teak-llvm/lldb/source/Commands/CommandObjectMemory.cpp
Greg Clayton f6b8b58184 Added two new classes for command options:
lldb_private::OptionGroup
    lldb_private::OptionGroupOptions

OptionGroup lets you define a class that encapsulates settings that you want
to reuse in multiple commands. It contains only the option definitions and the
ability to set the option values, but it doesn't directly interface with the
lldb_private::Options class that is the front end to all of the CommandObject
option parsing. For that the OptionGroupOptions class can be used. It aggregates
one or more OptionGroup objects and directs the option setting to the 
appropriate OptionGroup class. For an example of this, take a look at the 
CommandObjectFile and how it uses its "m_option_group" object shown below
to be able to set values in both the FileOptionGroup and PlatformOptionGroup
classes. The members used in CommandObjectFile are:

    OptionGroupOptions m_option_group;
    FileOptionGroup m_file_options;
    PlatformOptionGroup m_platform_options;

Then in the constructor for CommandObjectFile you can combine the option
settings. The code below shows a simplified version of the constructor:

CommandObjectFile::CommandObjectFile(CommandInterpreter &interpreter) :
    CommandObject (...),
    m_option_group (interpreter),
    m_file_options (),
    m_platform_options(true)
{
    m_option_group.Append (&m_file_options);
    m_option_group.Append (&m_platform_options);
    m_option_group.Finalize();
}

We append the m_file_options and then the m_platform_options and then tell
the option group the finalize the results. This allows the m_option_group to
become the organizer of our prefs and after option parsing we end up with
valid preference settings in both the m_file_options and m_platform_options
objects. This also allows any other commands to use the FileOptionGroup and
PlatformOptionGroup classes to implement options for their commands.

Renamed:
    virtual void Options::ResetOptionValues();
to:
    virtual void Options::OptionParsingStarting();

And implemented a new callback named:

    virtual Error Options::OptionParsingFinished();
    
This allows Options subclasses to verify that the options all go together
after all of the options have been specified and gives the chance for the
command object to return an error. It also gives a chance to take all of the
option values and produce or initialize objects after all options have
completed parsing.

Modfied:

    virtual Error
    SetOptionValue (int option_idx, const char *option_arg) = 0;
    
to be:

    virtual Error
    SetOptionValue (uint32_t option_idx, const char *option_arg) = 0;

(option_idx is now unsigned).

llvm-svn: 129415
2011-04-13 00:18:08 +00:00

897 lines
32 KiB
C++

//===-- CommandObjectMemory.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "CommandObjectMemory.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Interpreter/Args.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/Options.h"
#include "lldb/Target/Process.h"
using namespace lldb;
using namespace lldb_private;
//----------------------------------------------------------------------
// Read memory from the inferior process
//----------------------------------------------------------------------
class CommandObjectMemoryRead : public CommandObject
{
public:
class CommandOptions : public Options
{
public:
CommandOptions (CommandInterpreter &interpreter) :
Options(interpreter)
{
OptionParsingStarting();
}
virtual
~CommandOptions ()
{
}
virtual Error
SetOptionValue (uint32_t option_idx, const char *option_arg)
{
Error error;
char short_option = (char) m_getopt_table[option_idx].val;
switch (short_option)
{
case 'f':
error = Args::StringToFormat (option_arg, m_format);
switch (m_format)
{
default:
break;
case eFormatBoolean:
if (m_byte_size == 0)
m_byte_size = 1;
if (m_num_per_line == 0)
m_num_per_line = 1;
break;
case eFormatCString:
if (m_num_per_line == 0)
m_num_per_line = 1;
break;
case eFormatPointer:
break;
case eFormatBinary:
case eFormatFloat:
case eFormatOctal:
case eFormatDecimal:
case eFormatEnum:
case eFormatUnicode16:
case eFormatUnicode32:
case eFormatUnsigned:
if (m_byte_size == 0)
m_byte_size = 4;
if (m_num_per_line == 0)
m_num_per_line = 1;
break;
case eFormatBytes:
case eFormatBytesWithASCII:
case eFormatChar:
case eFormatCharPrintable:
if (m_byte_size == 0)
m_byte_size = 1;
break;
case eFormatComplex:
if (m_byte_size == 0)
m_byte_size = 8;
break;
case eFormatHex:
if (m_byte_size == 0)
m_byte_size = 4;
break;
case eFormatVectorOfChar:
case eFormatVectorOfSInt8:
case eFormatVectorOfUInt8:
case eFormatVectorOfSInt16:
case eFormatVectorOfUInt16:
case eFormatVectorOfSInt32:
case eFormatVectorOfUInt32:
case eFormatVectorOfSInt64:
case eFormatVectorOfUInt64:
case eFormatVectorOfFloat32:
case eFormatVectorOfFloat64:
case eFormatVectorOfUInt128:
break;
}
break;
case 'l':
m_num_per_line = Args::StringToUInt32 (option_arg, 0);
if (m_num_per_line == 0)
error.SetErrorStringWithFormat("Invalid value for --num-per-line option '%s'. Must be positive integer value.\n", option_arg);
break;
case 'c':
m_count = Args::StringToUInt32 (option_arg, 0);
if (m_count == 0)
error.SetErrorStringWithFormat("Invalid value for --count option '%s'. Must be positive integer value.\n", option_arg);
break;
case 's':
m_byte_size = Args::StringToUInt32 (option_arg, 0);
if (m_byte_size == 0)
error.SetErrorStringWithFormat("Invalid value for --size option '%s'. Must be positive integer value.\n", option_arg);
break;
case 'o':
m_outfile_filespec.SetFile (option_arg, true);
break;
case 'b':
m_output_as_binary = true;
break;
case 'a':
m_append_to_outfile = true;
break;
default:
error.SetErrorStringWithFormat("Unrecognized short option '%c'.\n", short_option);
break;
}
return error;
}
void
OptionParsingStarting ()
{
m_format = eFormatBytesWithASCII;
m_byte_size = 0;
m_count = 0;
m_num_per_line = 0;
m_outfile_filespec.Clear();
m_append_to_outfile = false;
m_output_as_binary = false;
}
const OptionDefinition*
GetDefinitions ()
{
return g_option_table;
}
// Options table: Required for subclasses of Options.
static OptionDefinition g_option_table[];
// Instance variables to hold the values for command options.
lldb::Format m_format;
uint32_t m_byte_size;
uint32_t m_count;
uint32_t m_num_per_line;
FileSpec m_outfile_filespec;
bool m_append_to_outfile;
bool m_output_as_binary;
};
CommandObjectMemoryRead (CommandInterpreter &interpreter) :
CommandObject (interpreter,
"memory read",
"Read from the memory of the process being debugged.",
NULL,
eFlagProcessMustBeLaunched),
m_options (interpreter)
{
CommandArgumentEntry arg1;
CommandArgumentEntry arg2;
CommandArgumentData start_addr_arg;
CommandArgumentData end_addr_arg;
// Define the first (and only) variant of this arg.
start_addr_arg.arg_type = eArgTypeStartAddress;
start_addr_arg.arg_repetition = eArgRepeatPlain;
// There is only one variant this argument could be; put it into the argument entry.
arg1.push_back (start_addr_arg);
// Define the first (and only) variant of this arg.
end_addr_arg.arg_type = eArgTypeEndAddress;
end_addr_arg.arg_repetition = eArgRepeatOptional;
// There is only one variant this argument could be; put it into the argument entry.
arg2.push_back (end_addr_arg);
// Push the data for the first argument into the m_arguments vector.
m_arguments.push_back (arg1);
m_arguments.push_back (arg2);
}
virtual
~CommandObjectMemoryRead ()
{
}
Options *
GetOptions ()
{
return &m_options;
}
virtual bool
Execute (Args& command,
CommandReturnObject &result)
{
Process *process = m_interpreter.GetExecutionContext().process;
if (process == NULL)
{
result.AppendError("need a process to read memory");
result.SetStatus(eReturnStatusFailed);
return false;
}
const size_t argc = command.GetArgumentCount();
if (argc == 0 || argc > 2)
{
result.AppendErrorWithFormat ("%s takes 1 or two args.\n", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
size_t item_byte_size = m_options.m_byte_size;
if (item_byte_size == 0)
{
if (m_options.m_format == eFormatPointer)
item_byte_size = process->GetTarget().GetArchitecture().GetAddressByteSize();
else
item_byte_size = 1;
}
size_t item_count = m_options.m_count;
size_t num_per_line = m_options.m_num_per_line;
if (num_per_line == 0)
{
num_per_line = (16/item_byte_size);
if (num_per_line == 0)
num_per_line = 1;
}
size_t total_byte_size = m_options.m_count * item_byte_size;
if (total_byte_size == 0)
total_byte_size = 32;
lldb::addr_t addr = Args::StringToUInt64(command.GetArgumentAtIndex(0), LLDB_INVALID_ADDRESS, 0);
if (addr == LLDB_INVALID_ADDRESS)
{
result.AppendErrorWithFormat("invalid start address string '%s'.\n", command.GetArgumentAtIndex(0));
result.SetStatus(eReturnStatusFailed);
return false;
}
if (argc == 2)
{
lldb::addr_t end_addr = Args::StringToUInt64(command.GetArgumentAtIndex(1), LLDB_INVALID_ADDRESS, 0);
if (end_addr == LLDB_INVALID_ADDRESS)
{
result.AppendErrorWithFormat("Invalid end address string '%s'.\n", command.GetArgumentAtIndex(1));
result.SetStatus(eReturnStatusFailed);
return false;
}
else if (end_addr <= addr)
{
result.AppendErrorWithFormat("End address (0x%llx) must be greater that the start address (0x%llx).\n", end_addr, addr);
result.SetStatus(eReturnStatusFailed);
return false;
}
else if (item_count != 0)
{
result.AppendErrorWithFormat("Specify either the end address (0x%llx) or the count (--count %u), not both.\n", end_addr, item_count);
result.SetStatus(eReturnStatusFailed);
return false;
}
total_byte_size = end_addr - addr;
item_count = total_byte_size / item_byte_size;
}
else
{
if (item_count == 0)
item_count = 32;
}
DataBufferSP data_sp(new DataBufferHeap (total_byte_size, '\0'));
Error error;
size_t bytes_read = process->ReadMemory(addr, data_sp->GetBytes (), data_sp->GetByteSize(), error);
if (bytes_read == 0)
{
result.AppendWarningWithFormat("Read from 0x%llx failed.\n", addr);
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
return false;
}
if (bytes_read < total_byte_size)
result.AppendWarningWithFormat("Not all bytes (%u/%u) were able to be read from 0x%llx.\n", bytes_read, total_byte_size, addr);
result.SetStatus(eReturnStatusSuccessFinishResult);
DataExtractor data (data_sp,
process->GetTarget().GetArchitecture().GetByteOrder(),
process->GetTarget().GetArchitecture().GetAddressByteSize());
StreamFile outfile_stream;
Stream *output_stream = NULL;
if (m_options.m_outfile_filespec)
{
char path[PATH_MAX];
m_options.m_outfile_filespec.GetPath (path, sizeof(path));
char mode[16] = { 'w', '\0' };
if (m_options.m_append_to_outfile)
mode[0] = 'a';
if (outfile_stream.GetFile ().Open (path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success())
{
if (m_options.m_output_as_binary)
{
int bytes_written = outfile_stream.Write (data_sp->GetBytes(), bytes_read);
if (bytes_written > 0)
{
result.GetOutputStream().Printf ("%i bytes %s to '%s'\n",
bytes_written,
m_options.m_append_to_outfile ? "appended" : "written",
path);
return true;
}
else
{
result.AppendErrorWithFormat("Failed to write %zu bytes to '%s'.\n", bytes_read, path);
result.SetStatus(eReturnStatusFailed);
return false;
}
}
else
{
// We are going to write ASCII to the file just point the
// output_stream to our outfile_stream...
output_stream = &outfile_stream;
}
}
else
{
result.AppendErrorWithFormat("Failed to open file '%s' with a mode of '%s'.\n", path, mode);
result.SetStatus(eReturnStatusFailed);
return false;
}
}
else
{
output_stream = &result.GetOutputStream();
}
assert (output_stream);
data.Dump (output_stream,
0,
m_options.m_format,
item_byte_size,
item_count,
num_per_line,
addr,
0,
0);
output_stream->EOL();
return true;
}
protected:
CommandOptions m_options;
};
#define SET1 LLDB_OPT_SET_1
#define SET2 LLDB_OPT_SET_2
OptionDefinition
CommandObjectMemoryRead::CommandOptions::g_option_table[] =
{
{ SET1 , false, "format", 'f', required_argument, NULL, 0, eArgTypeFormat, "The format that will be used to display the memory. Defaults to bytes with ASCII (--format=Y)."},
{ SET1 , false, "size", 's', required_argument, NULL, 0, eArgTypeByteSize, "The size in bytes to use when displaying with the selected format."},
{ SET1 , false, "num-per-line", 'l', required_argument, NULL, 0, eArgTypeNumberPerLine,"The number of items per line to display."},
{ SET1 | SET2, false, "count", 'c', required_argument, NULL, 0, eArgTypeCount, "The number of total items to display."},
{ SET1 | SET2, false, "outfile", 'o', required_argument, NULL, 0, eArgTypeFilename, "Dump memory read results into a file."},
{ SET1 | SET2, false, "append", 'a', no_argument, NULL, 0, eArgTypeNone, "Append memory read results to 'outfile'."},
{ SET2, false, "binary", 'b', no_argument, NULL, 0, eArgTypeNone, "If true, memory will be saved as binary. If false, the memory is saved save as an ASCII dump that uses the format, size, count and number per line settings."},
{ 0, false, NULL, 0, 0, NULL, 0, eArgTypeNone, NULL }
};
#undef SET1
#undef SET2
//----------------------------------------------------------------------
// Write memory to the inferior process
//----------------------------------------------------------------------
class CommandObjectMemoryWrite : public CommandObject
{
public:
class CommandOptions : public Options
{
public:
CommandOptions (CommandInterpreter &interpreter) :
Options(interpreter)
{
OptionParsingStarting();
}
virtual
~CommandOptions ()
{
}
virtual Error
SetOptionValue (uint32_t option_idx, const char *option_arg)
{
Error error;
char short_option = (char) m_getopt_table[option_idx].val;
switch (short_option)
{
case 'f':
error = Args::StringToFormat (option_arg, m_format);
break;
case 's':
m_byte_size = Args::StringToUInt32 (option_arg, 0);
if (m_byte_size == 0)
error.SetErrorStringWithFormat("Invalid value for --size option '%s'. Must be positive integer value.\n", option_arg);
break;
case 'i':
m_infile.SetFile (option_arg, true);
if (!m_infile.Exists())
{
m_infile.Clear();
error.SetErrorStringWithFormat("Input file does not exist: '%s'\n", option_arg);
}
break;
case 'o':
{
bool success;
m_infile_offset = Args::StringToUInt64(option_arg, 0, 0, &success);
if (!success)
{
error.SetErrorStringWithFormat("Invalid offset string '%s'\n", option_arg);
}
}
break;
default:
error.SetErrorStringWithFormat("Unrecognized short option '%c'\n", short_option);
break;
}
return error;
}
void
OptionParsingStarting ()
{
m_format = eFormatBytes;
m_byte_size = 1;
m_infile.Clear();
m_infile_offset = 0;
}
const OptionDefinition*
GetDefinitions ()
{
return g_option_table;
}
// Options table: Required for subclasses of Options.
static OptionDefinition g_option_table[];
// Instance variables to hold the values for command options.
lldb::Format m_format;
uint32_t m_byte_size;
FileSpec m_infile;
off_t m_infile_offset;
};
CommandObjectMemoryWrite (CommandInterpreter &interpreter) :
CommandObject (interpreter,
"memory write",
"Write to the memory of the process being debugged.",
//"memory write [<cmd-options>] <addr> [value1 value2 ...]",
NULL,
eFlagProcessMustBeLaunched),
m_options (interpreter)
{
CommandArgumentEntry arg1;
CommandArgumentEntry arg2;
CommandArgumentData addr_arg;
CommandArgumentData value_arg;
// Define the first (and only) variant of this arg.
addr_arg.arg_type = eArgTypeAddress;
addr_arg.arg_repetition = eArgRepeatPlain;
// There is only one variant this argument could be; put it into the argument entry.
arg1.push_back (addr_arg);
// Define the first (and only) variant of this arg.
value_arg.arg_type = eArgTypeValue;
value_arg.arg_repetition = eArgRepeatPlus;
// There is only one variant this argument could be; put it into the argument entry.
arg2.push_back (value_arg);
// Push the data for the first argument into the m_arguments vector.
m_arguments.push_back (arg1);
m_arguments.push_back (arg2);
}
virtual
~CommandObjectMemoryWrite ()
{
}
Options *
GetOptions ()
{
return &m_options;
}
bool
UIntValueIsValidForSize (uint64_t uval64, size_t total_byte_size)
{
if (total_byte_size > 8)
return false;
if (total_byte_size == 8)
return true;
const uint64_t max = ((uint64_t)1 << (uint64_t)(total_byte_size * 8)) - 1;
return uval64 <= max;
}
bool
SIntValueIsValidForSize (int64_t sval64, size_t total_byte_size)
{
if (total_byte_size > 8)
return false;
if (total_byte_size == 8)
return true;
const int64_t max = ((int64_t)1 << (uint64_t)(total_byte_size * 8 - 1)) - 1;
const int64_t min = ~(max);
return min <= sval64 && sval64 <= max;
}
virtual bool
Execute (Args& command,
CommandReturnObject &result)
{
Process *process = m_interpreter.GetExecutionContext().process;
if (process == NULL)
{
result.AppendError("need a process to read memory");
result.SetStatus(eReturnStatusFailed);
return false;
}
const size_t argc = command.GetArgumentCount();
if (m_options.m_infile)
{
if (argc < 1)
{
result.AppendErrorWithFormat ("%s takes a destination address when writing file contents.\n", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
}
else if (argc < 2)
{
result.AppendErrorWithFormat ("%s takes a destination address and at least one value.\n", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
StreamString buffer (Stream::eBinary,
process->GetTarget().GetArchitecture().GetAddressByteSize(),
process->GetTarget().GetArchitecture().GetByteOrder());
size_t item_byte_size = m_options.m_byte_size;
lldb::addr_t addr = Args::StringToUInt64(command.GetArgumentAtIndex(0), LLDB_INVALID_ADDRESS, 0);
if (addr == LLDB_INVALID_ADDRESS)
{
result.AppendErrorWithFormat("Invalid address string '%s'.\n", command.GetArgumentAtIndex(0));
result.SetStatus(eReturnStatusFailed);
return false;
}
if (m_options.m_infile)
{
size_t length = SIZE_MAX;
if (m_options.m_byte_size > 0)
length = m_options.m_byte_size;
lldb::DataBufferSP data_sp (m_options.m_infile.ReadFileContents (m_options.m_infile_offset, length));
if (data_sp)
{
length = data_sp->GetByteSize();
if (length > 0)
{
Error error;
size_t bytes_written = process->WriteMemory (addr, data_sp->GetBytes(), length, error);
if (bytes_written == length)
{
// All bytes written
result.GetOutputStream().Printf("%zu bytes were written to 0x%llx\n", bytes_written, addr);
result.SetStatus(eReturnStatusSuccessFinishResult);
}
else if (bytes_written > 0)
{
// Some byte written
result.GetOutputStream().Printf("%zu bytes of %zu requested were written to 0x%llx\n", bytes_written, length, addr);
result.SetStatus(eReturnStatusSuccessFinishResult);
}
else
{
result.AppendErrorWithFormat ("Memory write to 0x%llx failed: %s.\n", addr, error.AsCString());
result.SetStatus(eReturnStatusFailed);
}
}
}
else
{
result.AppendErrorWithFormat ("Unable to read contents of file.\n");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
else if (m_options.m_byte_size == 0)
{
if (m_options.m_format == eFormatPointer)
item_byte_size = buffer.GetAddressByteSize();
else
item_byte_size = 1;
}
command.Shift(); // shift off the address argument
uint64_t uval64;
int64_t sval64;
bool success = false;
const uint32_t num_value_args = command.GetArgumentCount();
uint32_t i;
for (i=0; i<num_value_args; ++i)
{
const char *value_str = command.GetArgumentAtIndex(i);
switch (m_options.m_format)
{
case eFormatFloat: // TODO: add support for floats soon
case eFormatCharPrintable:
case eFormatBytesWithASCII:
case eFormatComplex:
case eFormatEnum:
case eFormatUnicode16:
case eFormatUnicode32:
case eFormatVectorOfChar:
case eFormatVectorOfSInt8:
case eFormatVectorOfUInt8:
case eFormatVectorOfSInt16:
case eFormatVectorOfUInt16:
case eFormatVectorOfSInt32:
case eFormatVectorOfUInt32:
case eFormatVectorOfSInt64:
case eFormatVectorOfUInt64:
case eFormatVectorOfFloat32:
case eFormatVectorOfFloat64:
case eFormatVectorOfUInt128:
case eFormatOSType:
case eFormatComplexInteger:
result.AppendError("unsupported format for writing memory");
result.SetStatus(eReturnStatusFailed);
return false;
case eFormatDefault:
case eFormatBytes:
case eFormatHex:
case eFormatPointer:
// Decode hex bytes
uval64 = Args::StringToUInt64(value_str, UINT64_MAX, 16, &success);
if (!success)
{
result.AppendErrorWithFormat ("'%s' is not a valid hex string value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
}
else if (!UIntValueIsValidForSize (uval64, item_byte_size))
{
result.AppendErrorWithFormat ("Value 0x%llx is too large to fit in a %u byte unsigned integer value.\n", uval64, item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64 (uval64, item_byte_size);
break;
case eFormatBoolean:
uval64 = Args::StringToBoolean(value_str, false, &success);
if (!success)
{
result.AppendErrorWithFormat ("'%s' is not a valid boolean string value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64 (uval64, item_byte_size);
break;
case eFormatBinary:
uval64 = Args::StringToUInt64(value_str, UINT64_MAX, 2, &success);
if (!success)
{
result.AppendErrorWithFormat ("'%s' is not a valid binary string value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
}
else if (!UIntValueIsValidForSize (uval64, item_byte_size))
{
result.AppendErrorWithFormat ("Value 0x%llx is too large to fit in a %u byte unsigned integer value.\n", uval64, item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64 (uval64, item_byte_size);
break;
case eFormatChar:
case eFormatCString:
if (value_str[0])
{
size_t len = strlen (value_str);
// Include the NULL for C strings...
if (m_options.m_format == eFormatCString)
++len;
Error error;
if (process->WriteMemory (addr, value_str, len, error) == len)
{
addr += len;
}
else
{
result.AppendErrorWithFormat ("Memory write to 0x%llx failed: %s.\n", addr, error.AsCString());
result.SetStatus(eReturnStatusFailed);
return false;
}
}
break;
case eFormatDecimal:
sval64 = Args::StringToSInt64(value_str, INT64_MAX, 0, &success);
if (!success)
{
result.AppendErrorWithFormat ("'%s' is not a valid signed decimal value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
}
else if (!SIntValueIsValidForSize (sval64, item_byte_size))
{
result.AppendErrorWithFormat ("Value %lli is too large or small to fit in a %u byte signed integer value.\n", sval64, item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64 (sval64, item_byte_size);
break;
case eFormatUnsigned:
uval64 = Args::StringToUInt64(value_str, UINT64_MAX, 0, &success);
if (!success)
{
result.AppendErrorWithFormat ("'%s' is not a valid unsigned decimal string value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
}
else if (!UIntValueIsValidForSize (uval64, item_byte_size))
{
result.AppendErrorWithFormat ("Value %llu is too large to fit in a %u byte unsigned integer value.\n", uval64, item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64 (uval64, item_byte_size);
break;
case eFormatOctal:
uval64 = Args::StringToUInt64(value_str, UINT64_MAX, 8, &success);
if (!success)
{
result.AppendErrorWithFormat ("'%s' is not a valid octal string value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
}
else if (!UIntValueIsValidForSize (uval64, item_byte_size))
{
result.AppendErrorWithFormat ("Value %llo is too large to fit in a %u byte unsigned integer value.\n", uval64, item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64 (uval64, item_byte_size);
break;
}
}
if (!buffer.GetString().empty())
{
Error error;
if (process->WriteMemory (addr, buffer.GetString().c_str(), buffer.GetString().size(), error) == buffer.GetString().size())
return true;
else
{
result.AppendErrorWithFormat ("Memory write to 0x%llx failed: %s.\n", addr, error.AsCString());
result.SetStatus(eReturnStatusFailed);
return false;
}
}
return true;
}
protected:
CommandOptions m_options;
};
#define SET1 LLDB_OPT_SET_1
#define SET2 LLDB_OPT_SET_2
OptionDefinition
CommandObjectMemoryWrite::CommandOptions::g_option_table[] =
{
{ SET1 , false, "format", 'f', required_argument, NULL, 0, eArgTypeFormat, "The format value types that will be decoded and written to memory."},
{ SET1 | SET2, false, "size", 's', required_argument, NULL, 0, eArgTypeByteSize, "The size in bytes of the values to write to memory."},
{ SET2, true, "infile", 'i', required_argument, NULL, 0, eArgTypeFilename, "Write memory using the contents of a file."},
{ SET2, false, "offset", 'o', required_argument, NULL, 0, eArgTypeOffset, "Start writng bytes from an offset within the input file."},
{ 0 , false, NULL , 0 , 0 , NULL, 0, eArgTypeNone, NULL }
};
#undef SET1
#undef SET2
//-------------------------------------------------------------------------
// CommandObjectMemory
//-------------------------------------------------------------------------
CommandObjectMemory::CommandObjectMemory (CommandInterpreter &interpreter) :
CommandObjectMultiword (interpreter,
"memory",
"A set of commands for operating on memory.",
"memory <subcommand> [<subcommand-options>]")
{
LoadSubCommand ("read", CommandObjectSP (new CommandObjectMemoryRead (interpreter)));
LoadSubCommand ("write", CommandObjectSP (new CommandObjectMemoryWrite (interpreter)));
}
CommandObjectMemory::~CommandObjectMemory ()
{
}