teak-llvm/llvm/lib/Transforms/Utils/CodeMoverUtils.cpp
Whitney Tsang 36bdc3dc35 [LoopFusion] Move instructions from FC0.Latch to FC1.Latch.
Summary:This PR move instructions from FC0.Latch bottom up to the
beginning of FC1.Latch as long as they are proven safe.

To illustrate why this is beneficial, let's consider the following
example:
Before Fusion:
header1:
  br header2
header2:
  br header2, latch1
latch1:
  br header1, preheader3
preheader3:
  br header3
header3:
  br header4
header4:
  br header4, latch3
latch3:
  br header3, exit3

After Fusion (before this PR):
header1:
  br header2
header2:
  br header2, latch1
latch1:
  br header3
header3:
  br header4
header4:
  br header4, latch3
latch3:
  br header1, exit3

Note that preheader3 is removed during fusion before this PR.
Notice that we cannot fuse loop2 with loop4 as there exists block latch1
in between.
This PR move instructions from latch1 to beginning of latch3, and remove
block latch1. LoopFusion is now able to fuse loop nest recursively.

After Fusion (after this PR):
header1:
  br header2
header2:
  br header3
header3:
  br header4
header4:
  br header2, latch3
latch3:
  br header1, exit3

Reviewer: kbarton, jdoerfert, Meinersbur, dmgreen, fhahn, hfinkel,
bmahjour, etiotto
Reviewed By: kbarton, Meinersbur
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D71165
2019-12-17 22:10:23 +00:00

190 lines
7.1 KiB
C++

//===- CodeMoverUtils.cpp - CodeMover Utilities ----------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform movements on basic blocks, and instructions
// contained within a function.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/CodeMoverUtils.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"
using namespace llvm;
#define DEBUG_TYPE "codemover-utils"
STATISTIC(HasDependences,
"Cannot move across instructions that has memory dependences");
STATISTIC(MayThrowException, "Cannot move across instructions that may throw");
STATISTIC(NotControlFlowEquivalent,
"Instructions are not control flow equivalent");
STATISTIC(NotMovedPHINode, "Movement of PHINodes are not supported");
STATISTIC(NotMovedTerminator, "Movement of Terminator are not supported");
bool llvm::isControlFlowEquivalent(const Instruction &I0, const Instruction &I1,
const DominatorTree &DT,
const PostDominatorTree &PDT) {
return isControlFlowEquivalent(*I0.getParent(), *I1.getParent(), DT, PDT);
}
bool llvm::isControlFlowEquivalent(const BasicBlock &BB0, const BasicBlock &BB1,
const DominatorTree &DT,
const PostDominatorTree &PDT) {
if (&BB0 == &BB1)
return true;
return ((DT.dominates(&BB0, &BB1) && PDT.dominates(&BB1, &BB0)) ||
(PDT.dominates(&BB0, &BB1) && DT.dominates(&BB1, &BB0)));
}
static bool reportInvalidCandidate(const Instruction &I,
llvm::Statistic &Stat) {
++Stat;
LLVM_DEBUG(dbgs() << "Unable to move instruction: " << I << ". "
<< Stat.getDesc());
return false;
}
/// Collect all instructions in between \p StartInst and \p EndInst, and store
/// them in \p InBetweenInsts.
static void
collectInstructionsInBetween(Instruction &StartInst, const Instruction &EndInst,
SmallPtrSetImpl<Instruction *> &InBetweenInsts) {
assert(InBetweenInsts.empty() && "Expecting InBetweenInsts to be empty");
/// Get the next instructions of \p I, and push them to \p WorkList.
auto getNextInsts = [](Instruction &I,
SmallPtrSetImpl<Instruction *> &WorkList) {
if (Instruction *NextInst = I.getNextNode())
WorkList.insert(NextInst);
else {
assert(I.isTerminator() && "Expecting a terminator instruction");
for (BasicBlock *Succ : successors(&I))
WorkList.insert(&Succ->front());
}
};
SmallPtrSet<Instruction *, 10> WorkList;
getNextInsts(StartInst, WorkList);
while (!WorkList.empty()) {
Instruction *CurInst = *WorkList.begin();
WorkList.erase(CurInst);
if (CurInst == &EndInst)
continue;
if (!InBetweenInsts.insert(CurInst).second)
continue;
getNextInsts(*CurInst, WorkList);
}
}
bool llvm::isSafeToMoveBefore(Instruction &I, Instruction &InsertPoint,
const DominatorTree &DT,
const PostDominatorTree &PDT,
DependenceInfo &DI) {
// Cannot move itself before itself.
if (&I == &InsertPoint)
return false;
// Not moved.
if (I.getNextNode() == &InsertPoint)
return true;
if (isa<PHINode>(I) || isa<PHINode>(InsertPoint))
return reportInvalidCandidate(I, NotMovedPHINode);
if (I.isTerminator())
return reportInvalidCandidate(I, NotMovedTerminator);
// TODO remove this limitation.
if (!isControlFlowEquivalent(I, InsertPoint, DT, PDT))
return reportInvalidCandidate(I, NotControlFlowEquivalent);
// As I and InsertPoint are control flow equivalent, if I dominates
// InsertPoint, then I comes before InsertPoint.
const bool MoveForward = DT.dominates(&I, &InsertPoint);
if (MoveForward) {
// When I is being moved forward, we need to make sure the InsertPoint
// dominates every users. Or else, a user may be using an undefined I.
for (const Use &U : I.uses())
if (auto *UserInst = dyn_cast<Instruction>(U.getUser()))
if (UserInst != &InsertPoint && !DT.dominates(&InsertPoint, U))
return false;
} else {
// When I is being moved backward, we need to make sure all its opernads
// dominates the InsertPoint. Or else, an operand may be undefined for I.
for (const Value *Op : I.operands())
if (auto *OpInst = dyn_cast<Instruction>(Op))
if (&InsertPoint == OpInst || !DT.dominates(OpInst, &InsertPoint))
return false;
}
Instruction &StartInst = (MoveForward ? I : InsertPoint);
Instruction &EndInst = (MoveForward ? InsertPoint : I);
SmallPtrSet<Instruction *, 10> InstsToCheck;
collectInstructionsInBetween(StartInst, EndInst, InstsToCheck);
if (!MoveForward)
InstsToCheck.insert(&InsertPoint);
// Check if there exists instructions which may throw, may synchonize, or may
// never return, from I to InsertPoint.
if (!isSafeToSpeculativelyExecute(&I))
if (std::any_of(InstsToCheck.begin(), InstsToCheck.end(),
[](Instruction *I) {
if (I->mayThrow())
return true;
const CallBase *CB = dyn_cast<CallBase>(I);
if (!CB)
return false;
if (!CB->hasFnAttr(Attribute::WillReturn))
return true;
if (!CB->hasFnAttr(Attribute::NoSync))
return true;
return false;
})) {
return reportInvalidCandidate(I, MayThrowException);
}
// Check if I has any output/flow/anti dependences with instructions from \p
// StartInst to \p EndInst.
if (std::any_of(InstsToCheck.begin(), InstsToCheck.end(),
[&DI, &I](Instruction *CurInst) {
auto DepResult = DI.depends(&I, CurInst, true);
if (DepResult &&
(DepResult->isOutput() || DepResult->isFlow() ||
DepResult->isAnti()))
return true;
return false;
}))
return reportInvalidCandidate(I, HasDependences);
return true;
}
void llvm::moveInstsBottomUp(BasicBlock &FromBB, BasicBlock &ToBB,
const DominatorTree &DT,
const PostDominatorTree &PDT, DependenceInfo &DI) {
for (auto It = ++FromBB.rbegin(); It != FromBB.rend();) {
Instruction *MovePos = ToBB.getFirstNonPHIOrDbg();
Instruction &I = *It;
// Increment the iterator before modifying FromBB.
++It;
if (isSafeToMoveBefore(I, *MovePos, DT, PDT, DI))
I.moveBefore(MovePos);
}
}