teak-llvm/llvm/tools/llvm-mca/Scheduler.cpp
Andrea Di Biagio 4704f0386b [llvm-mca] Move the routine that computes processor resource masks to its own file.
Function computeProcResourceMasks is used by the ResourceManager (owned by the
Scheduler) to compute resource masks for processor resources.  Before this
refactoring, there was an implicit dependency between the Scheduler and the
InstrBuilder. That is because InstrBuilder has to know about resource masks when
computing the set of processor resources consumed by a new instruction.

With this patch, the functionality that computes resource masks has been
extracted from the ResourceManager, and moved to a separate file (Support.h). 
This helps removing the dependency between the Scheduler and the InstrBuilder.

No functional change intended.

llvm-svn: 327973
2018-03-20 12:25:54 +00:00

450 lines
15 KiB
C++

//===--------------------- Scheduler.cpp ------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// A scheduler for processor resource units and processor resource groups.
//
//===----------------------------------------------------------------------===//
#include "Backend.h"
#include "HWEventListener.h"
#include "Scheduler.h"
#include "Support.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "llvm-mca"
namespace mca {
using namespace llvm;
uint64_t ResourceState::selectNextInSequence() {
assert(isReady());
uint64_t Next = getNextInSequence();
while (!isSubResourceReady(Next)) {
updateNextInSequence();
Next = getNextInSequence();
}
return Next;
}
#ifndef NDEBUG
void ResourceState::dump() const {
dbgs() << "MASK: " << ResourceMask << ", SIZE_MASK: " << ResourceSizeMask
<< ", NEXT: " << NextInSequenceMask << ", RDYMASK: " << ReadyMask
<< ", BufferSize=" << BufferSize
<< ", AvailableSlots=" << AvailableSlots
<< ", Reserved=" << Unavailable << '\n';
}
#endif
void ResourceManager::initialize(const llvm::MCSchedModel &SM) {
computeProcResourceMasks(SM, ProcResID2Mask);
for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I)
addResource(*SM.getProcResource(I), I, ProcResID2Mask[I]);
}
// Adds a new resource state in Resources, as well as a new descriptor in
// ResourceDescriptor. Map 'Resources' allows to quickly obtain ResourceState
// objects from resource mask identifiers.
void ResourceManager::addResource(const MCProcResourceDesc &Desc,
unsigned Index, uint64_t Mask) {
assert(Resources.find(Mask) == Resources.end() && "Resource already added!");
Resources[Mask] = llvm::make_unique<ResourceState>(Desc, Index, Mask);
}
// Returns the actual resource consumed by this Use.
// First, is the primary resource ID.
// Second, is the specific sub-resource ID.
std::pair<uint64_t, uint64_t> ResourceManager::selectPipe(uint64_t ResourceID) {
ResourceState &RS = *Resources[ResourceID];
uint64_t SubResourceID = RS.selectNextInSequence();
if (RS.isAResourceGroup())
return selectPipe(SubResourceID);
return std::pair<uint64_t, uint64_t>(ResourceID, SubResourceID);
}
void ResourceState::removeFromNextInSequence(uint64_t ID) {
assert(NextInSequenceMask);
assert(countPopulation(ID) == 1);
if (ID > getNextInSequence())
RemovedFromNextInSequence |= ID;
NextInSequenceMask = NextInSequenceMask & (~ID);
if (!NextInSequenceMask) {
NextInSequenceMask = ResourceSizeMask;
assert(NextInSequenceMask != RemovedFromNextInSequence);
NextInSequenceMask ^= RemovedFromNextInSequence;
RemovedFromNextInSequence = 0;
}
}
void ResourceManager::use(ResourceRef RR) {
// Mark the sub-resource referenced by RR as used.
ResourceState &RS = *Resources[RR.first];
RS.markSubResourceAsUsed(RR.second);
// If there are still available units in RR.first,
// then we are done.
if (RS.isReady())
return;
// Notify to other resources that RR.first is no longer available.
for (const std::pair<uint64_t, UniqueResourceState> &Res : Resources) {
ResourceState &Current = *Res.second.get();
if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first)
continue;
if (Current.containsResource(RR.first)) {
Current.markSubResourceAsUsed(RR.first);
Current.removeFromNextInSequence(RR.first);
}
}
}
void ResourceManager::release(ResourceRef RR) {
ResourceState &RS = *Resources[RR.first];
bool WasFullyUsed = !RS.isReady();
RS.releaseSubResource(RR.second);
if (!WasFullyUsed)
return;
for (const std::pair<uint64_t, UniqueResourceState> &Res : Resources) {
ResourceState &Current = *Res.second.get();
if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first)
continue;
if (Current.containsResource(RR.first))
Current.releaseSubResource(RR.first);
}
}
ResourceStateEvent
ResourceManager::canBeDispatched(const ArrayRef<uint64_t> Buffers) const {
ResourceStateEvent Result = ResourceStateEvent::RS_BUFFER_AVAILABLE;
for (uint64_t Buffer : Buffers) {
Result = isBufferAvailable(Buffer);
if (Result != ResourceStateEvent::RS_BUFFER_AVAILABLE)
break;
}
return Result;
}
void ResourceManager::reserveBuffers(const ArrayRef<uint64_t> Buffers) {
for (const uint64_t R : Buffers) {
reserveBuffer(R);
ResourceState &Resource = *Resources[R];
if (Resource.isADispatchHazard()) {
assert(!Resource.isReserved());
Resource.setReserved();
}
}
}
void ResourceManager::releaseBuffers(const ArrayRef<uint64_t> Buffers) {
for (const uint64_t R : Buffers)
releaseBuffer(R);
}
bool ResourceManager::canBeIssued(const InstrDesc &Desc) const {
return std::all_of(Desc.Resources.begin(), Desc.Resources.end(),
[&](const std::pair<uint64_t, const ResourceUsage> &E) {
unsigned NumUnits =
E.second.isReserved() ? 0U : E.second.NumUnits;
return isReady(E.first, NumUnits);
});
}
// Returns true if all resources are in-order, and there is at least one
// resource which is a dispatch hazard (BufferSize = 0).
bool ResourceManager::mustIssueImmediately(const InstrDesc &Desc) {
if (!canBeIssued(Desc))
return false;
bool AllInOrderResources = std::all_of(
Desc.Buffers.begin(), Desc.Buffers.end(), [&](const unsigned BufferMask) {
const ResourceState &Resource = *Resources[BufferMask];
return Resource.isInOrder() || Resource.isADispatchHazard();
});
if (!AllInOrderResources)
return false;
return std::any_of(Desc.Buffers.begin(), Desc.Buffers.end(),
[&](const unsigned BufferMask) {
return Resources[BufferMask]->isADispatchHazard();
});
}
void ResourceManager::issueInstruction(
unsigned Index, const InstrDesc &Desc,
SmallVectorImpl<std::pair<ResourceRef, unsigned>> &Pipes) {
releaseBuffers(Desc.Buffers);
for (const std::pair<uint64_t, ResourceUsage> &R : Desc.Resources) {
const CycleSegment &CS = R.second.CS;
if (!CS.size()) {
releaseResource(R.first);
continue;
}
assert(CS.begin() == 0 && "Invalid {Start, End} cycles!");
if (!R.second.isReserved()) {
ResourceRef Pipe = selectPipe(R.first);
use(Pipe);
BusyResources[Pipe] += CS.size();
// Replace the resource mask with a valid processor resource index.
const ResourceState &RS = *Resources[Pipe.first];
Pipe.first = RS.getProcResourceID();
Pipes.emplace_back(std::pair<ResourceRef, unsigned>(Pipe, CS.size()));
} else {
assert((countPopulation(R.first) > 1) && "Expected a group!");
// Mark this group as reserved.
assert(R.second.isReserved());
reserveResource(R.first);
BusyResources[ResourceRef(R.first, R.first)] += CS.size();
}
}
}
void ResourceManager::cycleEvent(SmallVectorImpl<ResourceRef> &ResourcesFreed) {
for (std::pair<ResourceRef, unsigned> &BR : BusyResources) {
if (BR.second)
BR.second--;
if (!BR.second) {
// Release this resource.
const ResourceRef &RR = BR.first;
if (countPopulation(RR.first) == 1)
release(RR);
releaseResource(RR.first);
ResourcesFreed.push_back(RR);
}
}
for (const ResourceRef &RF : ResourcesFreed)
BusyResources.erase(RF);
}
void Scheduler::scheduleInstruction(unsigned Idx, Instruction &MCIS) {
assert(WaitQueue.find(Idx) == WaitQueue.end());
assert(ReadyQueue.find(Idx) == ReadyQueue.end());
assert(IssuedQueue.find(Idx) == IssuedQueue.end());
// Special case where MCIS is a zero-latency instruction. A zero-latency
// instruction doesn't consume any scheduler resources. That is because it
// doesn't need to be executed. Most of the times, zero latency instructions
// are removed at register renaming stage. For example, register-register
// moves can be removed at register renaming stage by creating new aliases.
// Zero-idiom instruction (for example: a `xor reg, reg`) can also be
// eliminated at register renaming stage, since we know in advance that those
// clear their output register.
if (MCIS.isZeroLatency()) {
notifyInstructionReady(Idx);
MCIS.forceExecuted();
notifyInstructionIssued(Idx, {});
notifyInstructionExecuted(Idx);
return;
}
// Consume entries in the reservation stations.
const InstrDesc &Desc = MCIS.getDesc();
// Reserve a slot in each buffered resource. Also, mark units with
// BufferSize=0 as reserved. Resources with a buffer size of zero will only be
// released after MCIS is issued, and all the ResourceCycles for those units
// have been consumed.
Resources->reserveBuffers(Desc.Buffers);
bool MayLoad = Desc.MayLoad;
bool MayStore = Desc.MayStore;
if (MayLoad || MayStore)
LSU->reserve(Idx, MayLoad, MayStore, Desc.HasSideEffects);
MCIS.dispatch();
bool IsReady = MCIS.isReady();
if (IsReady && (MayLoad || MayStore))
IsReady &= LSU->isReady(Idx);
if (!IsReady) {
DEBUG(dbgs() << "[SCHEDULER] Adding " << Idx << " to the Wait Queue\n");
WaitQueue[Idx] = &MCIS;
return;
}
notifyInstructionReady(Idx);
// Special case where the instruction is ready, and it uses an in-order
// dispatch/issue processor resource. The instruction is issued immediately to
// the pipelines. Any other in-order buffered resources (i.e. BufferSize=1)
// are consumed.
if (Resources->mustIssueImmediately(Desc)) {
DEBUG(dbgs() << "[SCHEDULER] Instruction " << Idx
<< " issued immediately\n");
return issueInstruction(MCIS, Idx);
}
DEBUG(dbgs() << "[SCHEDULER] Adding " << Idx << " to the Ready Queue\n");
ReadyQueue[Idx] = &MCIS;
}
void Scheduler::cycleEvent(unsigned /* unused */) {
SmallVector<ResourceRef, 8> ResourcesFreed;
Resources->cycleEvent(ResourcesFreed);
for (const ResourceRef &RR : ResourcesFreed)
notifyResourceAvailable(RR);
updateIssuedQueue();
updatePendingQueue();
issue();
}
#ifndef NDEBUG
void Scheduler::dump() const {
dbgs() << "[SCHEDULER]: WaitQueue size is: " << WaitQueue.size() << '\n';
dbgs() << "[SCHEDULER]: ReadyQueue size is: " << ReadyQueue.size() << '\n';
dbgs() << "[SCHEDULER]: IssuedQueue size is: " << IssuedQueue.size() << '\n';
Resources->dump();
}
#endif
Scheduler::Event Scheduler::canBeDispatched(const InstrDesc &Desc) const {
if (Desc.MayLoad && LSU->isLQFull())
return HWS_LD_QUEUE_UNAVAILABLE;
if (Desc.MayStore && LSU->isSQFull())
return HWS_ST_QUEUE_UNAVAILABLE;
Scheduler::Event Event;
switch (Resources->canBeDispatched(Desc.Buffers)) {
case ResourceStateEvent::RS_BUFFER_AVAILABLE:
Event = HWS_AVAILABLE;
break;
case ResourceStateEvent::RS_BUFFER_UNAVAILABLE:
Event = HWS_QUEUE_UNAVAILABLE;
break;
case ResourceStateEvent::RS_RESERVED:
Event = HWS_DISPATCH_GROUP_RESTRICTION;
}
return Event;
}
void Scheduler::issueInstruction(Instruction &IS, unsigned InstrIndex) {
// Issue the instruction and collect all the consumed resources
// into a vector. That vector is then used to notify the listener.
// Most instructions consume very few resurces (typically one or
// two resources). We use a small vector here, and conservatively
// initialize its capacity to 4. This should address the majority of
// the cases.
SmallVector<std::pair<ResourceRef, unsigned>, 4> UsedResources;
const InstrDesc &D = IS.getDesc();
Resources->issueInstruction(InstrIndex, D, UsedResources);
// Notify the instruction that it started executing.
// This updates the internal state of each write.
IS.execute();
if (D.MaxLatency) {
IssuedQueue[InstrIndex] = &IS;
notifyInstructionIssued(InstrIndex, UsedResources);
} else {
// A zero latency instruction which reads and/or updates registers.
notifyInstructionIssued(InstrIndex, UsedResources);
notifyInstructionExecuted(InstrIndex);
}
}
void Scheduler::issue() {
std::vector<unsigned> ToRemove;
for (const QueueEntryTy QueueEntry : ReadyQueue) {
// Give priority to older instructions in ReadyQueue. The ready queue is
// ordered by key, and therefore older instructions are visited first.
Instruction &IS = *QueueEntry.second;
const InstrDesc &D = IS.getDesc();
if (!Resources->canBeIssued(D))
continue;
unsigned InstrIndex = QueueEntry.first;
issueInstruction(IS, InstrIndex);
ToRemove.emplace_back(InstrIndex);
}
for (const unsigned InstrIndex : ToRemove)
ReadyQueue.erase(InstrIndex);
}
void Scheduler::updatePendingQueue() {
// Scan the set of waiting instructions and promote them to the
// ready queue if operands are all ready.
for (auto I = WaitQueue.begin(), E = WaitQueue.end(); I != E;) {
const QueueEntryTy Entry = *I;
Entry.second->cycleEvent();
const InstrDesc &Desc = Entry.second->getDesc();
bool IsMemOp = Desc.MayLoad || Desc.MayStore;
bool IsReady = Entry.second->isReady();
if (IsReady && IsMemOp)
IsReady &= LSU->isReady(Entry.first);
if (IsReady) {
notifyInstructionReady(Entry.first);
ReadyQueue[Entry.first] = Entry.second;
auto ToRemove = I;
++I;
WaitQueue.erase(ToRemove);
} else {
++I;
}
}
}
void Scheduler::updateIssuedQueue() {
for (auto I = IssuedQueue.begin(), E = IssuedQueue.end(); I != E;) {
const QueueEntryTy Entry = *I;
Entry.second->cycleEvent();
if (Entry.second->isExecuted()) {
notifyInstructionExecuted(Entry.first);
auto ToRemove = I;
++I;
IssuedQueue.erase(ToRemove);
} else {
DEBUG(dbgs() << "[SCHEDULER]: Instruction " << Entry.first
<< " is still executing.\n");
++I;
}
}
}
void Scheduler::notifyInstructionIssued(
unsigned Index, const ArrayRef<std::pair<ResourceRef, unsigned>> &Used) {
DEBUG(dbgs() << "[E] Instruction Issued: " << Index << '\n';
for (const std::pair<ResourceRef, unsigned> &Resource
: Used) {
dbgs() << "[E] Resource Used: [" << Resource.first.first << '.'
<< Resource.first.second << "]\n";
dbgs() << " cycles: " << Resource.second << '\n';
});
Owner->notifyInstructionEvent(HWInstructionIssuedEvent(Index, Used));
}
void Scheduler::notifyInstructionExecuted(unsigned Index) {
LSU->onInstructionExecuted(Index);
DEBUG(dbgs() << "[E] Instruction Executed: " << Index << '\n');
Owner->notifyInstructionEvent(
HWInstructionEvent(HWInstructionEvent::Executed, Index));
const Instruction &IS = Owner->getInstruction(Index);
DU->onInstructionExecuted(IS.getRCUTokenID());
}
void Scheduler::notifyInstructionReady(unsigned Index) {
DEBUG(dbgs() << "[E] Instruction Ready: " << Index << '\n');
Owner->notifyInstructionEvent(
HWInstructionEvent(HWInstructionEvent::Ready, Index));
}
void Scheduler::notifyResourceAvailable(const ResourceRef &RR) {
Owner->notifyResourceAvailable(RR);
}
} // namespace mca