listener.

Processes now need to take a ListenerSP, not a Listener&.

This required changing over the Process plugin class constructors to take a ListenerSP, instead
of a Listener&.   Other than that there should be no functional change.
 
<rdar://problem/24580184> CrashTracer: [USER] Xcode at …ework: lldb_private::Listener::BroadcasterWillDestruct + 39

llvm-svn: 262863
2016-03-07 21:50:25 +00:00

675 lines
22 KiB
C++

//===-- ProcessWinMiniDump.cpp ----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "ProcessWinMiniDump.h"
#include "lldb/Host/windows/windows.h"
#include <DbgHelp.h>
#include <assert.h>
#include <stdlib.h>
#include <memory>
#include <mutex>
#include "Plugins/DynamicLoader/Windows-DYLD/DynamicLoaderWindowsDYLD.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/State.h"
#include "lldb/Target/DynamicLoader.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/StopInfo.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/UnixSignals.h"
#include "lldb/Utility/LLDBAssert.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include "Plugins/Process/Windows/Common/NtStructures.h"
#include "Plugins/Process/Windows/Common/ProcessWindowsLog.h"
#include "ExceptionRecord.h"
#include "ThreadWinMiniDump.h"
using namespace lldb_private;
// Implementation class for ProcessWinMiniDump encapsulates the Windows-specific
// code, keeping non-portable types out of the header files.
// TODO(amccarth): Determine if we need a mutex for access. Given that this is
// postmortem debugging, I don't think so.
class ProcessWinMiniDump::Impl
{
public:
Impl(const FileSpec &core_file, ProcessWinMiniDump *self);
~Impl();
Error
DoLoadCore();
bool
UpdateThreadList(ThreadList &old_thread_list, ThreadList &new_thread_list);
void
RefreshStateAfterStop();
size_t
DoReadMemory(lldb::addr_t addr, void *buf, size_t size, Error &error);
Error
GetMemoryRegionInfo(lldb::addr_t load_addr, lldb_private::MemoryRegionInfo &info);
private:
// Describes a range of memory captured in the mini dump.
struct Range
{
lldb::addr_t start; // virtual address of the beginning of the range
size_t size; // size of the range in bytes
const uint8_t *ptr; // absolute pointer to the first byte of the range
};
// If the mini dump has a memory range that contains the desired address, it
// returns true with the details of the range in *range_out. Otherwise, it
// returns false.
bool
FindMemoryRange(lldb::addr_t addr, Range *range_out) const;
lldb_private::Error
MapMiniDumpIntoMemory();
lldb_private::ArchSpec
DetermineArchitecture();
void
ReadExceptionRecord();
void
ReadMiscInfo();
void
ReadModuleList();
// A thin wrapper around WinAPI's MiniDumpReadDumpStream to avoid redundant
// checks. If there's a failure (e.g., if the requested stream doesn't exist),
// the function returns nullptr and sets *size_out to 0.
void *
FindDumpStream(unsigned stream_number, size_t *size_out) const;
// Getting a string out of a mini dump is a chore. You're usually given a
// relative virtual address (RVA), which points to a counted string that's in
// Windows Unicode (UTF-16). This wrapper handles all the redirection and
// returns a UTF-8 copy of the string.
std::string
GetMiniDumpString(RVA rva) const;
ProcessWinMiniDump *m_self; // non-owning back pointer
FileSpec m_core_file;
HANDLE m_dump_file; // handle to the open minidump file
HANDLE m_mapping; // handle to the file mapping for the minidump file
void * m_base_addr; // base memory address of the minidump
std::shared_ptr<ExceptionRecord> m_exception_sp;
bool m_is_wow64; // minidump is of a 32-bit process captured with a 64-bit debugger
};
ProcessWinMiniDump::Impl::Impl(const FileSpec &core_file, ProcessWinMiniDump *self)
: m_self(self),
m_core_file(core_file),
m_dump_file(INVALID_HANDLE_VALUE),
m_mapping(NULL),
m_base_addr(nullptr),
m_exception_sp(),
m_is_wow64(false)
{
}
ProcessWinMiniDump::Impl::~Impl()
{
if (m_base_addr)
{
::UnmapViewOfFile(m_base_addr);
m_base_addr = nullptr;
}
if (m_mapping)
{
::CloseHandle(m_mapping);
m_mapping = NULL;
}
if (m_dump_file != INVALID_HANDLE_VALUE)
{
::CloseHandle(m_dump_file);
m_dump_file = INVALID_HANDLE_VALUE;
}
}
Error
ProcessWinMiniDump::Impl::DoLoadCore()
{
Error error = MapMiniDumpIntoMemory();
if (error.Fail())
{
return error;
}
m_self->GetTarget().SetArchitecture(DetermineArchitecture());
ReadMiscInfo(); // notably for process ID
ReadModuleList();
ReadExceptionRecord();
return error;
}
bool
ProcessWinMiniDump::Impl::UpdateThreadList(ThreadList &old_thread_list, ThreadList &new_thread_list)
{
size_t size = 0;
auto thread_list_ptr = static_cast<const MINIDUMP_THREAD_LIST *>(FindDumpStream(ThreadListStream, &size));
if (thread_list_ptr)
{
const ULONG32 thread_count = thread_list_ptr->NumberOfThreads;
for (ULONG32 i = 0; i < thread_count; ++i) {
const auto &mini_dump_thread = thread_list_ptr->Threads[i];
auto thread_sp = std::make_shared<ThreadWinMiniDump>(*m_self, mini_dump_thread.ThreadId);
if (mini_dump_thread.ThreadContext.DataSize >= sizeof(CONTEXT))
{
const CONTEXT *context = reinterpret_cast<const CONTEXT *>(static_cast<const char *>(m_base_addr) +
mini_dump_thread.ThreadContext.Rva);
if (m_is_wow64)
{
// On Windows, a 32-bit process can run on a 64-bit machine under WOW64.
// If the minidump was captured with a 64-bit debugger, then the CONTEXT
// we just grabbed from the mini_dump_thread is the one for the 64-bit
// "native" process rather than the 32-bit "guest" process we care about.
// In this case, we can get the 32-bit CONTEXT from the TEB (Thread
// Environment Block) of the 64-bit process.
Error error;
TEB64 wow64teb = {0};
m_self->ReadMemory(mini_dump_thread.Teb, &wow64teb, sizeof(wow64teb), error);
if (error.Success())
{
// Slot 1 of the thread-local storage in the 64-bit TEB points to a structure
// that includes the 32-bit CONTEXT (after a ULONG).
// See: https://msdn.microsoft.com/en-us/library/ms681670.aspx
const size_t addr = wow64teb.TlsSlots[1];
Range range = {0};
if (FindMemoryRange(addr, &range))
{
lldbassert(range.start <= addr);
const size_t offset = addr - range.start + sizeof(ULONG);
if (offset < range.size)
{
const size_t overlap = range.size - offset;
if (overlap >= sizeof(CONTEXT))
{
context = reinterpret_cast<const CONTEXT *>(range.ptr + offset);
}
}
}
}
// NOTE: We don't currently use the TEB for anything else. If we need it in
// the future, the 32-bit TEB is located according to the address stored in the
// first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
}
thread_sp->SetContext(context);
}
new_thread_list.AddThread(thread_sp);
}
}
return new_thread_list.GetSize(false) > 0;
}
void
ProcessWinMiniDump::Impl::RefreshStateAfterStop()
{
if (!m_exception_sp)
return;
auto active_exception = m_exception_sp;
std::string desc;
llvm::raw_string_ostream desc_stream(desc);
desc_stream << "Exception " << llvm::format_hex(active_exception->GetExceptionCode(), 8)
<< " encountered at address " << llvm::format_hex(active_exception->GetExceptionAddress(), 8);
m_self->m_thread_list.SetSelectedThreadByID(active_exception->GetThreadID());
auto stop_thread = m_self->m_thread_list.GetSelectedThread();
auto stop_info = StopInfo::CreateStopReasonWithException(*stop_thread, desc_stream.str().c_str());
stop_thread->SetStopInfo(stop_info);
}
size_t
ProcessWinMiniDump::Impl::DoReadMemory(lldb::addr_t addr, void *buf, size_t size, Error &error)
{
// I don't have a sense of how frequently this is called or how many memory
// ranges a mini dump typically has, so I'm not sure if searching for the
// appropriate range linearly each time is stupid. Perhaps we should build
// an index for faster lookups.
Range range = {0};
if (!FindMemoryRange(addr, &range))
{
return 0;
}
// There's at least some overlap between the beginning of the desired range
// (addr) and the current range. Figure out where the overlap begins and
// how much overlap there is, then copy it to the destination buffer.
lldbassert(range.start <= addr);
const size_t offset = addr - range.start;
lldbassert(offset < range.size);
const size_t overlap = std::min(size, range.size - offset);
std::memcpy(buf, range.ptr + offset, overlap);
return overlap;
}
Error
ProcessWinMiniDump::Impl::GetMemoryRegionInfo(lldb::addr_t load_addr, lldb_private::MemoryRegionInfo &info)
{
Error error;
size_t size;
const auto list = reinterpret_cast<const MINIDUMP_MEMORY_INFO_LIST *>(FindDumpStream(MemoryInfoListStream, &size));
if (list == nullptr || size < sizeof(MINIDUMP_MEMORY_INFO_LIST))
{
error.SetErrorString("the mini dump contains no memory range information");
return error;
}
if (list->SizeOfEntry < sizeof(MINIDUMP_MEMORY_INFO))
{
error.SetErrorString("the entries in the mini dump memory info list are smaller than expected");
return error;
}
if (size < list->SizeOfHeader + list->SizeOfEntry * list->NumberOfEntries)
{
error.SetErrorString("the mini dump memory info list is incomplete");
return error;
}
for (int i = 0; i < list->NumberOfEntries; ++i)
{
const auto entry = reinterpret_cast<const MINIDUMP_MEMORY_INFO *>(reinterpret_cast<const char *>(list) +
list->SizeOfHeader + i * list->SizeOfEntry);
const auto head = entry->BaseAddress;
const auto tail = head + entry->RegionSize;
if (head <= load_addr && load_addr < tail)
{
info.SetReadable(IsPageReadable(entry->Protect) ? MemoryRegionInfo::eYes : MemoryRegionInfo::eNo);
info.SetWritable(IsPageWritable(entry->Protect) ? MemoryRegionInfo::eYes : MemoryRegionInfo::eNo);
info.SetExecutable(IsPageExecutable(entry->Protect) ? MemoryRegionInfo::eYes : MemoryRegionInfo::eNo);
return error;
}
}
// Note that the memory info list doesn't seem to contain ranges in kernel space,
// so if you're walking a stack that has kernel frames, the stack may appear
// truncated.
error.SetErrorString("address is not in a known range");
return error;
}
bool
ProcessWinMiniDump::Impl::FindMemoryRange(lldb::addr_t addr, Range *range_out) const
{
size_t stream_size = 0;
auto mem_list_stream = static_cast<const MINIDUMP_MEMORY_LIST *>(FindDumpStream(MemoryListStream, &stream_size));
if (mem_list_stream)
{
for (ULONG32 i = 0; i < mem_list_stream->NumberOfMemoryRanges; ++i)
{
const MINIDUMP_MEMORY_DESCRIPTOR &mem_desc = mem_list_stream->MemoryRanges[i];
const MINIDUMP_LOCATION_DESCRIPTOR &loc_desc = mem_desc.Memory;
const lldb::addr_t range_start = mem_desc.StartOfMemoryRange;
const size_t range_size = loc_desc.DataSize;
if (range_start <= addr && addr < range_start + range_size)
{
range_out->start = range_start;
range_out->size = range_size;
range_out->ptr = reinterpret_cast<const uint8_t *>(m_base_addr) + loc_desc.Rva;
return true;
}
}
}
// Some mini dumps have a Memory64ListStream that captures all the heap
// memory. We can't exactly use the same loop as above, because the mini
// dump uses slightly different data structures to describe those.
auto mem_list64_stream = static_cast<const MINIDUMP_MEMORY64_LIST *>(FindDumpStream(Memory64ListStream, &stream_size));
if (mem_list64_stream)
{
size_t base_rva = mem_list64_stream->BaseRva;
for (ULONG32 i = 0; i < mem_list64_stream->NumberOfMemoryRanges; ++i) {
const MINIDUMP_MEMORY_DESCRIPTOR64 &mem_desc = mem_list64_stream->MemoryRanges[i];
const lldb::addr_t range_start = mem_desc.StartOfMemoryRange;
const size_t range_size = mem_desc.DataSize;
if (range_start <= addr && addr < range_start + range_size)
{
range_out->start = range_start;
range_out->size = range_size;
range_out->ptr = reinterpret_cast<const uint8_t *>(m_base_addr) + base_rva;
return true;
}
base_rva += range_size;
}
}
return false;
}
Error
ProcessWinMiniDump::Impl::MapMiniDumpIntoMemory()
{
Error error;
const char *file = m_core_file.GetCString();
m_dump_file = ::CreateFile(file, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (m_dump_file == INVALID_HANDLE_VALUE)
{
error.SetError(::GetLastError(), lldb::eErrorTypeWin32);
return error;
}
m_mapping = ::CreateFileMapping(m_dump_file, NULL, PAGE_READONLY, 0, 0, NULL);
if (m_mapping == NULL)
{
error.SetError(::GetLastError(), lldb::eErrorTypeWin32);
return error;
}
m_base_addr = ::MapViewOfFile(m_mapping, FILE_MAP_READ, 0, 0, 0);
if (m_base_addr == nullptr)
{
error.SetError(::GetLastError(), lldb::eErrorTypeWin32);
return error;
}
return error;
}
ArchSpec
ProcessWinMiniDump::Impl::DetermineArchitecture()
{
size_t size = 0;
auto system_info_ptr = static_cast<const MINIDUMP_SYSTEM_INFO *>(FindDumpStream(SystemInfoStream, &size));
if (system_info_ptr)
{
switch (system_info_ptr->ProcessorArchitecture)
{
case PROCESSOR_ARCHITECTURE_INTEL:
return ArchSpec(eArchTypeCOFF, IMAGE_FILE_MACHINE_I386, LLDB_INVALID_CPUTYPE);
case PROCESSOR_ARCHITECTURE_AMD64:
return ArchSpec(eArchTypeCOFF, IMAGE_FILE_MACHINE_AMD64, LLDB_INVALID_CPUTYPE);
default:
break;
}
}
return ArchSpec(); // invalid or unknown
}
void
ProcessWinMiniDump::Impl::ReadExceptionRecord()
{
size_t size = 0;
auto exception_stream_ptr = static_cast<MINIDUMP_EXCEPTION_STREAM*>(FindDumpStream(ExceptionStream, &size));
if (exception_stream_ptr)
{
m_exception_sp.reset(
new ExceptionRecord(exception_stream_ptr->ExceptionRecord, exception_stream_ptr->ThreadId));
}
else
{
WINLOG_IFALL(WINDOWS_LOG_PROCESS, "Minidump has no exception record.");
// TODO: See if we can recover the exception from the TEB.
}
}
void
ProcessWinMiniDump::Impl::ReadMiscInfo()
{
size_t size = 0;
const auto misc_info_ptr = static_cast<MINIDUMP_MISC_INFO*>(FindDumpStream(MiscInfoStream, &size));
if (!misc_info_ptr || size < sizeof(MINIDUMP_MISC_INFO)) {
return;
}
if ((misc_info_ptr->Flags1 & MINIDUMP_MISC1_PROCESS_ID) != 0) {
// This misc info record has the process ID.
m_self->SetID(misc_info_ptr->ProcessId);
}
}
void
ProcessWinMiniDump::Impl::ReadModuleList()
{
size_t size = 0;
auto module_list_ptr = static_cast<MINIDUMP_MODULE_LIST*>(FindDumpStream(ModuleListStream, &size));
if (!module_list_ptr || module_list_ptr->NumberOfModules == 0)
{
return;
}
for (ULONG32 i = 0; i < module_list_ptr->NumberOfModules; ++i)
{
const auto &module = module_list_ptr->Modules[i];
const auto file_name = GetMiniDumpString(module.ModuleNameRva);
const auto file_spec = FileSpec(file_name, true);
if (FileSpec::Compare(file_spec, FileSpec("wow64.dll", false), false) == 0)
{
WINLOG_IFALL(WINDOWS_LOG_PROCESS, "Minidump is for a WOW64 process.");
m_is_wow64 = true;
}
ModuleSpec module_spec = file_spec;
lldb::ModuleSP module_sp = m_self->GetTarget().GetSharedModule(module_spec);
if (!module_sp)
{
continue;
}
bool load_addr_changed = false;
module_sp->SetLoadAddress(m_self->GetTarget(), module.BaseOfImage, false, load_addr_changed);
}
}
void *
ProcessWinMiniDump::Impl::FindDumpStream(unsigned stream_number, size_t *size_out) const
{
void *stream = nullptr;
*size_out = 0;
MINIDUMP_DIRECTORY *dir = nullptr;
if (::MiniDumpReadDumpStream(m_base_addr, stream_number, &dir, nullptr, nullptr) && dir != nullptr &&
dir->Location.DataSize > 0)
{
assert(dir->StreamType == stream_number);
*size_out = dir->Location.DataSize;
stream = static_cast<void *>(static_cast<char *>(m_base_addr) + dir->Location.Rva);
}
return stream;
}
std::string
ProcessWinMiniDump::Impl::GetMiniDumpString(RVA rva) const
{
std::string result;
if (!m_base_addr)
{
return result;
}
auto md_string = reinterpret_cast<const MINIDUMP_STRING *>(static_cast<const char *>(m_base_addr) + rva);
auto source_start = reinterpret_cast<const UTF16 *>(md_string->Buffer);
const auto source_length = ::wcslen(md_string->Buffer);
const auto source_end = source_start + source_length;
result.resize(4 * source_length); // worst case length
auto result_start = reinterpret_cast<UTF8 *>(&result[0]);
const auto result_end = result_start + result.size();
ConvertUTF16toUTF8(&source_start, source_end, &result_start, result_end, strictConversion);
const auto result_size = std::distance(reinterpret_cast<UTF8 *>(&result[0]), result_start);
result.resize(result_size); // shrink to actual length
return result;
}
ConstString
ProcessWinMiniDump::GetPluginNameStatic()
{
static ConstString g_name("win-minidump");
return g_name;
}
const char *
ProcessWinMiniDump::GetPluginDescriptionStatic()
{
return "Windows minidump plug-in.";
}
void
ProcessWinMiniDump::Terminate()
{
PluginManager::UnregisterPlugin(ProcessWinMiniDump::CreateInstance);
}
lldb::ProcessSP
ProcessWinMiniDump::CreateInstance(lldb::TargetSP target_sp, lldb::ListenerSP listener_sp, const FileSpec *crash_file)
{
lldb::ProcessSP process_sp;
if (crash_file)
{
process_sp.reset(new ProcessWinMiniDump(target_sp, listener, *crash_file));
}
return process_sp;
}
bool
ProcessWinMiniDump::CanDebug(lldb::TargetSP target_sp, bool plugin_specified_by_name)
{
// TODO(amccarth): Eventually, this needs some actual logic.
return true;
}
ProcessWinMiniDump::ProcessWinMiniDump(lldb::TargetSP target_sp, lldb::ListenerSP listener_sp, const FileSpec &core_file)
: ProcessWindows(target_sp, listener_sp), m_impl_up(new Impl(core_file, this))
{
}
ProcessWinMiniDump::~ProcessWinMiniDump()
{
Clear();
// We need to call finalize on the process before destroying ourselves
// to make sure all of the broadcaster cleanup goes as planned. If we
// destruct this class, then Process::~Process() might have problems
// trying to fully destroy the broadcaster.
Finalize();
}
ConstString
ProcessWinMiniDump::GetPluginName()
{
return GetPluginNameStatic();
}
uint32_t
ProcessWinMiniDump::GetPluginVersion()
{
return 1;
}
Error
ProcessWinMiniDump::DoLoadCore()
{
return m_impl_up->DoLoadCore();
}
DynamicLoader *
ProcessWinMiniDump::GetDynamicLoader()
{
if (m_dyld_ap.get() == NULL)
m_dyld_ap.reset(DynamicLoader::FindPlugin(this, DynamicLoaderWindowsDYLD::GetPluginNameStatic().GetCString()));
return m_dyld_ap.get();
}
bool
ProcessWinMiniDump::UpdateThreadList(ThreadList &old_thread_list, ThreadList &new_thread_list)
{
return m_impl_up->UpdateThreadList(old_thread_list, new_thread_list);
}
void
ProcessWinMiniDump::RefreshStateAfterStop()
{
if (!m_impl_up)
return;
return m_impl_up->RefreshStateAfterStop();
}
Error
ProcessWinMiniDump::DoDestroy()
{
return Error();
}
bool
ProcessWinMiniDump::IsAlive()
{
return true;
}
bool
ProcessWinMiniDump::WarnBeforeDetach() const
{
// Since this is post-mortem debugging, there's no need to warn the user
// that quitting the debugger will terminate the process.
return false;
}
size_t
ProcessWinMiniDump::ReadMemory(lldb::addr_t addr, void *buf, size_t size, Error &error)
{
// Don't allow the caching that lldb_private::Process::ReadMemory does
// since we have it all cached our our dump file anyway.
return DoReadMemory(addr, buf, size, error);
}
size_t
ProcessWinMiniDump::DoReadMemory(lldb::addr_t addr, void *buf, size_t size, Error &error)
{
return m_impl_up->DoReadMemory(addr, buf, size, error);
}
Error
ProcessWinMiniDump::GetMemoryRegionInfo(lldb::addr_t load_addr, lldb_private::MemoryRegionInfo &info)
{
return m_impl_up->GetMemoryRegionInfo(load_addr, info);
}
void
ProcessWinMiniDump::Clear()
{
m_thread_list.Clear();
}
void
ProcessWinMiniDump::Initialize()
{
static std::once_flag g_once_flag;
std::call_once(g_once_flag, []() {
PluginManager::RegisterPlugin(GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance);
});
}
ArchSpec
ProcessWinMiniDump::GetArchitecture()
{
// TODO
return ArchSpec();
}