teak-llvm/llvm/test/CodeGen/X86/vec_setcc.ll
Craig Topper 74168ded03 [TargetLowering] Teach computeRegisterProperties to only widen v3i16/v3f16 vectors to the next power of 2 type if that's legal.
These were recently made simple types. This restores their
behavior back to something like their EVT legalization.

We might be able to fix the code in type legalization where the
assert was failing, but I didn't investigate too much as I had
already looked at the computeRegisterProperties code during the
review for v3i16/v3f16.

Most of the test changes restore the X86 codegen back to what
it looked like before the recent change. The test case in
vec_setcc.ll and is a reduced version of the reproducer from
the fuzzer.

Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=16490

llvm-svn: 369205
2019-08-18 06:28:06 +00:00

245 lines
7.9 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+sse2 | FileCheck %s --check-prefix=SSE --check-prefix=SSE2
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+sse4.1 | FileCheck %s --check-prefix=SSE --check-prefix=SSE41
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mattr=+avx | FileCheck %s --check-prefix=AVX
define <16 x i8> @v16i8_icmp_uge(<16 x i8> %a, <16 x i8> %b) nounwind readnone ssp uwtable {
; SSE-LABEL: v16i8_icmp_uge:
; SSE: # %bb.0:
; SSE-NEXT: pmaxub %xmm0, %xmm1
; SSE-NEXT: pcmpeqb %xmm1, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: v16i8_icmp_uge:
; AVX: # %bb.0:
; AVX-NEXT: vpmaxub %xmm1, %xmm0, %xmm1
; AVX-NEXT: vpcmpeqb %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%1 = icmp uge <16 x i8> %a, %b
%2 = sext <16 x i1> %1 to <16 x i8>
ret <16 x i8> %2
}
define <16 x i8> @v16i8_icmp_ule(<16 x i8> %a, <16 x i8> %b) nounwind readnone ssp uwtable {
; SSE-LABEL: v16i8_icmp_ule:
; SSE: # %bb.0:
; SSE-NEXT: pminub %xmm0, %xmm1
; SSE-NEXT: pcmpeqb %xmm1, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: v16i8_icmp_ule:
; AVX: # %bb.0:
; AVX-NEXT: vpminub %xmm1, %xmm0, %xmm1
; AVX-NEXT: vpcmpeqb %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%1 = icmp ule <16 x i8> %a, %b
%2 = sext <16 x i1> %1 to <16 x i8>
ret <16 x i8> %2
}
define <8 x i16> @v8i16_icmp_uge(<8 x i16> %a, <8 x i16> %b) nounwind readnone ssp uwtable {
; SSE2-LABEL: v8i16_icmp_uge:
; SSE2: # %bb.0:
; SSE2-NEXT: psubusw %xmm0, %xmm1
; SSE2-NEXT: pxor %xmm0, %xmm0
; SSE2-NEXT: pcmpeqw %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSE41-LABEL: v8i16_icmp_uge:
; SSE41: # %bb.0:
; SSE41-NEXT: pmaxuw %xmm0, %xmm1
; SSE41-NEXT: pcmpeqw %xmm1, %xmm0
; SSE41-NEXT: retq
;
; AVX-LABEL: v8i16_icmp_uge:
; AVX: # %bb.0:
; AVX-NEXT: vpmaxuw %xmm1, %xmm0, %xmm1
; AVX-NEXT: vpcmpeqw %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%1 = icmp uge <8 x i16> %a, %b
%2 = sext <8 x i1> %1 to <8 x i16>
ret <8 x i16> %2
}
define <8 x i16> @v8i16_icmp_ule(<8 x i16> %a, <8 x i16> %b) nounwind readnone ssp uwtable {
; SSE2-LABEL: v8i16_icmp_ule:
; SSE2: # %bb.0:
; SSE2-NEXT: psubusw %xmm1, %xmm0
; SSE2-NEXT: pxor %xmm1, %xmm1
; SSE2-NEXT: pcmpeqw %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSE41-LABEL: v8i16_icmp_ule:
; SSE41: # %bb.0:
; SSE41-NEXT: pminuw %xmm0, %xmm1
; SSE41-NEXT: pcmpeqw %xmm1, %xmm0
; SSE41-NEXT: retq
;
; AVX-LABEL: v8i16_icmp_ule:
; AVX: # %bb.0:
; AVX-NEXT: vpminuw %xmm1, %xmm0, %xmm1
; AVX-NEXT: vpcmpeqw %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%1 = icmp ule <8 x i16> %a, %b
%2 = sext <8 x i1> %1 to <8 x i16>
ret <8 x i16> %2
}
define <4 x i32> @v4i32_icmp_uge(<4 x i32> %a, <4 x i32> %b) nounwind readnone ssp uwtable {
; SSE2-LABEL: v4i32_icmp_uge:
; SSE2: # %bb.0:
; SSE2-NEXT: movdqa {{.*#+}} xmm2 = [2147483648,2147483648,2147483648,2147483648]
; SSE2-NEXT: pxor %xmm2, %xmm0
; SSE2-NEXT: pxor %xmm1, %xmm2
; SSE2-NEXT: pcmpgtd %xmm0, %xmm2
; SSE2-NEXT: pcmpeqd %xmm0, %xmm0
; SSE2-NEXT: pxor %xmm2, %xmm0
; SSE2-NEXT: retq
;
; SSE41-LABEL: v4i32_icmp_uge:
; SSE41: # %bb.0:
; SSE41-NEXT: pmaxud %xmm0, %xmm1
; SSE41-NEXT: pcmpeqd %xmm1, %xmm0
; SSE41-NEXT: retq
;
; AVX-LABEL: v4i32_icmp_uge:
; AVX: # %bb.0:
; AVX-NEXT: vpmaxud %xmm1, %xmm0, %xmm1
; AVX-NEXT: vpcmpeqd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%1 = icmp uge <4 x i32> %a, %b
%2 = sext <4 x i1> %1 to <4 x i32>
ret <4 x i32> %2
}
define <4 x i32> @v4i32_icmp_ule(<4 x i32> %a, <4 x i32> %b) nounwind readnone ssp uwtable {
; SSE2-LABEL: v4i32_icmp_ule:
; SSE2: # %bb.0:
; SSE2-NEXT: movdqa {{.*#+}} xmm2 = [2147483648,2147483648,2147483648,2147483648]
; SSE2-NEXT: pxor %xmm2, %xmm1
; SSE2-NEXT: pxor %xmm2, %xmm0
; SSE2-NEXT: pcmpgtd %xmm1, %xmm0
; SSE2-NEXT: pcmpeqd %xmm1, %xmm1
; SSE2-NEXT: pxor %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSE41-LABEL: v4i32_icmp_ule:
; SSE41: # %bb.0:
; SSE41-NEXT: pminud %xmm0, %xmm1
; SSE41-NEXT: pcmpeqd %xmm1, %xmm0
; SSE41-NEXT: retq
;
; AVX-LABEL: v4i32_icmp_ule:
; AVX: # %bb.0:
; AVX-NEXT: vpminud %xmm1, %xmm0, %xmm1
; AVX-NEXT: vpcmpeqd %xmm1, %xmm0, %xmm0
; AVX-NEXT: retq
%1 = icmp ule <4 x i32> %a, %b
%2 = sext <4 x i1> %1 to <4 x i32>
ret <4 x i32> %2
}
; At one point we were incorrectly constant-folding a setcc to 0x1 instead of
; 0xff, leading to a constpool load. The instruction doesn't matter here, but it
; should set all bits to 1.
define <16 x i8> @test_setcc_constfold_vi8(<16 x i8> %l, <16 x i8> %r) {
; SSE-LABEL: test_setcc_constfold_vi8:
; SSE: # %bb.0:
; SSE-NEXT: pcmpeqd %xmm0, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: test_setcc_constfold_vi8:
; AVX: # %bb.0:
; AVX-NEXT: vpcmpeqd %xmm0, %xmm0, %xmm0
; AVX-NEXT: retq
%test1 = icmp eq <16 x i8> %l, %r
%mask1 = sext <16 x i1> %test1 to <16 x i8>
%test2 = icmp ne <16 x i8> %l, %r
%mask2 = sext <16 x i1> %test2 to <16 x i8>
%res = or <16 x i8> %mask1, %mask2
ret <16 x i8> %res
}
; Make sure sensible results come from doing extension afterwards
define <16 x i8> @test_setcc_constfold_vi1(<16 x i8> %l, <16 x i8> %r) {
; SSE-LABEL: test_setcc_constfold_vi1:
; SSE: # %bb.0:
; SSE-NEXT: pcmpeqd %xmm0, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: test_setcc_constfold_vi1:
; AVX: # %bb.0:
; AVX-NEXT: vpcmpeqd %xmm0, %xmm0, %xmm0
; AVX-NEXT: retq
%test1 = icmp eq <16 x i8> %l, %r
%test2 = icmp ne <16 x i8> %l, %r
%res = or <16 x i1> %test1, %test2
%mask = sext <16 x i1> %res to <16 x i8>
ret <16 x i8> %mask
}
; 64-bit case is also particularly important, as the constant "-1" is probably
; just 32-bits wide.
define <2 x i64> @test_setcc_constfold_vi64(<2 x i64> %l, <2 x i64> %r) {
; SSE-LABEL: test_setcc_constfold_vi64:
; SSE: # %bb.0:
; SSE-NEXT: pcmpeqd %xmm0, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: test_setcc_constfold_vi64:
; AVX: # %bb.0:
; AVX-NEXT: vpcmpeqd %xmm0, %xmm0, %xmm0
; AVX-NEXT: retq
%test1 = icmp eq <2 x i64> %l, %r
%mask1 = sext <2 x i1> %test1 to <2 x i64>
%test2 = icmp ne <2 x i64> %l, %r
%mask2 = sext <2 x i1> %test2 to <2 x i64>
%res = or <2 x i64> %mask1, %mask2
ret <2 x i64> %res
}
; This asserted in type legalization for v3i1 setcc after v3i16 was made
; a simple value type.
define <3 x i1> @test_setcc_v3i1_v3i16(<3 x i16>* %a) nounwind {
; SSE2-LABEL: test_setcc_v3i1_v3i16:
; SSE2: # %bb.0:
; SSE2-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; SSE2-NEXT: pxor %xmm1, %xmm1
; SSE2-NEXT: pcmpeqw %xmm0, %xmm1
; SSE2-NEXT: punpcklwd {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; SSE2-NEXT: movdqa %xmm1, -{{[0-9]+}}(%rsp)
; SSE2-NEXT: movb -{{[0-9]+}}(%rsp), %al
; SSE2-NEXT: movb -{{[0-9]+}}(%rsp), %dl
; SSE2-NEXT: movb -{{[0-9]+}}(%rsp), %cl
; SSE2-NEXT: retq
;
; SSE41-LABEL: test_setcc_v3i1_v3i16:
; SSE41: # %bb.0:
; SSE41-NEXT: movq {{.*#+}} xmm0 = mem[0],zero
; SSE41-NEXT: pxor %xmm1, %xmm1
; SSE41-NEXT: pcmpeqw %xmm0, %xmm1
; SSE41-NEXT: pextrb $0, %xmm1, %eax
; SSE41-NEXT: pextrb $2, %xmm1, %edx
; SSE41-NEXT: pextrb $4, %xmm1, %ecx
; SSE41-NEXT: # kill: def $al killed $al killed $eax
; SSE41-NEXT: # kill: def $dl killed $dl killed $edx
; SSE41-NEXT: # kill: def $cl killed $cl killed $ecx
; SSE41-NEXT: retq
;
; AVX-LABEL: test_setcc_v3i1_v3i16:
; AVX: # %bb.0:
; AVX-NEXT: vmovq {{.*#+}} xmm0 = mem[0],zero
; AVX-NEXT: vpxor %xmm1, %xmm1, %xmm1
; AVX-NEXT: vpcmpeqw %xmm1, %xmm0, %xmm0
; AVX-NEXT: vpextrb $0, %xmm0, %eax
; AVX-NEXT: vpextrb $2, %xmm0, %edx
; AVX-NEXT: vpextrb $4, %xmm0, %ecx
; AVX-NEXT: # kill: def $al killed $al killed $eax
; AVX-NEXT: # kill: def $dl killed $dl killed $edx
; AVX-NEXT: # kill: def $cl killed $cl killed $ecx
; AVX-NEXT: retq
%b = load <3 x i16>, <3 x i16>* %a
%cmp = icmp eq <3 x i16> %b, <i16 0, i16 0, i16 0>
ret <3 x i1> %cmp
}