mirror of
https://github.com/Gericom/teak-llvm.git
synced 2025-06-21 04:25:45 -04:00

In the last stage of type promotion, we replace any zext that uses a new trunc with the operand of the trunc. This is okay when we only allowed one type to be optimised, but now its the case that the trunc maybe needed to produce a more narrow type than the one we were optimising for. So we need to check this before doing the replacement. Differential Revision: https://reviews.llvm.org/D57041 llvm-svn: 351935
1088 lines
34 KiB
C++
1088 lines
34 KiB
C++
//===----- ARMCodeGenPrepare.cpp ------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This pass inserts intrinsics to handle small types that would otherwise be
|
|
/// promoted during legalization. Here we can manually promote types or insert
|
|
/// intrinsics which can handle narrow types that aren't supported by the
|
|
/// register classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
#define DEBUG_TYPE "arm-codegenprepare"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
DisableCGP("arm-disable-cgp", cl::Hidden, cl::init(true),
|
|
cl::desc("Disable ARM specific CodeGenPrepare pass"));
|
|
|
|
static cl::opt<bool>
|
|
EnableDSP("arm-enable-scalar-dsp", cl::Hidden, cl::init(false),
|
|
cl::desc("Use DSP instructions for scalar operations"));
|
|
|
|
static cl::opt<bool>
|
|
EnableDSPWithImms("arm-enable-scalar-dsp-imms", cl::Hidden, cl::init(false),
|
|
cl::desc("Use DSP instructions for scalar operations\
|
|
with immediate operands"));
|
|
|
|
// The goal of this pass is to enable more efficient code generation for
|
|
// operations on narrow types (i.e. types with < 32-bits) and this is a
|
|
// motivating IR code example:
|
|
//
|
|
// define hidden i32 @cmp(i8 zeroext) {
|
|
// %2 = add i8 %0, -49
|
|
// %3 = icmp ult i8 %2, 3
|
|
// ..
|
|
// }
|
|
//
|
|
// The issue here is that i8 is type-legalized to i32 because i8 is not a
|
|
// legal type. Thus, arithmetic is done in integer-precision, but then the
|
|
// byte value is masked out as follows:
|
|
//
|
|
// t19: i32 = add t4, Constant:i32<-49>
|
|
// t24: i32 = and t19, Constant:i32<255>
|
|
//
|
|
// Consequently, we generate code like this:
|
|
//
|
|
// subs r0, #49
|
|
// uxtb r1, r0
|
|
// cmp r1, #3
|
|
//
|
|
// This shows that masking out the byte value results in generation of
|
|
// the UXTB instruction. This is not optimal as r0 already contains the byte
|
|
// value we need, and so instead we can just generate:
|
|
//
|
|
// sub.w r1, r0, #49
|
|
// cmp r1, #3
|
|
//
|
|
// We achieve this by type promoting the IR to i32 like so for this example:
|
|
//
|
|
// define i32 @cmp(i8 zeroext %c) {
|
|
// %0 = zext i8 %c to i32
|
|
// %c.off = add i32 %0, -49
|
|
// %1 = icmp ult i32 %c.off, 3
|
|
// ..
|
|
// }
|
|
//
|
|
// For this to be valid and legal, we need to prove that the i32 add is
|
|
// producing the same value as the i8 addition, and that e.g. no overflow
|
|
// happens.
|
|
//
|
|
// A brief sketch of the algorithm and some terminology.
|
|
// We pattern match interesting IR patterns:
|
|
// - which have "sources": instructions producing narrow values (i8, i16), and
|
|
// - they have "sinks": instructions consuming these narrow values.
|
|
//
|
|
// We collect all instruction connecting sources and sinks in a worklist, so
|
|
// that we can mutate these instruction and perform type promotion when it is
|
|
// legal to do so.
|
|
|
|
namespace {
|
|
class IRPromoter {
|
|
SmallPtrSet<Value*, 8> NewInsts;
|
|
SmallPtrSet<Instruction*, 4> InstsToRemove;
|
|
DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
|
|
SmallPtrSet<Value*, 8> Promoted;
|
|
Module *M = nullptr;
|
|
LLVMContext &Ctx;
|
|
// The type we promote to: always i32
|
|
IntegerType *ExtTy = nullptr;
|
|
// The type of the value that the search began from, either i8 or i16.
|
|
// This defines the max range of the values that we allow in the promoted
|
|
// tree.
|
|
IntegerType *OrigTy = nullptr;
|
|
SmallPtrSetImpl<Value*> *Visited;
|
|
SmallPtrSetImpl<Value*> *Sources;
|
|
SmallPtrSetImpl<Instruction*> *Sinks;
|
|
SmallPtrSetImpl<Instruction*> *SafeToPromote;
|
|
|
|
void ReplaceAllUsersOfWith(Value *From, Value *To);
|
|
void PrepareConstants(void);
|
|
void ExtendSources(void);
|
|
void ConvertTruncs(void);
|
|
void PromoteTree(void);
|
|
void TruncateSinks(void);
|
|
void Cleanup(void);
|
|
|
|
public:
|
|
IRPromoter(Module *M) : M(M), Ctx(M->getContext()),
|
|
ExtTy(Type::getInt32Ty(Ctx)) { }
|
|
|
|
|
|
void Mutate(Type *OrigTy,
|
|
SmallPtrSetImpl<Value*> &Visited,
|
|
SmallPtrSetImpl<Value*> &Sources,
|
|
SmallPtrSetImpl<Instruction*> &Sinks,
|
|
SmallPtrSetImpl<Instruction*> &SafeToPromote);
|
|
};
|
|
|
|
class ARMCodeGenPrepare : public FunctionPass {
|
|
const ARMSubtarget *ST = nullptr;
|
|
IRPromoter *Promoter = nullptr;
|
|
std::set<Value*> AllVisited;
|
|
SmallPtrSet<Instruction*, 8> SafeToPromote;
|
|
|
|
bool isSafeOverflow(Instruction *I);
|
|
bool isSupportedValue(Value *V);
|
|
bool isLegalToPromote(Value *V);
|
|
bool TryToPromote(Value *V);
|
|
|
|
public:
|
|
static char ID;
|
|
static unsigned TypeSize;
|
|
Type *OrigTy = nullptr;
|
|
|
|
ARMCodeGenPrepare() : FunctionPass(ID) {}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetPassConfig>();
|
|
}
|
|
|
|
StringRef getPassName() const override { return "ARM IR optimizations"; }
|
|
|
|
bool doInitialization(Module &M) override;
|
|
bool runOnFunction(Function &F) override;
|
|
bool doFinalization(Module &M) override;
|
|
};
|
|
|
|
}
|
|
|
|
static bool generateSignBits(Value *V) {
|
|
if (!isa<Instruction>(V))
|
|
return false;
|
|
|
|
unsigned Opc = cast<Instruction>(V)->getOpcode();
|
|
return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
|
|
Opc == Instruction::SRem;
|
|
}
|
|
|
|
static bool EqualTypeSize(Value *V) {
|
|
return V->getType()->getScalarSizeInBits() == ARMCodeGenPrepare::TypeSize;
|
|
}
|
|
|
|
static bool LessOrEqualTypeSize(Value *V) {
|
|
return V->getType()->getScalarSizeInBits() <= ARMCodeGenPrepare::TypeSize;
|
|
}
|
|
|
|
static bool GreaterThanTypeSize(Value *V) {
|
|
return V->getType()->getScalarSizeInBits() > ARMCodeGenPrepare::TypeSize;
|
|
}
|
|
|
|
static bool LessThanTypeSize(Value *V) {
|
|
return V->getType()->getScalarSizeInBits() < ARMCodeGenPrepare::TypeSize;
|
|
}
|
|
|
|
/// Some instructions can use 8- and 16-bit operands, and we don't need to
|
|
/// promote anything larger. We disallow booleans to make life easier when
|
|
/// dealing with icmps but allow any other integer that is <= 16 bits. Void
|
|
/// types are accepted so we can handle switches.
|
|
static bool isSupportedType(Value *V) {
|
|
Type *Ty = V->getType();
|
|
|
|
// Allow voids and pointers, these won't be promoted.
|
|
if (Ty->isVoidTy() || Ty->isPointerTy())
|
|
return true;
|
|
|
|
if (auto *Ld = dyn_cast<LoadInst>(V))
|
|
Ty = cast<PointerType>(Ld->getPointerOperandType())->getElementType();
|
|
|
|
if (!isa<IntegerType>(Ty) ||
|
|
cast<IntegerType>(V->getType())->getBitWidth() == 1)
|
|
return false;
|
|
|
|
return LessOrEqualTypeSize(V);
|
|
}
|
|
|
|
/// Return true if the given value is a source in the use-def chain, producing
|
|
/// a narrow 'TypeSize' value. These values will be zext to start the promotion
|
|
/// of the tree to i32. We guarantee that these won't populate the upper bits
|
|
/// of the register. ZExt on the loads will be free, and the same for call
|
|
/// return values because we only accept ones that guarantee a zeroext ret val.
|
|
/// Many arguments will have the zeroext attribute too, so those would be free
|
|
/// too.
|
|
static bool isSource(Value *V) {
|
|
if (!isa<IntegerType>(V->getType()))
|
|
return false;
|
|
|
|
// TODO Allow zext to be sources.
|
|
if (isa<Argument>(V))
|
|
return true;
|
|
else if (isa<LoadInst>(V))
|
|
return true;
|
|
else if (isa<BitCastInst>(V))
|
|
return true;
|
|
else if (auto *Call = dyn_cast<CallInst>(V))
|
|
return Call->hasRetAttr(Attribute::AttrKind::ZExt);
|
|
else if (auto *Trunc = dyn_cast<TruncInst>(V))
|
|
return EqualTypeSize(Trunc);
|
|
return false;
|
|
}
|
|
|
|
/// Return true if V will require any promoted values to be truncated for the
|
|
/// the IR to remain valid. We can't mutate the value type of these
|
|
/// instructions.
|
|
static bool isSink(Value *V) {
|
|
// TODO The truncate also isn't actually necessary because we would already
|
|
// proved that the data value is kept within the range of the original data
|
|
// type.
|
|
|
|
// Sinks are:
|
|
// - points where the value in the register is being observed, such as an
|
|
// icmp, switch or store.
|
|
// - points where value types have to match, such as calls and returns.
|
|
// - zext are included to ease the transformation and are generally removed
|
|
// later on.
|
|
if (auto *Store = dyn_cast<StoreInst>(V))
|
|
return LessOrEqualTypeSize(Store->getValueOperand());
|
|
if (auto *Return = dyn_cast<ReturnInst>(V))
|
|
return LessOrEqualTypeSize(Return->getReturnValue());
|
|
if (auto *ZExt = dyn_cast<ZExtInst>(V))
|
|
return GreaterThanTypeSize(ZExt);
|
|
if (auto *Switch = dyn_cast<SwitchInst>(V))
|
|
return LessThanTypeSize(Switch->getCondition());
|
|
if (auto *ICmp = dyn_cast<ICmpInst>(V))
|
|
return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
|
|
|
|
return isa<CallInst>(V);
|
|
}
|
|
|
|
/// Return whether the instruction can be promoted within any modifications to
|
|
/// its operands or result.
|
|
bool ARMCodeGenPrepare::isSafeOverflow(Instruction *I) {
|
|
// FIXME Do we need NSW too?
|
|
if (isa<OverflowingBinaryOperator>(I) && I->hasNoUnsignedWrap())
|
|
return true;
|
|
|
|
// We can support a, potentially, overflowing instruction (I) if:
|
|
// - It is only used by an unsigned icmp.
|
|
// - The icmp uses a constant.
|
|
// - The overflowing value (I) is decreasing, i.e would underflow - wrapping
|
|
// around zero to become a larger number than before.
|
|
// - The underflowing instruction (I) also uses a constant.
|
|
//
|
|
// We can then use the two constants to calculate whether the result would
|
|
// wrap in respect to itself in the original bitwidth. If it doesn't wrap,
|
|
// just underflows the range, the icmp would give the same result whether the
|
|
// result has been truncated or not. We calculate this by:
|
|
// - Zero extending both constants, if needed, to 32-bits.
|
|
// - Take the absolute value of I's constant, adding this to the icmp const.
|
|
// - Check that this value is not out of range for small type. If it is, it
|
|
// means that it has underflowed enough to wrap around the icmp constant.
|
|
//
|
|
// For example:
|
|
//
|
|
// %sub = sub i8 %a, 2
|
|
// %cmp = icmp ule i8 %sub, 254
|
|
//
|
|
// If %a = 0, %sub = -2 == FE == 254
|
|
// But if this is evalulated as a i32
|
|
// %sub = -2 == FF FF FF FE == 4294967294
|
|
// So the unsigned compares (i8 and i32) would not yield the same result.
|
|
//
|
|
// Another way to look at it is:
|
|
// %a - 2 <= 254
|
|
// %a + 2 <= 254 + 2
|
|
// %a <= 256
|
|
// And we can't represent 256 in the i8 format, so we don't support it.
|
|
//
|
|
// Whereas:
|
|
//
|
|
// %sub i8 %a, 1
|
|
// %cmp = icmp ule i8 %sub, 254
|
|
//
|
|
// If %a = 0, %sub = -1 == FF == 255
|
|
// As i32:
|
|
// %sub = -1 == FF FF FF FF == 4294967295
|
|
//
|
|
// In this case, the unsigned compare results would be the same and this
|
|
// would also be true for ult, uge and ugt:
|
|
// - (255 < 254) == (0xFFFFFFFF < 254) == false
|
|
// - (255 <= 254) == (0xFFFFFFFF <= 254) == false
|
|
// - (255 > 254) == (0xFFFFFFFF > 254) == true
|
|
// - (255 >= 254) == (0xFFFFFFFF >= 254) == true
|
|
//
|
|
// To demonstrate why we can't handle increasing values:
|
|
//
|
|
// %add = add i8 %a, 2
|
|
// %cmp = icmp ult i8 %add, 127
|
|
//
|
|
// If %a = 254, %add = 256 == (i8 1)
|
|
// As i32:
|
|
// %add = 256
|
|
//
|
|
// (1 < 127) != (256 < 127)
|
|
|
|
unsigned Opc = I->getOpcode();
|
|
if (Opc != Instruction::Add && Opc != Instruction::Sub)
|
|
return false;
|
|
|
|
if (!I->hasOneUse() ||
|
|
!isa<ICmpInst>(*I->user_begin()) ||
|
|
!isa<ConstantInt>(I->getOperand(1)))
|
|
return false;
|
|
|
|
ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
|
|
bool NegImm = OverflowConst->isNegative();
|
|
bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
|
|
((Opc == Instruction::Add) && NegImm);
|
|
if (!IsDecreasing)
|
|
return false;
|
|
|
|
// Don't support an icmp that deals with sign bits.
|
|
auto *CI = cast<ICmpInst>(*I->user_begin());
|
|
if (CI->isSigned() || CI->isEquality())
|
|
return false;
|
|
|
|
ConstantInt *ICmpConst = nullptr;
|
|
if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
|
|
ICmpConst = Const;
|
|
else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
|
|
ICmpConst = Const;
|
|
else
|
|
return false;
|
|
|
|
// Now check that the result can't wrap on itself.
|
|
APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
|
|
ICmpConst->getValue().zext(32) : ICmpConst->getValue();
|
|
|
|
Total += OverflowConst->getValue().getBitWidth() < 32 ?
|
|
OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();
|
|
|
|
APInt Max = APInt::getAllOnesValue(ARMCodeGenPrepare::TypeSize);
|
|
|
|
if (Total.getBitWidth() > Max.getBitWidth()) {
|
|
if (Total.ugt(Max.zext(Total.getBitWidth())))
|
|
return false;
|
|
} else if (Max.getBitWidth() > Total.getBitWidth()) {
|
|
if (Total.zext(Max.getBitWidth()).ugt(Max))
|
|
return false;
|
|
} else if (Total.ugt(Max))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Allowing safe overflow for " << *I << "\n");
|
|
return true;
|
|
}
|
|
|
|
static bool shouldPromote(Value *V) {
|
|
if (!isa<IntegerType>(V->getType()) || isSink(V))
|
|
return false;
|
|
|
|
if (isSource(V))
|
|
return true;
|
|
|
|
auto *I = dyn_cast<Instruction>(V);
|
|
if (!I)
|
|
return false;
|
|
|
|
if (isa<ICmpInst>(I))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return whether we can safely mutate V's type to ExtTy without having to be
|
|
/// concerned with zero extending or truncation.
|
|
static bool isPromotedResultSafe(Value *V) {
|
|
if (!isa<Instruction>(V))
|
|
return true;
|
|
|
|
if (generateSignBits(V))
|
|
return false;
|
|
|
|
return !isa<OverflowingBinaryOperator>(V);
|
|
}
|
|
|
|
/// Return the intrinsic for the instruction that can perform the same
|
|
/// operation but on a narrow type. This is using the parallel dsp intrinsics
|
|
/// on scalar values.
|
|
static Intrinsic::ID getNarrowIntrinsic(Instruction *I) {
|
|
// Whether we use the signed or unsigned versions of these intrinsics
|
|
// doesn't matter because we're not using the GE bits that they set in
|
|
// the APSR.
|
|
switch(I->getOpcode()) {
|
|
default:
|
|
break;
|
|
case Instruction::Add:
|
|
return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_uadd16 :
|
|
Intrinsic::arm_uadd8;
|
|
case Instruction::Sub:
|
|
return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_usub16 :
|
|
Intrinsic::arm_usub8;
|
|
}
|
|
llvm_unreachable("unhandled opcode for narrow intrinsic");
|
|
}
|
|
|
|
void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
|
|
SmallVector<Instruction*, 4> Users;
|
|
Instruction *InstTo = dyn_cast<Instruction>(To);
|
|
bool ReplacedAll = true;
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Replacing " << *From << " with " << *To
|
|
<< "\n");
|
|
|
|
for (Use &U : From->uses()) {
|
|
auto *User = cast<Instruction>(U.getUser());
|
|
if (InstTo && User->isIdenticalTo(InstTo)) {
|
|
ReplacedAll = false;
|
|
continue;
|
|
}
|
|
Users.push_back(User);
|
|
}
|
|
|
|
for (auto *U : Users)
|
|
U->replaceUsesOfWith(From, To);
|
|
|
|
if (ReplacedAll)
|
|
if (auto *I = dyn_cast<Instruction>(From))
|
|
InstsToRemove.insert(I);
|
|
}
|
|
|
|
void IRPromoter::PrepareConstants() {
|
|
IRBuilder<> Builder{Ctx};
|
|
// First step is to prepare the instructions for mutation. Most constants
|
|
// just need to be zero extended into their new type, but complications arise
|
|
// because:
|
|
// - For nuw binary operators, negative immediates would need sign extending;
|
|
// however, instead we'll change them to positive and zext them. We can do
|
|
// this because:
|
|
// > The operators that can wrap are: add, sub, mul and shl.
|
|
// > shl interprets its second operand as unsigned and if the first operand
|
|
// is an immediate, it will need zext to be nuw.
|
|
// > I'm assuming mul has to interpret immediates as unsigned for nuw.
|
|
// > Which leaves the nuw add and sub to be handled; as with shl, if an
|
|
// immediate is used as operand 0, it will need zext to be nuw.
|
|
// - We also allow add and sub to safely overflow in certain circumstances
|
|
// and only when the value (operand 0) is being decreased.
|
|
//
|
|
// For adds and subs, that are either nuw or safely wrap and use a negative
|
|
// immediate as operand 1, we create an equivalent instruction using a
|
|
// positive immediate. That positive immediate can then be zext along with
|
|
// all the other immediates later.
|
|
for (auto *V : *Visited) {
|
|
if (!isa<Instruction>(V))
|
|
continue;
|
|
|
|
auto *I = cast<Instruction>(V);
|
|
if (SafeToPromote->count(I)) {
|
|
|
|
if (!isa<OverflowingBinaryOperator>(I))
|
|
continue;
|
|
|
|
if (auto *Const = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
if (!Const->isNegative())
|
|
break;
|
|
|
|
unsigned Opc = I->getOpcode();
|
|
if (Opc != Instruction::Add && Opc != Instruction::Sub)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Adjusting " << *I << "\n");
|
|
auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
|
|
Builder.SetInsertPoint(I);
|
|
Value *NewVal = Opc == Instruction::Sub ?
|
|
Builder.CreateAdd(I->getOperand(0), NewConst) :
|
|
Builder.CreateSub(I->getOperand(0), NewConst);
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: New equivalent: " << *NewVal << "\n");
|
|
|
|
if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
|
|
NewInst->copyIRFlags(I);
|
|
NewInsts.insert(NewInst);
|
|
}
|
|
InstsToRemove.insert(I);
|
|
I->replaceAllUsesWith(NewVal);
|
|
}
|
|
}
|
|
}
|
|
for (auto *I : NewInsts)
|
|
Visited->insert(I);
|
|
}
|
|
|
|
void IRPromoter::ExtendSources() {
|
|
IRBuilder<> Builder{Ctx};
|
|
|
|
auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
|
|
assert(V->getType() != ExtTy && "zext already extends to i32");
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Inserting ZExt for " << *V << "\n");
|
|
Builder.SetInsertPoint(InsertPt);
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
Builder.SetCurrentDebugLocation(I->getDebugLoc());
|
|
|
|
Value *ZExt = Builder.CreateZExt(V, ExtTy);
|
|
if (auto *I = dyn_cast<Instruction>(ZExt)) {
|
|
if (isa<Argument>(V))
|
|
I->moveBefore(InsertPt);
|
|
else
|
|
I->moveAfter(InsertPt);
|
|
NewInsts.insert(I);
|
|
}
|
|
|
|
ReplaceAllUsersOfWith(V, ZExt);
|
|
};
|
|
|
|
// Now, insert extending instructions between the sources and their users.
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Promoting sources:\n");
|
|
for (auto V : *Sources) {
|
|
LLVM_DEBUG(dbgs() << " - " << *V << "\n");
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
InsertZExt(I, I);
|
|
else if (auto *Arg = dyn_cast<Argument>(V)) {
|
|
BasicBlock &BB = Arg->getParent()->front();
|
|
InsertZExt(Arg, &*BB.getFirstInsertionPt());
|
|
} else {
|
|
llvm_unreachable("unhandled source that needs extending");
|
|
}
|
|
Promoted.insert(V);
|
|
}
|
|
}
|
|
|
|
void IRPromoter::PromoteTree() {
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Mutating the tree..\n");
|
|
|
|
IRBuilder<> Builder{Ctx};
|
|
|
|
// Mutate the types of the instructions within the tree. Here we handle
|
|
// constant operands.
|
|
for (auto *V : *Visited) {
|
|
if (Sources->count(V))
|
|
continue;
|
|
|
|
auto *I = cast<Instruction>(V);
|
|
if (Sinks->count(I))
|
|
continue;
|
|
|
|
for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
|
|
Value *Op = I->getOperand(i);
|
|
if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
|
|
continue;
|
|
|
|
if (auto *Const = dyn_cast<ConstantInt>(Op)) {
|
|
Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
|
|
I->setOperand(i, NewConst);
|
|
} else if (isa<UndefValue>(Op))
|
|
I->setOperand(i, UndefValue::get(ExtTy));
|
|
}
|
|
|
|
if (shouldPromote(I)) {
|
|
I->mutateType(ExtTy);
|
|
Promoted.insert(I);
|
|
}
|
|
}
|
|
|
|
// Finally, any instructions that should be promoted but haven't yet been,
|
|
// need to be handled using intrinsics.
|
|
for (auto *V : *Visited) {
|
|
auto *I = dyn_cast<Instruction>(V);
|
|
if (!I)
|
|
continue;
|
|
|
|
if (Sources->count(I) || Sinks->count(I))
|
|
continue;
|
|
|
|
if (!shouldPromote(I) || SafeToPromote->count(I) || NewInsts.count(I))
|
|
continue;
|
|
|
|
assert(EnableDSP && "DSP intrinisc insertion not enabled!");
|
|
|
|
// Replace unsafe instructions with appropriate intrinsic calls.
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Inserting DSP intrinsic for "
|
|
<< *I << "\n");
|
|
Function *DSPInst =
|
|
Intrinsic::getDeclaration(M, getNarrowIntrinsic(I));
|
|
Builder.SetInsertPoint(I);
|
|
Builder.SetCurrentDebugLocation(I->getDebugLoc());
|
|
Value *Args[] = { I->getOperand(0), I->getOperand(1) };
|
|
CallInst *Call = Builder.CreateCall(DSPInst, Args);
|
|
NewInsts.insert(Call);
|
|
ReplaceAllUsersOfWith(I, Call);
|
|
}
|
|
}
|
|
|
|
void IRPromoter::TruncateSinks() {
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Fixing up the sinks:\n");
|
|
|
|
IRBuilder<> Builder{Ctx};
|
|
|
|
auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
|
|
if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
|
|
return nullptr;
|
|
|
|
if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources->count(V))
|
|
return nullptr;
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Creating " << *TruncTy << " Trunc for "
|
|
<< *V << "\n");
|
|
Builder.SetInsertPoint(cast<Instruction>(V));
|
|
auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
|
|
if (Trunc)
|
|
NewInsts.insert(Trunc);
|
|
return Trunc;
|
|
};
|
|
|
|
// Fix up any stores or returns that use the results of the promoted
|
|
// chain.
|
|
for (auto I : *Sinks) {
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: For Sink: " << *I << "\n");
|
|
|
|
// Handle calls separately as we need to iterate over arg operands.
|
|
if (auto *Call = dyn_cast<CallInst>(I)) {
|
|
for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
|
|
Value *Arg = Call->getArgOperand(i);
|
|
Type *Ty = TruncTysMap[Call][i];
|
|
if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
|
|
Trunc->moveBefore(Call);
|
|
Call->setArgOperand(i, Trunc);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Special case switches because we need to truncate the condition.
|
|
if (auto *Switch = dyn_cast<SwitchInst>(I)) {
|
|
Type *Ty = TruncTysMap[Switch][0];
|
|
if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
|
|
Trunc->moveBefore(Switch);
|
|
Switch->setCondition(Trunc);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Now handle the others.
|
|
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
|
|
Type *Ty = TruncTysMap[I][i];
|
|
if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
|
|
Trunc->moveBefore(I);
|
|
I->setOperand(i, Trunc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void IRPromoter::Cleanup() {
|
|
// Some zexts will now have become redundant, along with their trunc
|
|
// operands, so remove them
|
|
for (auto V : *Visited) {
|
|
if (!isa<ZExtInst>(V))
|
|
continue;
|
|
|
|
auto ZExt = cast<ZExtInst>(V);
|
|
if (ZExt->getDestTy() != ExtTy)
|
|
continue;
|
|
|
|
Value *Src = ZExt->getOperand(0);
|
|
if (ZExt->getSrcTy() == ZExt->getDestTy()) {
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Removing unnecessary cast: " << *ZExt
|
|
<< "\n");
|
|
ReplaceAllUsersOfWith(ZExt, Src);
|
|
continue;
|
|
}
|
|
|
|
// Unless they produce a value that is narrower than ExtTy, we can
|
|
// replace the result of the zext with the input of a newly inserted
|
|
// trunc.
|
|
if (NewInsts.count(Src) && isa<TruncInst>(Src) &&
|
|
Src->getType() == OrigTy) {
|
|
auto *Trunc = cast<TruncInst>(Src);
|
|
assert(Trunc->getOperand(0)->getType() == ExtTy &&
|
|
"expected inserted trunc to be operating on i32");
|
|
ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
|
|
}
|
|
}
|
|
|
|
for (auto *I : InstsToRemove) {
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Removing " << *I << "\n");
|
|
I->dropAllReferences();
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
InstsToRemove.clear();
|
|
NewInsts.clear();
|
|
TruncTysMap.clear();
|
|
Promoted.clear();
|
|
}
|
|
|
|
void IRPromoter::ConvertTruncs() {
|
|
IRBuilder<> Builder{Ctx};
|
|
|
|
for (auto *V : *Visited) {
|
|
if (!isa<TruncInst>(V) || Sources->count(V))
|
|
continue;
|
|
|
|
auto *Trunc = cast<TruncInst>(V);
|
|
assert(LessThanTypeSize(Trunc) && "expected narrow trunc");
|
|
|
|
Builder.SetInsertPoint(Trunc);
|
|
unsigned NumBits =
|
|
cast<IntegerType>(Trunc->getType())->getScalarSizeInBits();
|
|
ConstantInt *Mask = ConstantInt::get(Ctx, APInt::getMaxValue(NumBits));
|
|
Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
|
|
|
|
if (auto *I = dyn_cast<Instruction>(Masked))
|
|
NewInsts.insert(I);
|
|
|
|
ReplaceAllUsersOfWith(Trunc, Masked);
|
|
}
|
|
}
|
|
|
|
void IRPromoter::Mutate(Type *OrigTy,
|
|
SmallPtrSetImpl<Value*> &Visited,
|
|
SmallPtrSetImpl<Value*> &Sources,
|
|
SmallPtrSetImpl<Instruction*> &Sinks,
|
|
SmallPtrSetImpl<Instruction*> &SafeToPromote) {
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Promoting use-def chains to from "
|
|
<< ARMCodeGenPrepare::TypeSize << " to 32-bits\n");
|
|
|
|
assert(isa<IntegerType>(OrigTy) && "expected integer type");
|
|
this->OrigTy = cast<IntegerType>(OrigTy);
|
|
assert(OrigTy->getPrimitiveSizeInBits() < ExtTy->getPrimitiveSizeInBits() &&
|
|
"original type not smaller than extended type");
|
|
|
|
this->Visited = &Visited;
|
|
this->Sources = &Sources;
|
|
this->Sinks = &Sinks;
|
|
this->SafeToPromote = &SafeToPromote;
|
|
|
|
// Cache original types of the values that will likely need truncating
|
|
for (auto *I : Sinks) {
|
|
if (auto *Call = dyn_cast<CallInst>(I)) {
|
|
for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
|
|
Value *Arg = Call->getArgOperand(i);
|
|
TruncTysMap[Call].push_back(Arg->getType());
|
|
}
|
|
} else if (auto *Switch = dyn_cast<SwitchInst>(I))
|
|
TruncTysMap[I].push_back(Switch->getCondition()->getType());
|
|
else {
|
|
for (unsigned i = 0; i < I->getNumOperands(); ++i)
|
|
TruncTysMap[I].push_back(I->getOperand(i)->getType());
|
|
}
|
|
}
|
|
|
|
// Convert adds and subs using negative immediates to equivalent instructions
|
|
// that use positive constants.
|
|
PrepareConstants();
|
|
|
|
// Insert zext instructions between sources and their users.
|
|
ExtendSources();
|
|
|
|
// Convert any truncs, that aren't sources, into AND masks.
|
|
ConvertTruncs();
|
|
|
|
// Promote visited instructions, mutating their types in place. Also insert
|
|
// DSP intrinsics, if enabled, for adds and subs which would be unsafe to
|
|
// promote.
|
|
PromoteTree();
|
|
|
|
// Insert trunc instructions for use by calls, stores etc...
|
|
TruncateSinks();
|
|
|
|
// Finally, remove unecessary zexts and truncs, delete old instructions and
|
|
// clear the data structures.
|
|
Cleanup();
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Mutation complete\n");
|
|
}
|
|
|
|
/// We accept most instructions, as well as Arguments and ConstantInsts. We
|
|
/// Disallow casts other than zext and truncs and only allow calls if their
|
|
/// return value is zeroext. We don't allow opcodes that can introduce sign
|
|
/// bits.
|
|
bool ARMCodeGenPrepare::isSupportedValue(Value *V) {
|
|
if (auto *I = dyn_cast<ICmpInst>(V)) {
|
|
// Now that we allow small types than TypeSize, only allow icmp of
|
|
// TypeSize because they will require a trunc to be legalised.
|
|
// TODO: Allow icmp of smaller types, and calculate at the end
|
|
// whether the transform would be beneficial.
|
|
if (isa<PointerType>(I->getOperand(0)->getType()))
|
|
return true;
|
|
return EqualTypeSize(I->getOperand(0));
|
|
}
|
|
|
|
// Memory instructions
|
|
if (isa<StoreInst>(V) || isa<GetElementPtrInst>(V))
|
|
return true;
|
|
|
|
// Branches and targets.
|
|
if( isa<BranchInst>(V) || isa<SwitchInst>(V) || isa<BasicBlock>(V))
|
|
return true;
|
|
|
|
// Non-instruction values that we can handle.
|
|
if ((isa<Constant>(V) && !isa<ConstantExpr>(V)) || isa<Argument>(V))
|
|
return isSupportedType(V);
|
|
|
|
if (isa<PHINode>(V) || isa<SelectInst>(V) || isa<ReturnInst>(V) ||
|
|
isa<LoadInst>(V))
|
|
return isSupportedType(V);
|
|
|
|
if (isa<SExtInst>(V))
|
|
return false;
|
|
|
|
if (auto *Cast = dyn_cast<CastInst>(V))
|
|
return isSupportedType(Cast) || isSupportedType(Cast->getOperand(0));
|
|
|
|
// Special cases for calls as we need to check for zeroext
|
|
// TODO We should accept calls even if they don't have zeroext, as they can
|
|
// still be sinks.
|
|
if (auto *Call = dyn_cast<CallInst>(V))
|
|
return isSupportedType(Call) &&
|
|
Call->hasRetAttr(Attribute::AttrKind::ZExt);
|
|
|
|
if (!isa<BinaryOperator>(V))
|
|
return false;
|
|
|
|
if (!isSupportedType(V))
|
|
return false;
|
|
|
|
if (generateSignBits(V)) {
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: No, instruction can generate sign bits.\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Check that the type of V would be promoted and that the original type is
|
|
/// smaller than the targeted promoted type. Check that we're not trying to
|
|
/// promote something larger than our base 'TypeSize' type.
|
|
bool ARMCodeGenPrepare::isLegalToPromote(Value *V) {
|
|
|
|
auto *I = dyn_cast<Instruction>(V);
|
|
if (!I)
|
|
return true;
|
|
|
|
if (SafeToPromote.count(I))
|
|
return true;
|
|
|
|
if (isPromotedResultSafe(V) || isSafeOverflow(I)) {
|
|
SafeToPromote.insert(I);
|
|
return true;
|
|
}
|
|
|
|
if (I->getOpcode() != Instruction::Add && I->getOpcode() != Instruction::Sub)
|
|
return false;
|
|
|
|
// If promotion is not safe, can we use a DSP instruction to natively
|
|
// handle the narrow type?
|
|
if (!ST->hasDSP() || !EnableDSP || !isSupportedType(I))
|
|
return false;
|
|
|
|
if (ST->isThumb() && !ST->hasThumb2())
|
|
return false;
|
|
|
|
// TODO
|
|
// Would it be profitable? For Thumb code, these parallel DSP instructions
|
|
// are only Thumb-2, so we wouldn't be able to dual issue on Cortex-M33. For
|
|
// Cortex-A, specifically Cortex-A72, the latency is double and throughput is
|
|
// halved. They also do not take immediates as operands.
|
|
for (auto &Op : I->operands()) {
|
|
if (isa<Constant>(Op)) {
|
|
if (!EnableDSPWithImms)
|
|
return false;
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Will use an intrinsic for: " << *I << "\n");
|
|
return true;
|
|
}
|
|
|
|
bool ARMCodeGenPrepare::TryToPromote(Value *V) {
|
|
OrigTy = V->getType();
|
|
TypeSize = OrigTy->getPrimitiveSizeInBits();
|
|
if (TypeSize > 16 || TypeSize < 8)
|
|
return false;
|
|
|
|
SafeToPromote.clear();
|
|
|
|
if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: TryToPromote: " << *V << ", TypeSize = "
|
|
<< TypeSize << "\n");
|
|
|
|
SetVector<Value*> WorkList;
|
|
SmallPtrSet<Value*, 8> Sources;
|
|
SmallPtrSet<Instruction*, 4> Sinks;
|
|
SmallPtrSet<Value*, 16> CurrentVisited;
|
|
WorkList.insert(V);
|
|
|
|
// Return true if V was added to the worklist as a supported instruction,
|
|
// if it was already visited, or if we don't need to explore it (e.g.
|
|
// pointer values and GEPs), and false otherwise.
|
|
auto AddLegalInst = [&](Value *V) {
|
|
if (CurrentVisited.count(V))
|
|
return true;
|
|
|
|
// Ignore GEPs because they don't need promoting and the constant indices
|
|
// will prevent the transformation.
|
|
if (isa<GetElementPtrInst>(V))
|
|
return true;
|
|
|
|
if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Can't handle: " << *V << "\n");
|
|
return false;
|
|
}
|
|
|
|
WorkList.insert(V);
|
|
return true;
|
|
};
|
|
|
|
// Iterate through, and add to, a tree of operands and users in the use-def.
|
|
while (!WorkList.empty()) {
|
|
Value *V = WorkList.back();
|
|
WorkList.pop_back();
|
|
if (CurrentVisited.count(V))
|
|
continue;
|
|
|
|
// Ignore non-instructions, other than arguments.
|
|
if (!isa<Instruction>(V) && !isSource(V))
|
|
continue;
|
|
|
|
// If we've already visited this value from somewhere, bail now because
|
|
// the tree has already been explored.
|
|
// TODO: This could limit the transform, ie if we try to promote something
|
|
// from an i8 and fail first, before trying an i16.
|
|
if (AllVisited.count(V))
|
|
return false;
|
|
|
|
CurrentVisited.insert(V);
|
|
AllVisited.insert(V);
|
|
|
|
// Calls can be both sources and sinks.
|
|
if (isSink(V))
|
|
Sinks.insert(cast<Instruction>(V));
|
|
|
|
if (isSource(V))
|
|
Sources.insert(V);
|
|
|
|
if (!isSink(V) && !isSource(V)) {
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
// Visit operands of any instruction visited.
|
|
for (auto &U : I->operands()) {
|
|
if (!AddLegalInst(U))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Don't visit users of a node which isn't going to be mutated unless its a
|
|
// source.
|
|
if (isSource(V) || shouldPromote(V)) {
|
|
for (Use &U : V->uses()) {
|
|
if (!AddLegalInst(U.getUser()))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Visited nodes:\n";
|
|
for (auto *I : CurrentVisited)
|
|
I->dump();
|
|
);
|
|
unsigned ToPromote = 0;
|
|
for (auto *V : CurrentVisited) {
|
|
if (Sources.count(V))
|
|
continue;
|
|
if (Sinks.count(cast<Instruction>(V)))
|
|
continue;
|
|
++ToPromote;
|
|
}
|
|
|
|
if (ToPromote < 2)
|
|
return false;
|
|
|
|
Promoter->Mutate(OrigTy, CurrentVisited, Sources, Sinks, SafeToPromote);
|
|
return true;
|
|
}
|
|
|
|
bool ARMCodeGenPrepare::doInitialization(Module &M) {
|
|
Promoter = new IRPromoter(&M);
|
|
return false;
|
|
}
|
|
|
|
bool ARMCodeGenPrepare::runOnFunction(Function &F) {
|
|
if (skipFunction(F) || DisableCGP)
|
|
return false;
|
|
|
|
auto *TPC = &getAnalysis<TargetPassConfig>();
|
|
if (!TPC)
|
|
return false;
|
|
|
|
const TargetMachine &TM = TPC->getTM<TargetMachine>();
|
|
ST = &TM.getSubtarget<ARMSubtarget>(F);
|
|
bool MadeChange = false;
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Running on " << F.getName() << "\n");
|
|
|
|
// Search up from icmps to try to promote their operands.
|
|
for (BasicBlock &BB : F) {
|
|
auto &Insts = BB.getInstList();
|
|
for (auto &I : Insts) {
|
|
if (AllVisited.count(&I))
|
|
continue;
|
|
|
|
if (isa<ICmpInst>(I)) {
|
|
auto &CI = cast<ICmpInst>(I);
|
|
|
|
// Skip signed or pointer compares
|
|
if (CI.isSigned() || !isa<IntegerType>(CI.getOperand(0)->getType()))
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "ARM CGP: Searching from: " << CI << "\n");
|
|
|
|
for (auto &Op : CI.operands()) {
|
|
if (auto *I = dyn_cast<Instruction>(Op))
|
|
MadeChange |= TryToPromote(I);
|
|
}
|
|
}
|
|
}
|
|
LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
|
|
dbgs() << F;
|
|
report_fatal_error("Broken function after type promotion");
|
|
});
|
|
}
|
|
if (MadeChange)
|
|
LLVM_DEBUG(dbgs() << "After ARMCodeGenPrepare: " << F << "\n");
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
bool ARMCodeGenPrepare::doFinalization(Module &M) {
|
|
delete Promoter;
|
|
return false;
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(ARMCodeGenPrepare, DEBUG_TYPE,
|
|
"ARM IR optimizations", false, false)
|
|
INITIALIZE_PASS_END(ARMCodeGenPrepare, DEBUG_TYPE, "ARM IR optimizations",
|
|
false, false)
|
|
|
|
char ARMCodeGenPrepare::ID = 0;
|
|
unsigned ARMCodeGenPrepare::TypeSize = 0;
|
|
|
|
FunctionPass *llvm::createARMCodeGenPreparePass() {
|
|
return new ARMCodeGenPrepare();
|
|
}
|