teak-llvm/clang/test/CodeGen/alloc-size.c
Joel E. Denny 3234887fe2 [APSInt][OpenMP] Fix isNegative, etc. for unsigned types
Without this patch, APSInt inherits APInt::isNegative, which merely
checks the sign bit without regard to whether the type is actually
signed.  isNonNegative and isStrictlyPositive call isNegative and so
are also affected.

This patch adjusts APSInt to override isNegative, isNonNegative, and
isStrictlyPositive with implementations that consider whether the type
is signed.

A large set of Clang OpenMP tests are affected.  Without this patch,
these tests assume that `true` is not a valid argument for clauses
like `collapse`.  Indeed, `true` fails APInt::isStrictlyPositive but
not APSInt::isStrictlyPositive.  This patch adjusts those tests to
assume `true` should be accepted.

This patch also adds tests revealing various other similar fixes due
to APSInt::isNegative calls in Clang's ExprConstant.cpp and
SemaExpr.cpp: `++` and `--` overflow in `constexpr`, evaluated object
size based on `alloc_size`, `<<` and `>>` shift count validation, and
OpenMP array section validation.

Reviewed By: lebedev.ri, ABataev, hfinkel

Differential Revision: https://reviews.llvm.org/D59712

llvm-svn: 359012
2019-04-23 17:04:15 +00:00

369 lines
11 KiB
C

// RUN: %clang_cc1 -triple x86_64-apple-darwin -emit-llvm %s -o - 2>&1 | FileCheck %s
// RUN: %clang_cc1 -DDYNAMIC -triple x86_64-apple-darwin -emit-llvm %s -o - 2>&1 | FileCheck %s
#ifdef DYNAMIC
#define OBJECT_SIZE_BUILTIN __builtin_dynamic_object_size
#else
#define OBJECT_SIZE_BUILTIN __builtin_object_size
#endif
#define NULL ((void *)0)
int gi;
typedef unsigned long size_t;
// CHECK-DAG-RE: define void @my_malloc({{.*}}) #[[MALLOC_ATTR_NUMBER:[0-9]+]]
// N.B. LLVM's allocsize arguments are base-0, whereas ours are base-1 (for
// compat with GCC)
// CHECK-DAG-RE: attributes #[[MALLOC_ATTR_NUMBER]] = {.*allocsize(0).*}
void *my_malloc(size_t) __attribute__((alloc_size(1)));
// CHECK-DAG-RE: define void @my_calloc({{.*}}) #[[CALLOC_ATTR_NUMBER:[0-9]+]]
// CHECK-DAG-RE: attributes #[[CALLOC_ATTR_NUMBER]] = {.*allocsize(0, 1).*}
void *my_calloc(size_t, size_t) __attribute__((alloc_size(1, 2)));
// CHECK-LABEL: @test1
void test1() {
void *const vp = my_malloc(100);
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(vp, 0);
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(vp, 1);
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(vp, 2);
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(vp, 3);
void *const arr = my_calloc(100, 5);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(arr, 0);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(arr, 1);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(arr, 2);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(arr, 3);
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(my_malloc(100), 0);
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(my_malloc(100), 1);
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(my_malloc(100), 2);
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(my_malloc(100), 3);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(my_calloc(100, 5), 0);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(my_calloc(100, 5), 1);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(my_calloc(100, 5), 2);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(my_calloc(100, 5), 3);
void *const zeroPtr = my_malloc(0);
// CHECK: store i32 0
gi = OBJECT_SIZE_BUILTIN(zeroPtr, 0);
// CHECK: store i32 0
gi = OBJECT_SIZE_BUILTIN(my_malloc(0), 0);
void *const zeroArr1 = my_calloc(0, 1);
void *const zeroArr2 = my_calloc(1, 0);
// CHECK: store i32 0
gi = OBJECT_SIZE_BUILTIN(zeroArr1, 0);
// CHECK: store i32 0
gi = OBJECT_SIZE_BUILTIN(zeroArr2, 0);
// CHECK: store i32 0
gi = OBJECT_SIZE_BUILTIN(my_calloc(1, 0), 0);
// CHECK: store i32 0
gi = OBJECT_SIZE_BUILTIN(my_calloc(0, 1), 0);
}
// CHECK-LABEL: @test2
void test2() {
void *const vp = my_malloc(gi);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(vp, 0);
void *const arr1 = my_calloc(gi, 1);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(arr1, 0);
void *const arr2 = my_calloc(1, gi);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(arr2, 0);
}
// CHECK-LABEL: @test3
void test3() {
char *const buf = (char *)my_calloc(100, 5);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(buf, 0);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(buf, 1);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(buf, 2);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(buf, 3);
}
struct Data {
int a;
int t[10];
char pad[3];
char end[1];
};
// CHECK-LABEL: @test5
void test5() {
struct Data *const data = my_malloc(sizeof(*data));
// CHECK: store i32 48
gi = OBJECT_SIZE_BUILTIN(data, 0);
// CHECK: store i32 48
gi = OBJECT_SIZE_BUILTIN(data, 1);
// CHECK: store i32 48
gi = OBJECT_SIZE_BUILTIN(data, 2);
// CHECK: store i32 48
gi = OBJECT_SIZE_BUILTIN(data, 3);
// CHECK: store i32 40
gi = OBJECT_SIZE_BUILTIN(&data->t[1], 0);
// CHECK: store i32 36
gi = OBJECT_SIZE_BUILTIN(&data->t[1], 1);
// CHECK: store i32 40
gi = OBJECT_SIZE_BUILTIN(&data->t[1], 2);
// CHECK: store i32 36
gi = OBJECT_SIZE_BUILTIN(&data->t[1], 3);
struct Data *const arr = my_calloc(sizeof(*data), 2);
// CHECK: store i32 96
gi = OBJECT_SIZE_BUILTIN(arr, 0);
// CHECK: store i32 96
gi = OBJECT_SIZE_BUILTIN(arr, 1);
// CHECK: store i32 96
gi = OBJECT_SIZE_BUILTIN(arr, 2);
// CHECK: store i32 96
gi = OBJECT_SIZE_BUILTIN(arr, 3);
// CHECK: store i32 88
gi = OBJECT_SIZE_BUILTIN(&arr->t[1], 0);
// CHECK: store i32 36
gi = OBJECT_SIZE_BUILTIN(&arr->t[1], 1);
// CHECK: store i32 88
gi = OBJECT_SIZE_BUILTIN(&arr->t[1], 2);
// CHECK: store i32 36
gi = OBJECT_SIZE_BUILTIN(&arr->t[1], 3);
}
// CHECK-LABEL: @test6
void test6() {
// Things that would normally trigger conservative estimates don't need to do
// so when we know the source of the allocation.
struct Data *const data = my_malloc(sizeof(*data) + 10);
// CHECK: store i32 11
gi = OBJECT_SIZE_BUILTIN(data->end, 0);
// CHECK: store i32 11
gi = OBJECT_SIZE_BUILTIN(data->end, 1);
// CHECK: store i32 11
gi = OBJECT_SIZE_BUILTIN(data->end, 2);
// CHECK: store i32 11
gi = OBJECT_SIZE_BUILTIN(data->end, 3);
struct Data *const arr = my_calloc(sizeof(*arr) + 5, 3);
// AFAICT, GCC treats malloc and calloc identically. So, we should do the
// same.
//
// Additionally, GCC ignores the initial array index when determining whether
// we're writing off the end of an alloc_size base. e.g.
// arr[0].end
// arr[1].end
// arr[2].end
// ...Are all considered "writing off the end", because there's no way to tell
// with high accuracy if the user meant "allocate a single N-byte `Data`",
// or "allocate M smaller `Data`s with extra padding".
// CHECK: store i32 112
gi = OBJECT_SIZE_BUILTIN(arr->end, 0);
// CHECK: store i32 112
gi = OBJECT_SIZE_BUILTIN(arr->end, 1);
// CHECK: store i32 112
gi = OBJECT_SIZE_BUILTIN(arr->end, 2);
// CHECK: store i32 112
gi = OBJECT_SIZE_BUILTIN(arr->end, 3);
// CHECK: store i32 112
gi = OBJECT_SIZE_BUILTIN(arr[0].end, 0);
// CHECK: store i32 112
gi = OBJECT_SIZE_BUILTIN(arr[0].end, 1);
// CHECK: store i32 112
gi = OBJECT_SIZE_BUILTIN(arr[0].end, 2);
// CHECK: store i32 112
gi = OBJECT_SIZE_BUILTIN(arr[0].end, 3);
// CHECK: store i32 64
gi = OBJECT_SIZE_BUILTIN(arr[1].end, 0);
// CHECK: store i32 64
gi = OBJECT_SIZE_BUILTIN(arr[1].end, 1);
// CHECK: store i32 64
gi = OBJECT_SIZE_BUILTIN(arr[1].end, 2);
// CHECK: store i32 64
gi = OBJECT_SIZE_BUILTIN(arr[1].end, 3);
// CHECK: store i32 16
gi = OBJECT_SIZE_BUILTIN(arr[2].end, 0);
// CHECK: store i32 16
gi = OBJECT_SIZE_BUILTIN(arr[2].end, 1);
// CHECK: store i32 16
gi = OBJECT_SIZE_BUILTIN(arr[2].end, 2);
// CHECK: store i32 16
gi = OBJECT_SIZE_BUILTIN(arr[2].end, 3);
}
// CHECK-LABEL: @test7
void test7() {
struct Data *const data = my_malloc(sizeof(*data) + 5);
// CHECK: store i32 9
gi = OBJECT_SIZE_BUILTIN(data->pad, 0);
// CHECK: store i32 3
gi = OBJECT_SIZE_BUILTIN(data->pad, 1);
// CHECK: store i32 9
gi = OBJECT_SIZE_BUILTIN(data->pad, 2);
// CHECK: store i32 3
gi = OBJECT_SIZE_BUILTIN(data->pad, 3);
}
// CHECK-LABEL: @test8
void test8() {
// Non-const pointers aren't currently supported.
void *buf = my_calloc(100, 5);
// CHECK: @llvm.objectsize.i64.p0i8(i8* %{{.*}}, i1 false, i1 true, i1
gi = OBJECT_SIZE_BUILTIN(buf, 0);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(buf, 1);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(buf, 2);
// CHECK: store i32 0
gi = OBJECT_SIZE_BUILTIN(buf, 3);
}
// CHECK-LABEL: @test9
void test9() {
// Check to be sure that we unwrap things correctly.
short *const buf0 = (my_malloc(100));
short *const buf1 = (short*)(my_malloc(100));
short *const buf2 = ((short*)(my_malloc(100)));
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(buf0, 0);
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(buf1, 0);
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(buf2, 0);
}
// CHECK-LABEL: @test10
void test10() {
// Yay overflow
short *const arr = my_calloc((size_t)-1 / 2 + 1, 2);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(arr, 0);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(arr, 1);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(arr, 2);
// CHECK: store i32 0
gi = OBJECT_SIZE_BUILTIN(arr, 3);
// As an implementation detail, CharUnits can't handle numbers greater than or
// equal to 2**63. Realistically, this shouldn't be a problem, but we should
// be sure we don't emit crazy results for this case.
short *const buf = my_malloc((size_t)-1);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(buf, 0);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(buf, 1);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(buf, 2);
// CHECK: store i32 0
gi = OBJECT_SIZE_BUILTIN(buf, 3);
short *const arr_big = my_calloc((size_t)-1 / 2 - 1, 2);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(arr_big, 0);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(arr_big, 1);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(arr_big, 2);
// CHECK: store i32 0
gi = OBJECT_SIZE_BUILTIN(arr_big, 3);
}
void *my_tiny_malloc(char) __attribute__((alloc_size(1)));
void *my_tiny_calloc(char, char) __attribute__((alloc_size(1, 2)));
// CHECK-LABEL: @test11
void test11() {
void *const vp = my_tiny_malloc(100);
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(vp, 0);
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(vp, 1);
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(vp, 2);
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(vp, 3);
// N.B. This causes char overflow, but not size_t overflow, so it should be
// supported.
void *const arr = my_tiny_calloc(100, 5);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(arr, 0);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(arr, 1);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(arr, 2);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(arr, 3);
}
void *my_signed_malloc(long) __attribute__((alloc_size(1)));
void *my_signed_calloc(long, long) __attribute__((alloc_size(1, 2)));
// CHECK-LABEL: @test12
void test12() {
// CHECK: store i32 100
gi = OBJECT_SIZE_BUILTIN(my_signed_malloc(100), 0);
// CHECK: store i32 500
gi = OBJECT_SIZE_BUILTIN(my_signed_calloc(100, 5), 0);
void *const vp = my_signed_malloc(-2);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(vp, 0);
// N.B. These get lowered to -1 because the function calls may have
// side-effects, and we can't determine the objectsize.
// CHECK: store i32 -1
gi = OBJECT_SIZE_BUILTIN(my_signed_malloc(-2), 0);
void *const arr1 = my_signed_calloc(-2, 1);
void *const arr2 = my_signed_calloc(1, -2);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(arr1, 0);
// CHECK: @llvm.objectsize
gi = OBJECT_SIZE_BUILTIN(arr2, 0);
// CHECK: store i32 -1
gi = OBJECT_SIZE_BUILTIN(my_signed_calloc(1, -2), 0);
// CHECK: store i32 -1
gi = OBJECT_SIZE_BUILTIN(my_signed_calloc(-2, 1), 0);
}
void *alloc_uchar(unsigned char) __attribute__((alloc_size(1)));
// CHECK-LABEL: @test13
void test13() {
// If 128 were incorrectly seen as negative, the result would become -1.
// CHECK: store i32 128,
gi = OBJECT_SIZE_BUILTIN(alloc_uchar(128), 0);
}