teak-llvm/llvm/lib/Transforms/Utils/ASanStackFrameLayout.cpp
Kostya Serebryany 4fb7801b3f [asan] rewrite asan's stack frame layout
Summary:
Rewrite asan's stack frame layout.
First, most of the stack layout logic is moved into a separte file
to make it more testable and (potentially) useful for other projects.
Second, make the frames more compact by using adaptive redzones
(smaller for small objects, larger for large objects).
Third, try to minimized gaps due to large alignments (this is hypothetical since
today we don't see many stack vars aligned by more than 32).

The frames indeed become more compact, but I'll still need to run more benchmarks
before committing, but I am sking for review now to get early feedback.

This change will be accompanied by a trivial change in compiler-rt tests
to match the new frame sizes.

Reviewers: samsonov, dvyukov

Reviewed By: samsonov

CC: llvm-commits

Differential Revision: http://llvm-reviews.chandlerc.com/D2324

llvm-svn: 196568
2013-12-06 09:00:17 +00:00

114 lines
4.6 KiB
C++

//===-- ASanStackFrameLayout.cpp - helper for AddressSanitizer ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Definition of ComputeASanStackFrameLayout (see ASanStackFrameLayout.h).
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
namespace llvm {
// We sort the stack variables by alignment (largest first) to minimize
// unnecessary large gaps due to alignment.
// It is tempting to also sort variables by size so that larger variables
// have larger redzones at both ends. But reordering will make report analysis
// harder, especially when temporary unnamed variables are present.
// So, until we can provide more information (type, line number, etc)
// for the stack variables we avoid reordering them too much.
static inline bool CompareVars(const ASanStackVariableDescription &a,
const ASanStackVariableDescription &b) {
return a.Alignment > b.Alignment;
}
// We also force minimal alignment for all vars to kMinAlignment so that vars
// with e.g. alignment 1 and alignment 16 do not get reordered by CompareVars.
static const size_t kMinAlignment = 16;
static size_t RoundUpTo(size_t X, size_t RoundTo) {
assert((RoundTo & (RoundTo - 1)) == 0);
return (X + RoundTo - 1) & ~(RoundTo - 1);
}
// The larger the variable Size the larger is the redzone.
// The resulting frame size is a multiple of Alignment.
static size_t VarAndRedzoneSize(size_t Size, size_t Alignment) {
size_t Res = 0;
if (Size <= 4) Res = 16;
else if (Size <= 16) Res = 32;
else if (Size <= 128) Res = Size + 32;
else if (Size <= 512) Res = Size + 64;
else if (Size <= 4096) Res = Size + 128;
else Res = Size + 256;
return RoundUpTo(Res, Alignment);
}
void
ComputeASanStackFrameLayout(SmallVectorImpl<ASanStackVariableDescription> &Vars,
size_t Granularity, size_t MinHeaderSize,
ASanStackFrameLayout *Layout) {
assert(Granularity >= 8 && Granularity <= 64 &&
(Granularity & (Granularity - 1)) == 0);
assert(MinHeaderSize >= 16 && (MinHeaderSize & (MinHeaderSize - 1)) == 0 &&
MinHeaderSize >= Granularity);
size_t NumVars = Vars.size();
assert(NumVars > 0);
for (size_t i = 0; i < NumVars; i++)
Vars[i].Alignment = std::max(Vars[i].Alignment, kMinAlignment);
std::stable_sort(Vars.begin(), Vars.end(), CompareVars);
SmallString<2048> StackDescriptionStorage;
raw_svector_ostream StackDescription(StackDescriptionStorage);
StackDescription << NumVars;
Layout->FrameAlignment = std::max(Granularity, Vars[0].Alignment);
SmallVector<uint8_t, 64> &SB(Layout->ShadowBytes);
SB.clear();
size_t Offset = std::max(std::max(MinHeaderSize, Granularity),
Vars[0].Alignment);
assert((Offset % Granularity) == 0);
SB.insert(SB.end(), Offset / Granularity, kAsanStackLeftRedzoneMagic);
for (size_t i = 0; i < NumVars; i++) {
bool IsLast = i == NumVars - 1;
size_t Alignment = std::max(Granularity, Vars[i].Alignment);
size_t Size = Vars[i].Size;
const char *Name = Vars[i].Name;
assert((Alignment & (Alignment - 1)) == 0);
assert(Layout->FrameAlignment >= Alignment);
assert((Offset % Alignment) == 0);
assert(Size > 0);
StackDescription << " " << Offset << " " << Size << " " << strlen(Name)
<< " " << Name;
size_t NextAlignment = IsLast ? Granularity
: std::max(Granularity, Vars[i + 1].Alignment);
size_t SizeWithRedzone = VarAndRedzoneSize(Vars[i].Size, NextAlignment);
SB.insert(SB.end(), Size / Granularity, 0);
if (Size % Granularity)
SB.insert(SB.end(), Size % Granularity);
SB.insert(SB.end(), (SizeWithRedzone - Size) / Granularity,
IsLast ? kAsanStackRightRedzoneMagic
: kAsanStackMidRedzoneMagic);
Vars[i].Offset = Offset;
Offset += SizeWithRedzone;
}
if (Offset % MinHeaderSize) {
size_t ExtraRedzone = MinHeaderSize - (Offset % MinHeaderSize);
SB.insert(SB.end(), ExtraRedzone / Granularity,
kAsanStackRightRedzoneMagic);
Offset += ExtraRedzone;
}
Layout->DescriptionString = StackDescription.str();
Layout->FrameSize = Offset;
assert((Layout->FrameSize % MinHeaderSize) == 0);
assert(Layout->FrameSize / Granularity == Layout->ShadowBytes.size());
}
} // llvm namespace