mirror of
https://github.com/Gericom/teak-llvm.git
synced 2025-06-30 16:58:56 -04:00

This module was originally intended to be imported by top-level scripts to be able to find the LLDB packages and third party libraries. Packages themselves shouldn't need to import it, because by the time it gets into the package, the top-level script should have already done this. Indeed, it was just adding the same values to sys.path multiple times, so this patch is essentially no functional change. To make sure it doesn't get re-introduced, we also delete the `use_lldb_suite` module from `lldbsuite/test`, although the original copy still remains in `lldb/test` llvm-svn: 251963
146 lines
6.8 KiB
Python
146 lines
6.8 KiB
Python
"""
|
|
Test that we can backtrace correctly from standard functions.
|
|
|
|
This test suit is a collection of automatically generated tests from the source files in the
|
|
directory. Please DON'T add individual test cases to this file.
|
|
|
|
To add a new test case to this test suit please create a simple C/C++ application and put the
|
|
source file into the directory of the test cases. The test suit will automatically pick the
|
|
file up and generate a test case from it in run time (with name test_standard_unwind_<file_name>
|
|
after escaping some special characters).
|
|
"""
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import unittest2
|
|
import os, time
|
|
import lldb
|
|
from lldbsuite.test.lldbtest import *
|
|
import lldbsuite.test.lldbutil as lldbutil
|
|
|
|
test_source_dirs = ["."]
|
|
|
|
class StandardUnwindTest(TestBase):
|
|
mydir = TestBase.compute_mydir(__file__)
|
|
|
|
def standard_unwind_tests (self):
|
|
# The following variables have to be defined for each architecture and OS we testing for:
|
|
# base_function_names: List of function names where we accept that the stack unwinding is
|
|
# correct if they are on the stack. It should include the bottom most
|
|
# function on the stack and a list of functions where we know we can't
|
|
# unwind for any reason (list of expected failure functions)
|
|
# no_step_function_names: The list of functions where we don't want to step through
|
|
# instruction by instruction for any reason. (A valid reason is if
|
|
# it is impossible to step through a function instruction by
|
|
# instruction because it is special for some reason.) For these
|
|
# functions we will immediately do a step-out when we hit them.
|
|
|
|
triple = self.dbg.GetSelectedPlatform().GetTriple()
|
|
if re.match("arm-.*-.*-android", triple):
|
|
base_function_names = [
|
|
"_start", # Base function on the stack
|
|
"__memcpy_base", # Function reached by a fall through from the previous function
|
|
"__memcpy_base_aligned", # Function reached by a fall through from the previous function
|
|
]
|
|
no_step_function_names = [
|
|
"__sync_fetch_and_add_4", # Calls into a special SO where we can't set a breakpoint
|
|
"pthread_mutex_lock", # Uses ldrex and strex what interferes with the software single stepping
|
|
"pthread_mutex_unlock", # Uses ldrex and strex what interferes with the software single stepping
|
|
"pthread_once", # Uses ldrex and strex what interferes with the software single stepping
|
|
]
|
|
elif re.match("aarch64-.*-.*-android", triple):
|
|
base_function_names = [
|
|
"do_arm64_start", # Base function on the stack
|
|
]
|
|
no_step_function_names = [
|
|
None,
|
|
"__cxa_guard_acquire", # Uses ldxr and stxr what interferes with the software single stepping
|
|
"__cxa_guard_release", # Uses ldxr and stxr what interferes with the software single stepping
|
|
"pthread_mutex_lock", # Uses ldxr and stxr what interferes with the software single stepping
|
|
"pthread_mutex_unlock", # Uses ldxr and stxr what interferes with the software single stepping
|
|
"pthread_once", # Uses ldxr and stxr what interferes with the software single stepping
|
|
]
|
|
else:
|
|
self.skipTest("No expectations for the current architecture")
|
|
|
|
exe = os.path.join(os.getcwd(), "a.out")
|
|
target = self.dbg.CreateTarget(exe)
|
|
self.assertTrue(target, VALID_TARGET)
|
|
|
|
target.BreakpointCreateByName("main")
|
|
|
|
process = target.LaunchSimple (None, None, self.get_process_working_directory())
|
|
self.assertTrue(process is not None, "SBTarget.Launch() failed")
|
|
self.assertEqual(process.GetState(), lldb.eStateStopped, "The process didn't hit main")
|
|
|
|
index = 0
|
|
while process.GetState() == lldb.eStateStopped:
|
|
index += 1
|
|
if process.GetNumThreads() > 1:
|
|
# In case of a multi threaded inferior if one of the thread is stopped in a blocking
|
|
# syscall and we try to step it then SBThread::StepInstruction() will block forever
|
|
self.skipTest("Multi threaded inferiors are not supported by this test")
|
|
|
|
thread = process.GetThreadAtIndex(0)
|
|
|
|
if self.TraceOn():
|
|
print("INDEX: %u" % index)
|
|
for f in thread.frames:
|
|
print(f)
|
|
|
|
if thread.GetFrameAtIndex(0).GetFunctionName() is not None:
|
|
found_main = False
|
|
for f in thread.frames:
|
|
if f.GetFunctionName() in base_function_names:
|
|
found_main = True
|
|
break
|
|
self.assertTrue(found_main, "Main function isn't found on the backtrace")
|
|
|
|
if thread.GetFrameAtIndex(0).GetFunctionName() in no_step_function_names:
|
|
thread.StepOut()
|
|
else:
|
|
thread.StepInstruction(False)
|
|
|
|
# Collect source files in the specified directories
|
|
test_source_files = set([])
|
|
for d in test_source_dirs:
|
|
if os.path.isabs(d):
|
|
dirname = d
|
|
else:
|
|
dirname = os.path.join(os.path.dirname(__file__), d)
|
|
|
|
for root, _, files in os.walk(dirname):
|
|
test_source_files = test_source_files | set(os.path.abspath(os.path.join(root, f)) for f in files)
|
|
|
|
# Generate test cases based on the collected source files
|
|
for f in test_source_files:
|
|
if f.endswith(".cpp") or f.endswith(".c"):
|
|
@dwarf_test
|
|
@unittest2.skipIf(TestBase.skipLongRunningTest(), "Skip this long running test")
|
|
def test_function_dwarf(self, f=f):
|
|
if f.endswith(".cpp"):
|
|
d = {'CXX_SOURCES': f}
|
|
elif f.endswith(".c"):
|
|
d = {'C_SOURCES': f}
|
|
|
|
# If we can't compile the inferior just skip the test instead of failing it.
|
|
# It makes the test suit more robust when testing on several different architecture
|
|
# avoid the hassle of skipping tests manually.
|
|
try:
|
|
self.buildDwarf(dictionary=d)
|
|
self.setTearDownCleanup(d)
|
|
except:
|
|
if self.TraceOn():
|
|
print(sys.exc_info()[0])
|
|
self.skipTest("Inferior not supported")
|
|
self.standard_unwind_tests()
|
|
|
|
test_name = "test_unwind_" + str(f)
|
|
for c in ".=()/\\":
|
|
test_name = test_name.replace(c, '_')
|
|
|
|
test_function_dwarf.__name__ = test_name
|
|
setattr(StandardUnwindTest, test_function_dwarf.__name__, test_function_dwarf)
|