mirror of
https://github.com/Gericom/teak-llvm.git
synced 2025-06-30 08:49:04 -04:00

Summary: This change fixes https://crbug.com/834474, a build failure caused by LowerTypeTests not preserving .symver symbol versioning directives for exported functions. Emit symver information to ThinLTO summary data and then propagate symver directives for exported functions to the merged module. Emitting symver information to the summaries increases the size of intermediate build artifacts for a Chromium build by less than 0.2%. Reviewers: pcc Reviewed By: pcc Subscribers: tejohnson, mehdi_amini, eraman, llvm-commits, eugenis, kcc Differential Revision: https://reviews.llvm.org/D45798 llvm-svn: 330387
512 lines
18 KiB
C++
512 lines
18 KiB
C++
//===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/TypeMetadataUtils.h"
|
|
#include "llvm/Bitcode/BitcodeWriter.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Object/ModuleSymbolTable.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/ScopedPrinter.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/IPO/FunctionAttrs.h"
|
|
#include "llvm/Transforms/IPO/FunctionImport.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
// Promote each local-linkage entity defined by ExportM and used by ImportM by
|
|
// changing visibility and appending the given ModuleId.
|
|
void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
|
|
SetVector<GlobalValue *> &PromoteExtra) {
|
|
DenseMap<const Comdat *, Comdat *> RenamedComdats;
|
|
for (auto &ExportGV : ExportM.global_values()) {
|
|
if (!ExportGV.hasLocalLinkage())
|
|
continue;
|
|
|
|
auto Name = ExportGV.getName();
|
|
GlobalValue *ImportGV = nullptr;
|
|
if (!PromoteExtra.count(&ExportGV)) {
|
|
ImportGV = ImportM.getNamedValue(Name);
|
|
if (!ImportGV)
|
|
continue;
|
|
ImportGV->removeDeadConstantUsers();
|
|
if (ImportGV->use_empty()) {
|
|
ImportGV->eraseFromParent();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
std::string NewName = (Name + ModuleId).str();
|
|
|
|
if (const auto *C = ExportGV.getComdat())
|
|
if (C->getName() == Name)
|
|
RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
|
|
|
|
ExportGV.setName(NewName);
|
|
ExportGV.setLinkage(GlobalValue::ExternalLinkage);
|
|
ExportGV.setVisibility(GlobalValue::HiddenVisibility);
|
|
|
|
if (ImportGV) {
|
|
ImportGV->setName(NewName);
|
|
ImportGV->setVisibility(GlobalValue::HiddenVisibility);
|
|
}
|
|
}
|
|
|
|
if (!RenamedComdats.empty())
|
|
for (auto &GO : ExportM.global_objects())
|
|
if (auto *C = GO.getComdat()) {
|
|
auto Replacement = RenamedComdats.find(C);
|
|
if (Replacement != RenamedComdats.end())
|
|
GO.setComdat(Replacement->second);
|
|
}
|
|
}
|
|
|
|
// Promote all internal (i.e. distinct) type ids used by the module by replacing
|
|
// them with external type ids formed using the module id.
|
|
//
|
|
// Note that this needs to be done before we clone the module because each clone
|
|
// will receive its own set of distinct metadata nodes.
|
|
void promoteTypeIds(Module &M, StringRef ModuleId) {
|
|
DenseMap<Metadata *, Metadata *> LocalToGlobal;
|
|
auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
|
|
Metadata *MD =
|
|
cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
|
|
|
|
if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
|
|
Metadata *&GlobalMD = LocalToGlobal[MD];
|
|
if (!GlobalMD) {
|
|
std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
|
|
GlobalMD = MDString::get(M.getContext(), NewName);
|
|
}
|
|
|
|
CI->setArgOperand(ArgNo,
|
|
MetadataAsValue::get(M.getContext(), GlobalMD));
|
|
}
|
|
};
|
|
|
|
if (Function *TypeTestFunc =
|
|
M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
|
|
for (const Use &U : TypeTestFunc->uses()) {
|
|
auto CI = cast<CallInst>(U.getUser());
|
|
ExternalizeTypeId(CI, 1);
|
|
}
|
|
}
|
|
|
|
if (Function *TypeCheckedLoadFunc =
|
|
M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
|
|
for (const Use &U : TypeCheckedLoadFunc->uses()) {
|
|
auto CI = cast<CallInst>(U.getUser());
|
|
ExternalizeTypeId(CI, 2);
|
|
}
|
|
}
|
|
|
|
for (GlobalObject &GO : M.global_objects()) {
|
|
SmallVector<MDNode *, 1> MDs;
|
|
GO.getMetadata(LLVMContext::MD_type, MDs);
|
|
|
|
GO.eraseMetadata(LLVMContext::MD_type);
|
|
for (auto MD : MDs) {
|
|
auto I = LocalToGlobal.find(MD->getOperand(1));
|
|
if (I == LocalToGlobal.end()) {
|
|
GO.addMetadata(LLVMContext::MD_type, *MD);
|
|
continue;
|
|
}
|
|
GO.addMetadata(
|
|
LLVMContext::MD_type,
|
|
*MDNode::get(M.getContext(),
|
|
ArrayRef<Metadata *>{MD->getOperand(0), I->second}));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Drop unused globals, and drop type information from function declarations.
|
|
// FIXME: If we made functions typeless then there would be no need to do this.
|
|
void simplifyExternals(Module &M) {
|
|
FunctionType *EmptyFT =
|
|
FunctionType::get(Type::getVoidTy(M.getContext()), false);
|
|
|
|
for (auto I = M.begin(), E = M.end(); I != E;) {
|
|
Function &F = *I++;
|
|
if (F.isDeclaration() && F.use_empty()) {
|
|
F.eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
|
|
// Changing the type of an intrinsic may invalidate the IR.
|
|
F.getName().startswith("llvm."))
|
|
continue;
|
|
|
|
Function *NewF =
|
|
Function::Create(EmptyFT, GlobalValue::ExternalLinkage, "", &M);
|
|
NewF->setVisibility(F.getVisibility());
|
|
NewF->takeName(&F);
|
|
F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
|
|
F.eraseFromParent();
|
|
}
|
|
|
|
for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
|
|
GlobalVariable &GV = *I++;
|
|
if (GV.isDeclaration() && GV.use_empty()) {
|
|
GV.eraseFromParent();
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
filterModule(Module *M,
|
|
function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
|
|
std::vector<GlobalValue *> V;
|
|
for (GlobalValue &GV : M->global_values())
|
|
if (!ShouldKeepDefinition(&GV))
|
|
V.push_back(&GV);
|
|
|
|
for (GlobalValue *GV : V)
|
|
if (!convertToDeclaration(*GV))
|
|
GV->eraseFromParent();
|
|
}
|
|
|
|
void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
|
|
if (auto *F = dyn_cast<Function>(C))
|
|
return Fn(F);
|
|
if (isa<GlobalValue>(C))
|
|
return;
|
|
for (Value *Op : C->operands())
|
|
forEachVirtualFunction(cast<Constant>(Op), Fn);
|
|
}
|
|
|
|
// If it's possible to split M into regular and thin LTO parts, do so and write
|
|
// a multi-module bitcode file with the two parts to OS. Otherwise, write only a
|
|
// regular LTO bitcode file to OS.
|
|
void splitAndWriteThinLTOBitcode(
|
|
raw_ostream &OS, raw_ostream *ThinLinkOS,
|
|
function_ref<AAResults &(Function &)> AARGetter, Module &M) {
|
|
std::string ModuleId = getUniqueModuleId(&M);
|
|
if (ModuleId.empty()) {
|
|
// We couldn't generate a module ID for this module, just write it out as a
|
|
// regular LTO module.
|
|
WriteBitcodeToFile(M, OS);
|
|
if (ThinLinkOS)
|
|
// We don't have a ThinLTO part, but still write the module to the
|
|
// ThinLinkOS if requested so that the expected output file is produced.
|
|
WriteBitcodeToFile(M, *ThinLinkOS);
|
|
return;
|
|
}
|
|
|
|
promoteTypeIds(M, ModuleId);
|
|
|
|
// Returns whether a global has attached type metadata. Such globals may
|
|
// participate in CFI or whole-program devirtualization, so they need to
|
|
// appear in the merged module instead of the thin LTO module.
|
|
auto HasTypeMetadata = [&](const GlobalObject *GO) {
|
|
SmallVector<MDNode *, 1> MDs;
|
|
GO->getMetadata(LLVMContext::MD_type, MDs);
|
|
return !MDs.empty();
|
|
};
|
|
|
|
// Collect the set of virtual functions that are eligible for virtual constant
|
|
// propagation. Each eligible function must not access memory, must return
|
|
// an integer of width <=64 bits, must take at least one argument, must not
|
|
// use its first argument (assumed to be "this") and all arguments other than
|
|
// the first one must be of <=64 bit integer type.
|
|
//
|
|
// Note that we test whether this copy of the function is readnone, rather
|
|
// than testing function attributes, which must hold for any copy of the
|
|
// function, even a less optimized version substituted at link time. This is
|
|
// sound because the virtual constant propagation optimizations effectively
|
|
// inline all implementations of the virtual function into each call site,
|
|
// rather than using function attributes to perform local optimization.
|
|
std::set<const Function *> EligibleVirtualFns;
|
|
// If any member of a comdat lives in MergedM, put all members of that
|
|
// comdat in MergedM to keep the comdat together.
|
|
DenseSet<const Comdat *> MergedMComdats;
|
|
for (GlobalVariable &GV : M.globals())
|
|
if (HasTypeMetadata(&GV)) {
|
|
if (const auto *C = GV.getComdat())
|
|
MergedMComdats.insert(C);
|
|
forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
|
|
auto *RT = dyn_cast<IntegerType>(F->getReturnType());
|
|
if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
|
|
!F->arg_begin()->use_empty())
|
|
return;
|
|
for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) {
|
|
auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
|
|
if (!ArgT || ArgT->getBitWidth() > 64)
|
|
return;
|
|
}
|
|
if (!F->isDeclaration() &&
|
|
computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
|
|
EligibleVirtualFns.insert(F);
|
|
});
|
|
}
|
|
|
|
ValueToValueMapTy VMap;
|
|
std::unique_ptr<Module> MergedM(
|
|
CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
|
|
if (const auto *C = GV->getComdat())
|
|
if (MergedMComdats.count(C))
|
|
return true;
|
|
if (auto *F = dyn_cast<Function>(GV))
|
|
return EligibleVirtualFns.count(F);
|
|
if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
|
|
return HasTypeMetadata(GVar);
|
|
return false;
|
|
}));
|
|
StripDebugInfo(*MergedM);
|
|
MergedM->setModuleInlineAsm("");
|
|
|
|
for (Function &F : *MergedM)
|
|
if (!F.isDeclaration()) {
|
|
// Reset the linkage of all functions eligible for virtual constant
|
|
// propagation. The canonical definitions live in the thin LTO module so
|
|
// that they can be imported.
|
|
F.setLinkage(GlobalValue::AvailableExternallyLinkage);
|
|
F.setComdat(nullptr);
|
|
}
|
|
|
|
SetVector<GlobalValue *> CfiFunctions;
|
|
for (auto &F : M)
|
|
if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
|
|
CfiFunctions.insert(&F);
|
|
|
|
// Remove all globals with type metadata, globals with comdats that live in
|
|
// MergedM, and aliases pointing to such globals from the thin LTO module.
|
|
filterModule(&M, [&](const GlobalValue *GV) {
|
|
if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
|
|
if (HasTypeMetadata(GVar))
|
|
return false;
|
|
if (const auto *C = GV->getComdat())
|
|
if (MergedMComdats.count(C))
|
|
return false;
|
|
return true;
|
|
});
|
|
|
|
promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
|
|
promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
|
|
|
|
auto &Ctx = MergedM->getContext();
|
|
SmallVector<MDNode *, 8> CfiFunctionMDs;
|
|
for (auto V : CfiFunctions) {
|
|
Function &F = *cast<Function>(V);
|
|
SmallVector<MDNode *, 2> Types;
|
|
F.getMetadata(LLVMContext::MD_type, Types);
|
|
|
|
SmallVector<Metadata *, 4> Elts;
|
|
Elts.push_back(MDString::get(Ctx, F.getName()));
|
|
CfiFunctionLinkage Linkage;
|
|
if (!F.isDeclarationForLinker())
|
|
Linkage = CFL_Definition;
|
|
else if (F.isWeakForLinker())
|
|
Linkage = CFL_WeakDeclaration;
|
|
else
|
|
Linkage = CFL_Declaration;
|
|
Elts.push_back(ConstantAsMetadata::get(
|
|
llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
|
|
for (auto Type : Types)
|
|
Elts.push_back(Type);
|
|
CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
|
|
}
|
|
|
|
if(!CfiFunctionMDs.empty()) {
|
|
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
|
|
for (auto MD : CfiFunctionMDs)
|
|
NMD->addOperand(MD);
|
|
}
|
|
|
|
SmallVector<MDNode *, 8> FunctionAliases;
|
|
for (auto &A : M.aliases()) {
|
|
if (!isa<Function>(A.getAliasee()))
|
|
continue;
|
|
|
|
auto *F = cast<Function>(A.getAliasee());
|
|
SmallVector<Metadata *, 4> Elts;
|
|
|
|
Elts.push_back(MDString::get(Ctx, A.getName()));
|
|
Elts.push_back(MDString::get(Ctx, F->getName()));
|
|
Elts.push_back(ConstantAsMetadata::get(
|
|
llvm::ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())));
|
|
Elts.push_back(ConstantAsMetadata::get(
|
|
llvm::ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())));
|
|
|
|
FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
|
|
}
|
|
|
|
if (!FunctionAliases.empty()) {
|
|
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
|
|
for (auto MD : FunctionAliases)
|
|
NMD->addOperand(MD);
|
|
}
|
|
|
|
SmallVector<MDNode *, 8> Symvers;
|
|
ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
|
|
Function *F = M.getFunction(Name);
|
|
if (!F || F->use_empty())
|
|
return;
|
|
|
|
SmallVector<Metadata *, 2> Elts;
|
|
Elts.push_back(MDString::get(Ctx, Name));
|
|
Elts.push_back(MDString::get(Ctx, Alias));
|
|
|
|
Symvers.push_back(MDTuple::get(Ctx, Elts));
|
|
});
|
|
|
|
if (!Symvers.empty()) {
|
|
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
|
|
for (auto MD : Symvers)
|
|
NMD->addOperand(MD);
|
|
}
|
|
|
|
simplifyExternals(*MergedM);
|
|
|
|
// FIXME: Try to re-use BSI and PFI from the original module here.
|
|
ProfileSummaryInfo PSI(M);
|
|
ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
|
|
|
|
// Mark the merged module as requiring full LTO. We still want an index for
|
|
// it though, so that it can participate in summary-based dead stripping.
|
|
MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
|
|
ModuleSummaryIndex MergedMIndex =
|
|
buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
|
|
|
|
SmallVector<char, 0> Buffer;
|
|
|
|
BitcodeWriter W(Buffer);
|
|
// Save the module hash produced for the full bitcode, which will
|
|
// be used in the backends, and use that in the minimized bitcode
|
|
// produced for the full link.
|
|
ModuleHash ModHash = {{0}};
|
|
W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
|
|
/*GenerateHash=*/true, &ModHash);
|
|
W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
|
|
W.writeSymtab();
|
|
W.writeStrtab();
|
|
OS << Buffer;
|
|
|
|
// If a minimized bitcode module was requested for the thin link, only
|
|
// the information that is needed by thin link will be written in the
|
|
// given OS (the merged module will be written as usual).
|
|
if (ThinLinkOS) {
|
|
Buffer.clear();
|
|
BitcodeWriter W2(Buffer);
|
|
StripDebugInfo(M);
|
|
W2.writeThinLinkBitcode(M, Index, ModHash);
|
|
W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
|
|
&MergedMIndex);
|
|
W2.writeSymtab();
|
|
W2.writeStrtab();
|
|
*ThinLinkOS << Buffer;
|
|
}
|
|
}
|
|
|
|
// Returns whether this module needs to be split because it uses type metadata.
|
|
bool requiresSplit(Module &M) {
|
|
SmallVector<MDNode *, 1> MDs;
|
|
for (auto &GO : M.global_objects()) {
|
|
GO.getMetadata(LLVMContext::MD_type, MDs);
|
|
if (!MDs.empty())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
|
|
function_ref<AAResults &(Function &)> AARGetter,
|
|
Module &M, const ModuleSummaryIndex *Index) {
|
|
// See if this module has any type metadata. If so, we need to split it.
|
|
if (requiresSplit(M))
|
|
return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
|
|
|
|
// Otherwise we can just write it out as a regular module.
|
|
|
|
// Save the module hash produced for the full bitcode, which will
|
|
// be used in the backends, and use that in the minimized bitcode
|
|
// produced for the full link.
|
|
ModuleHash ModHash = {{0}};
|
|
WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
|
|
/*GenerateHash=*/true, &ModHash);
|
|
// If a minimized bitcode module was requested for the thin link, only
|
|
// the information that is needed by thin link will be written in the
|
|
// given OS.
|
|
if (ThinLinkOS && Index)
|
|
WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
|
|
}
|
|
|
|
class WriteThinLTOBitcode : public ModulePass {
|
|
raw_ostream &OS; // raw_ostream to print on
|
|
// The output stream on which to emit a minimized module for use
|
|
// just in the thin link, if requested.
|
|
raw_ostream *ThinLinkOS;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
|
|
initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
|
|
: ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
|
|
initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
|
|
|
|
bool runOnModule(Module &M) override {
|
|
const ModuleSummaryIndex *Index =
|
|
&(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
|
|
writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
|
|
return true;
|
|
}
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<ModuleSummaryIndexWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
char WriteThinLTOBitcode::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
|
|
"Write ThinLTO Bitcode", false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
|
|
"Write ThinLTO Bitcode", false, true)
|
|
|
|
ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
|
|
raw_ostream *ThinLinkOS) {
|
|
return new WriteThinLTOBitcode(Str, ThinLinkOS);
|
|
}
|
|
|
|
PreservedAnalyses
|
|
llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
writeThinLTOBitcode(OS, ThinLinkOS,
|
|
[&FAM](Function &F) -> AAResults & {
|
|
return FAM.getResult<AAManager>(F);
|
|
},
|
|
M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
|
|
return PreservedAnalyses::all();
|
|
}
|