mirror of
https://github.com/Gericom/teak-llvm.git
synced 2025-06-25 14:28:54 -04:00

We have ThreadPool, which can execute work asynchronously on N background threads, but sometimes you need to make sure the work is executed asynchronously but also serially. That is, if task B is enqueued after task A, then task B should not begin until task A has completed. This patch adds such a class. Differential Revision: https://reviews.llvm.org/D48240 llvm-svn: 335440
106 lines
2.2 KiB
C++
106 lines
2.2 KiB
C++
//========- unittests/Support/TaskQueue.cpp - TaskQueue.h tests ------========//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Support/TaskQueue.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#if LLVM_ENABLE_THREADS
|
|
class TaskQueueTest : public testing::Test {
|
|
protected:
|
|
TaskQueueTest() {}
|
|
};
|
|
|
|
TEST_F(TaskQueueTest, OrderedFutures) {
|
|
ThreadPool TP(1);
|
|
TaskQueue TQ(TP);
|
|
std::atomic<int> X = 0;
|
|
std::atomic<int> Y = 0;
|
|
std::atomic<int> Z = 0;
|
|
|
|
std::mutex M1, M2, M3;
|
|
std::unique_lock<std::mutex> L1(M1);
|
|
std::unique_lock<std::mutex> L2(M2);
|
|
std::unique_lock<std::mutex> L3(M3);
|
|
|
|
std::future<void> F1 = TQ.async([&] {
|
|
std::unique_lock<std::mutex> Lock(M1);
|
|
++X;
|
|
});
|
|
std::future<void> F2 = TQ.async([&] {
|
|
std::unique_lock<std::mutex> Lock(M2);
|
|
++Y;
|
|
});
|
|
std::future<void> F3 = TQ.async([&] {
|
|
std::unique_lock<std::mutex> Lock(M3);
|
|
++Z;
|
|
});
|
|
|
|
L1.unlock();
|
|
F1.wait();
|
|
ASSERT_EQ(1, X);
|
|
ASSERT_EQ(0, Y);
|
|
ASSERT_EQ(0, Z);
|
|
|
|
L2.unlock();
|
|
F2.wait();
|
|
ASSERT_EQ(1, X);
|
|
ASSERT_EQ(1, Y);
|
|
ASSERT_EQ(0, Z);
|
|
|
|
L3.unlock();
|
|
F3.wait();
|
|
ASSERT_EQ(1, X);
|
|
ASSERT_EQ(1, Y);
|
|
ASSERT_EQ(1, Z);
|
|
}
|
|
|
|
TEST_F(TaskQueueTest, UnOrderedFutures) {
|
|
ThreadPool TP(1);
|
|
TaskQueue TQ(TP);
|
|
std::atomic<int> X = 0;
|
|
std::atomic<int> Y = 0;
|
|
std::atomic<int> Z = 0;
|
|
std::mutex M;
|
|
|
|
std::unique_lock<std::mutex> Lock(M);
|
|
|
|
std::future<void> F1 = TQ.async([&] { ++X; });
|
|
std::future<void> F2 = TQ.async([&] { ++Y; });
|
|
std::future<void> F3 = TQ.async([&M, &Z] {
|
|
std::unique_lock<std::mutex> Lock(M);
|
|
++Z;
|
|
});
|
|
|
|
F2.wait();
|
|
ASSERT_EQ(1, X);
|
|
ASSERT_EQ(1, Y);
|
|
ASSERT_EQ(0, Z);
|
|
|
|
Lock.unlock();
|
|
|
|
F3.wait();
|
|
ASSERT_EQ(1, X);
|
|
ASSERT_EQ(1, Y);
|
|
ASSERT_EQ(1, Z);
|
|
}
|
|
|
|
TEST_F(TaskQueueTest, FutureWithReturnValue) {
|
|
ThreadPool TP(1);
|
|
TaskQueue TQ(TP);
|
|
std::future<std::string> F1 = TQ.async([&] { return std::string("Hello"); });
|
|
std::future<int> F2 = TQ.async([&] { return 42; });
|
|
|
|
ASSERT_EQ(42, F2.get());
|
|
ASSERT_EQ("Hello", F1.get());
|
|
}
|
|
#endif
|