teak-llvm/libcxx/test/support/test_allocator.h
Chandler Carruth 57b08b0944 Update more file headers across all of the LLVM projects in the monorepo
to reflect the new license. These used slightly different spellings that
defeated my regular expressions.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351648
2019-01-19 10:56:40 +00:00

447 lines
14 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef TEST_ALLOCATOR_H
#define TEST_ALLOCATOR_H
#include <type_traits>
#include <new>
#include <memory>
#include <utility>
#include <cstddef>
#include <cstdlib>
#include <climits>
#include <cassert>
#include "test_macros.h"
template <class Alloc>
inline typename std::allocator_traits<Alloc>::size_type
alloc_max_size(Alloc const &a) {
typedef std::allocator_traits<Alloc> AT;
return AT::max_size(a);
}
class test_alloc_base
{
protected:
static int time_to_throw;
public:
static int throw_after;
static int count;
static int alloc_count;
static int copied;
static int moved;
static int converted;
const static int destructed_value = -1;
const static int default_value = 0;
const static int moved_value = INT_MAX;
static void clear() {
assert(count == 0 && "clearing leaking allocator data?");
count = 0;
time_to_throw = 0;
alloc_count = 0;
throw_after = INT_MAX;
clear_ctor_counters();
}
static void clear_ctor_counters() {
copied = 0;
moved = 0;
converted = 0;
}
};
int test_alloc_base::count = 0;
int test_alloc_base::time_to_throw = 0;
int test_alloc_base::alloc_count = 0;
int test_alloc_base::throw_after = INT_MAX;
int test_alloc_base::copied = 0;
int test_alloc_base::moved = 0;
int test_alloc_base::converted = 0;
template <class T>
class test_allocator
: public test_alloc_base
{
int data_; // participates in equality
int id_; // unique identifier, doesn't participate in equality
template <class U> friend class test_allocator;
public:
typedef unsigned size_type;
typedef int difference_type;
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef typename std::add_lvalue_reference<value_type>::type reference;
typedef typename std::add_lvalue_reference<const value_type>::type const_reference;
template <class U> struct rebind {typedef test_allocator<U> other;};
test_allocator() TEST_NOEXCEPT : data_(0), id_(0) {++count;}
explicit test_allocator(int i, int id = 0) TEST_NOEXCEPT : data_(i), id_(id)
{++count;}
test_allocator(const test_allocator& a) TEST_NOEXCEPT : data_(a.data_),
id_(a.id_) {
++count;
++copied;
assert(a.data_ != destructed_value && a.id_ != destructed_value &&
"copying from destroyed allocator");
}
#if TEST_STD_VER >= 11
test_allocator(test_allocator&& a) TEST_NOEXCEPT : data_(a.data_),
id_(a.id_) {
++count;
++moved;
assert(a.data_ != destructed_value && a.id_ != destructed_value &&
"moving from destroyed allocator");
a.data_ = moved_value;
a.id_ = moved_value;
}
#endif
template <class U>
test_allocator(const test_allocator<U>& a) TEST_NOEXCEPT : data_(a.data_),
id_(a.id_) {
++count;
++converted;
}
~test_allocator() TEST_NOEXCEPT {
assert(data_ >= 0); assert(id_ >= 0);
--count;
data_ = destructed_value;
id_ = destructed_value;
}
pointer address(reference x) const {return &x;}
const_pointer address(const_reference x) const {return &x;}
pointer allocate(size_type n, const void* = 0)
{
assert(data_ >= 0);
if (time_to_throw >= throw_after) {
#ifndef TEST_HAS_NO_EXCEPTIONS
throw std::bad_alloc();
#else
std::terminate();
#endif
}
++time_to_throw;
++alloc_count;
return (pointer)::operator new(n * sizeof(T));
}
void deallocate(pointer p, size_type)
{assert(data_ >= 0); --alloc_count; ::operator delete((void*)p);}
size_type max_size() const TEST_NOEXCEPT
{return UINT_MAX / sizeof(T);}
#if TEST_STD_VER < 11
void construct(pointer p, const T& val)
{::new(static_cast<void*>(p)) T(val);}
#else
template <class U> void construct(pointer p, U&& val)
{::new(static_cast<void*>(p)) T(std::forward<U>(val));}
#endif
void destroy(pointer p)
{p->~T();}
friend bool operator==(const test_allocator& x, const test_allocator& y)
{return x.data_ == y.data_;}
friend bool operator!=(const test_allocator& x, const test_allocator& y)
{return !(x == y);}
int get_data() const { return data_; }
int get_id() const { return id_; }
};
template <class T>
class non_default_test_allocator
: public test_alloc_base
{
int data_;
template <class U> friend class non_default_test_allocator;
public:
typedef unsigned size_type;
typedef int difference_type;
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef typename std::add_lvalue_reference<value_type>::type reference;
typedef typename std::add_lvalue_reference<const value_type>::type const_reference;
template <class U> struct rebind {typedef non_default_test_allocator<U> other;};
// non_default_test_allocator() TEST_NOEXCEPT : data_(0) {++count;}
explicit non_default_test_allocator(int i) TEST_NOEXCEPT : data_(i) {++count;}
non_default_test_allocator(const non_default_test_allocator& a) TEST_NOEXCEPT
: data_(a.data_) {++count;}
template <class U> non_default_test_allocator(const non_default_test_allocator<U>& a) TEST_NOEXCEPT
: data_(a.data_) {++count;}
~non_default_test_allocator() TEST_NOEXCEPT {assert(data_ >= 0); --count; data_ = -1;}
pointer address(reference x) const {return &x;}
const_pointer address(const_reference x) const {return &x;}
pointer allocate(size_type n, const void* = 0)
{
assert(data_ >= 0);
if (time_to_throw >= throw_after) {
#ifndef TEST_HAS_NO_EXCEPTIONS
throw std::bad_alloc();
#else
std::terminate();
#endif
}
++time_to_throw;
++alloc_count;
return (pointer)::operator new (n * sizeof(T));
}
void deallocate(pointer p, size_type)
{assert(data_ >= 0); --alloc_count; ::operator delete((void*)p); }
size_type max_size() const TEST_NOEXCEPT
{return UINT_MAX / sizeof(T);}
#if TEST_STD_VER < 11
void construct(pointer p, const T& val)
{::new(static_cast<void*>(p)) T(val);}
#else
template <class U> void construct(pointer p, U&& val)
{::new(static_cast<void*>(p)) T(std::forward<U>(val));}
#endif
void destroy(pointer p) {p->~T();}
friend bool operator==(const non_default_test_allocator& x, const non_default_test_allocator& y)
{return x.data_ == y.data_;}
friend bool operator!=(const non_default_test_allocator& x, const non_default_test_allocator& y)
{return !(x == y);}
};
template <>
class test_allocator<void>
: public test_alloc_base
{
int data_;
int id_;
template <class U> friend class test_allocator;
public:
typedef unsigned size_type;
typedef int difference_type;
typedef void value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
template <class U> struct rebind {typedef test_allocator<U> other;};
test_allocator() TEST_NOEXCEPT : data_(0), id_(0) {}
explicit test_allocator(int i, int id = 0) TEST_NOEXCEPT : data_(i), id_(id) {}
test_allocator(const test_allocator& a) TEST_NOEXCEPT
: data_(a.data_), id_(a.id_) {}
template <class U> test_allocator(const test_allocator<U>& a) TEST_NOEXCEPT
: data_(a.data_), id_(a.id_) {}
~test_allocator() TEST_NOEXCEPT {data_ = -1; id_ = -1; }
int get_id() const { return id_; }
int get_data() const { return data_; }
friend bool operator==(const test_allocator& x, const test_allocator& y)
{return x.data_ == y.data_;}
friend bool operator!=(const test_allocator& x, const test_allocator& y)
{return !(x == y);}
};
template <class T>
class other_allocator
{
int data_;
template <class U> friend class other_allocator;
public:
typedef T value_type;
other_allocator() : data_(-1) {}
explicit other_allocator(int i) : data_(i) {}
template <class U> other_allocator(const other_allocator<U>& a)
: data_(a.data_) {}
T* allocate(std::size_t n)
{return (T*)::operator new(n * sizeof(T));}
void deallocate(T* p, std::size_t)
{::operator delete((void*)p);}
other_allocator select_on_container_copy_construction() const
{return other_allocator(-2);}
friend bool operator==(const other_allocator& x, const other_allocator& y)
{return x.data_ == y.data_;}
friend bool operator!=(const other_allocator& x, const other_allocator& y)
{return !(x == y);}
typedef std::true_type propagate_on_container_copy_assignment;
typedef std::true_type propagate_on_container_move_assignment;
typedef std::true_type propagate_on_container_swap;
#if TEST_STD_VER < 11
std::size_t max_size() const
{return UINT_MAX / sizeof(T);}
#endif
};
#if TEST_STD_VER >= 11
struct Ctor_Tag {};
template <typename T> class TaggingAllocator;
struct Tag_X {
// All constructors must be passed the Tag type.
// DefaultInsertable into vector<X, TaggingAllocator<X>>,
Tag_X(Ctor_Tag) {}
// CopyInsertable into vector<X, TaggingAllocator<X>>,
Tag_X(Ctor_Tag, const Tag_X&) {}
// MoveInsertable into vector<X, TaggingAllocator<X>>, and
Tag_X(Ctor_Tag, Tag_X&&) {}
// EmplaceConstructible into vector<X, TaggingAllocator<X>> from args.
template<typename... Args>
Tag_X(Ctor_Tag, Args&&...) { }
// not DefaultConstructible, CopyConstructible or MoveConstructible.
Tag_X() = delete;
Tag_X(const Tag_X&) = delete;
Tag_X(Tag_X&&) = delete;
// CopyAssignable.
Tag_X& operator=(const Tag_X&) { return *this; }
// MoveAssignable.
Tag_X& operator=(Tag_X&&) { return *this; }
private:
// Not Destructible.
~Tag_X() { }
// Erasable from vector<X, TaggingAllocator<X>>.
friend class TaggingAllocator<Tag_X>;
};
template<typename T>
class TaggingAllocator {
public:
using value_type = T;
TaggingAllocator() = default;
template<typename U>
TaggingAllocator(const TaggingAllocator<U>&) { }
T* allocate(std::size_t n) { return std::allocator<T>{}.allocate(n); }
void deallocate(T* p, std::size_t n) { std::allocator<T>{}.deallocate(p, n); }
template<typename... Args>
void construct(Tag_X* p, Args&&... args)
{ ::new((void*)p) Tag_X(Ctor_Tag{}, std::forward<Args>(args)...); }
template<typename U, typename... Args>
void construct(U* p, Args&&... args)
{ ::new((void*)p) U(std::forward<Args>(args)...); }
template<typename U, typename... Args>
void destroy(U* p)
{ p->~U(); }
};
template<typename T, typename U>
bool
operator==(const TaggingAllocator<T>&, const TaggingAllocator<U>&)
{ return true; }
template<typename T, typename U>
bool
operator!=(const TaggingAllocator<T>&, const TaggingAllocator<U>&)
{ return false; }
#endif
template <std::size_t MaxAllocs>
struct limited_alloc_handle {
std::size_t outstanding_;
void* last_alloc_;
limited_alloc_handle() : outstanding_(0), last_alloc_(nullptr) {}
template <class T>
T *allocate(std::size_t N) {
if (N + outstanding_ > MaxAllocs)
TEST_THROW(std::bad_alloc());
last_alloc_ = ::operator new(N*sizeof(T));
outstanding_ += N;
return static_cast<T*>(last_alloc_);
}
void deallocate(void* ptr, std::size_t N) {
if (ptr == last_alloc_) {
last_alloc_ = nullptr;
assert(outstanding_ >= N);
outstanding_ -= N;
}
::operator delete(ptr);
}
};
template <class T, std::size_t N>
class limited_allocator
{
template <class U, std::size_t UN> friend class limited_allocator;
typedef limited_alloc_handle<N> BuffT;
std::shared_ptr<BuffT> handle_;
public:
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
template <class U> struct rebind { typedef limited_allocator<U, N> other; };
limited_allocator() : handle_(new BuffT) {}
limited_allocator(limited_allocator const& other) : handle_(other.handle_) {}
template <class U>
explicit limited_allocator(limited_allocator<U, N> const& other)
: handle_(other.handle_) {}
private:
limited_allocator& operator=(const limited_allocator&);// = delete;
public:
pointer allocate(size_type n) { return handle_->template allocate<T>(n); }
void deallocate(pointer p, size_type n) { handle_->deallocate(p, n); }
size_type max_size() const {return N;}
BuffT* getHandle() const { return handle_.get(); }
};
template <class T, class U, std::size_t N>
inline bool operator==(limited_allocator<T, N> const& LHS,
limited_allocator<U, N> const& RHS) {
return LHS.getHandle() == RHS.getHandle();
}
template <class T, class U, std::size_t N>
inline bool operator!=(limited_allocator<T, N> const& LHS,
limited_allocator<U, N> const& RHS) {
return !(LHS == RHS);
}
#endif // TEST_ALLOCATOR_H