//===- yaml2elf - Convert YAML to a ELF object file -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// The ELF component of yaml2obj. /// //===----------------------------------------------------------------------===// #include "yaml2obj.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/MC/StringTableBuilder.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/ObjectYAML/ELFYAML.h" #include "llvm/Support/EndianStream.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/WithColor.h" #include "llvm/Support/YAMLTraits.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; // This class is used to build up a contiguous binary blob while keeping // track of an offset in the output (which notionally begins at // `InitialOffset`). namespace { class ContiguousBlobAccumulator { const uint64_t InitialOffset; SmallVector Buf; raw_svector_ostream OS; /// \returns The new offset. uint64_t padToAlignment(unsigned Align) { if (Align == 0) Align = 1; uint64_t CurrentOffset = InitialOffset + OS.tell(); uint64_t AlignedOffset = alignTo(CurrentOffset, Align); OS.write_zeros(AlignedOffset - CurrentOffset); return AlignedOffset; // == CurrentOffset; } public: ContiguousBlobAccumulator(uint64_t InitialOffset_) : InitialOffset(InitialOffset_), Buf(), OS(Buf) {} template raw_ostream &getOSAndAlignedOffset(Integer &Offset, unsigned Align) { Offset = padToAlignment(Align); return OS; } void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); } }; } // end anonymous namespace // Used to keep track of section and symbol names, so that in the YAML file // sections and symbols can be referenced by name instead of by index. namespace { class NameToIdxMap { StringMap Map; public: /// \Returns false if name is already present in the map. bool addName(StringRef Name, unsigned Ndx) { return Map.insert({Name, Ndx}).second; } /// \Returns false if name is not present in the map. bool lookup(StringRef Name, unsigned &Idx) const { auto I = Map.find(Name); if (I == Map.end()) return false; Idx = I->getValue(); return true; } /// Asserts if name is not present in the map. unsigned get(StringRef Name) const { unsigned Idx; if (lookup(Name, Idx)) return Idx; assert(false && "Expected section not found in index"); return 0; } unsigned size() const { return Map.size(); } }; } // end anonymous namespace template static size_t arrayDataSize(ArrayRef A) { return A.size() * sizeof(T); } template static void writeArrayData(raw_ostream &OS, ArrayRef A) { OS.write((const char *)A.data(), arrayDataSize(A)); } template static void zero(T &Obj) { memset(&Obj, 0, sizeof(Obj)); } namespace { /// "Single point of truth" for the ELF file construction. /// TODO: This class still has a ways to go before it is truly a "single /// point of truth". template class ELFState { typedef typename ELFT::Ehdr Elf_Ehdr; typedef typename ELFT::Phdr Elf_Phdr; typedef typename ELFT::Shdr Elf_Shdr; typedef typename ELFT::Sym Elf_Sym; typedef typename ELFT::Rel Elf_Rel; typedef typename ELFT::Rela Elf_Rela; typedef typename ELFT::Relr Elf_Relr; typedef typename ELFT::Dyn Elf_Dyn; enum class SymtabType { Static, Dynamic }; /// The future ".strtab" section. StringTableBuilder DotStrtab{StringTableBuilder::ELF}; /// The future ".shstrtab" section. StringTableBuilder DotShStrtab{StringTableBuilder::ELF}; /// The future ".dynstr" section. StringTableBuilder DotDynstr{StringTableBuilder::ELF}; NameToIdxMap SN2I; NameToIdxMap SymN2I; const ELFYAML::Object &Doc; bool buildSectionIndex(); bool buildSymbolIndex(ArrayRef Symbols); void initELFHeader(Elf_Ehdr &Header); void initProgramHeaders(std::vector &PHeaders); bool initImplicitHeader(ELFState &State, ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, StringRef SecName, ELFYAML::Section *YAMLSec); bool initSectionHeaders(ELFState &State, std::vector &SHeaders, ContiguousBlobAccumulator &CBA); void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, ContiguousBlobAccumulator &CBA, ELFYAML::Section *YAMLSec); void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, StringTableBuilder &STB, ContiguousBlobAccumulator &CBA, ELFYAML::Section *YAMLSec); void setProgramHeaderLayout(std::vector &PHeaders, std::vector &SHeaders); bool writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, ContiguousBlobAccumulator &CBA); bool writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, ContiguousBlobAccumulator &CBA); bool writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Group, ContiguousBlobAccumulator &CBA); bool writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::SymverSection &Section, ContiguousBlobAccumulator &CBA); bool writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::VerneedSection &Section, ContiguousBlobAccumulator &CBA); bool writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::VerdefSection &Section, ContiguousBlobAccumulator &CBA); bool writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::MipsABIFlags &Section, ContiguousBlobAccumulator &CBA); bool writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::DynamicSection &Section, ContiguousBlobAccumulator &CBA); std::vector implicitSectionNames() const; ELFState(const ELFYAML::Object &D) : Doc(D) {} public: static int writeELF(raw_ostream &OS, const ELFYAML::Object &Doc); private: void finalizeStrings(); }; } // end anonymous namespace template void ELFState::initELFHeader(Elf_Ehdr &Header) { using namespace llvm::ELF; zero(Header); Header.e_ident[EI_MAG0] = 0x7f; Header.e_ident[EI_MAG1] = 'E'; Header.e_ident[EI_MAG2] = 'L'; Header.e_ident[EI_MAG3] = 'F'; Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; Header.e_ident[EI_DATA] = Doc.Header.Data; Header.e_ident[EI_VERSION] = EV_CURRENT; Header.e_ident[EI_OSABI] = Doc.Header.OSABI; Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion; Header.e_type = Doc.Header.Type; Header.e_machine = Doc.Header.Machine; Header.e_version = EV_CURRENT; Header.e_entry = Doc.Header.Entry; Header.e_phoff = sizeof(Header); Header.e_flags = Doc.Header.Flags; Header.e_ehsize = sizeof(Elf_Ehdr); Header.e_phentsize = sizeof(Elf_Phdr); Header.e_phnum = Doc.ProgramHeaders.size(); Header.e_shentsize = Doc.Header.SHEntSize ? (uint16_t)*Doc.Header.SHEntSize : sizeof(Elf_Shdr); // Immediately following the ELF header and program headers. Header.e_shoff = Doc.Header.SHOffset ? (uint16_t)*Doc.Header.SHOffset : sizeof(Header) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size(); Header.e_shnum = Doc.Header.SHNum ? (uint16_t)*Doc.Header.SHNum : SN2I.size() + 1; Header.e_shstrndx = Doc.Header.SHStrNdx ? (uint16_t)*Doc.Header.SHStrNdx : SN2I.get(".shstrtab"); } template void ELFState::initProgramHeaders(std::vector &PHeaders) { for (const auto &YamlPhdr : Doc.ProgramHeaders) { Elf_Phdr Phdr; Phdr.p_type = YamlPhdr.Type; Phdr.p_flags = YamlPhdr.Flags; Phdr.p_vaddr = YamlPhdr.VAddr; Phdr.p_paddr = YamlPhdr.PAddr; PHeaders.push_back(Phdr); } } static bool convertSectionIndex(NameToIdxMap &SN2I, StringRef SecName, StringRef IndexSrc, unsigned &IndexDest) { if (!SN2I.lookup(IndexSrc, IndexDest) && !to_integer(IndexSrc, IndexDest)) { WithColor::error() << "Unknown section referenced: '" << IndexSrc << "' at YAML section '" << SecName << "'.\n"; return false; } return true; } template bool ELFState::initImplicitHeader(ELFState &State, ContiguousBlobAccumulator &CBA, Elf_Shdr &Header, StringRef SecName, ELFYAML::Section *YAMLSec) { // Check if the header was already initialized. if (Header.sh_offset) return false; if (SecName == ".symtab") State.initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec); else if (SecName == ".strtab") State.initStrtabSectionHeader(Header, SecName, State.DotStrtab, CBA, YAMLSec); else if (SecName == ".shstrtab") State.initStrtabSectionHeader(Header, SecName, State.DotShStrtab, CBA, YAMLSec); else if (SecName == ".dynsym") State.initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec); else if (SecName == ".dynstr") State.initStrtabSectionHeader(Header, SecName, State.DotDynstr, CBA, YAMLSec); else return false; return true; } static StringRef dropUniqueSuffix(StringRef S) { size_t SuffixPos = S.rfind(" ["); if (SuffixPos == StringRef::npos) return S; return S.substr(0, SuffixPos); } template bool ELFState::initSectionHeaders(ELFState &State, std::vector &SHeaders, ContiguousBlobAccumulator &CBA) { // Build a list of sections we are going to add implicitly. std::vector ImplicitSections; for (StringRef Name : State.implicitSectionNames()) if (State.SN2I.get(Name) > Doc.Sections.size()) ImplicitSections.push_back(Name); // Ensure SHN_UNDEF entry is present. An all-zero section header is a // valid SHN_UNDEF entry since SHT_NULL == 0. SHeaders.resize(Doc.Sections.size() + ImplicitSections.size() + 1); zero(SHeaders[0]); for (size_t I = 1; I < Doc.Sections.size() + ImplicitSections.size() + 1; ++I) { Elf_Shdr &SHeader = SHeaders[I]; zero(SHeader); ELFYAML::Section *Sec = I > Doc.Sections.size() ? nullptr : Doc.Sections[I - 1].get(); // We have a few sections like string or symbol tables that are usually // added implicitly to the end. However, if they are explicitly specified // in the YAML, we need to write them here. This ensures the file offset // remains correct. StringRef SecName = Sec ? Sec->Name : ImplicitSections[I - Doc.Sections.size() - 1]; if (initImplicitHeader(State, CBA, SHeader, SecName, Sec)) continue; assert(Sec && "It can't be null unless it is an implicit section. But all " "implicit sections should already have been handled above."); SHeader.sh_name = DotShStrtab.getOffset(dropUniqueSuffix(SecName)); SHeader.sh_type = Sec->Type; if (Sec->Flags) SHeader.sh_flags = *Sec->Flags; SHeader.sh_addr = Sec->Address; SHeader.sh_addralign = Sec->AddressAlign; if (!Sec->Link.empty()) { unsigned Index; if (!convertSectionIndex(SN2I, Sec->Name, Sec->Link, Index)) return false; SHeader.sh_link = Index; } if (auto S = dyn_cast(Sec)) { if (!writeSectionContent(SHeader, *S, CBA)) return false; } else if (auto S = dyn_cast(Sec)) { if (!writeSectionContent(SHeader, *S, CBA)) return false; } else if (auto S = dyn_cast(Sec)) { if (!writeSectionContent(SHeader, *S, CBA)) return false; } else if (auto S = dyn_cast(Sec)) { if (!writeSectionContent(SHeader, *S, CBA)) return false; } else if (auto S = dyn_cast(Sec)) { SHeader.sh_entsize = 0; SHeader.sh_size = S->Size; // SHT_NOBITS section does not have content // so just to setup the section offset. CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); } else if (auto S = dyn_cast(Sec)) { if (!writeSectionContent(SHeader, *S, CBA)) return false; } else if (auto S = dyn_cast(Sec)) { if (!writeSectionContent(SHeader, *S, CBA)) return false; } else if (auto S = dyn_cast(Sec)) { if (!writeSectionContent(SHeader, *S, CBA)) return false; } else if (auto S = dyn_cast(Sec)) { if (!writeSectionContent(SHeader, *S, CBA)) return false; } else llvm_unreachable("Unknown section type"); } return true; } static size_t findFirstNonGlobal(ArrayRef Symbols) { for (size_t I = 0; I < Symbols.size(); ++I) if (Symbols[I].Binding.value != ELF::STB_LOCAL) return I; return Symbols.size(); } static uint64_t writeRawSectionData(raw_ostream &OS, const ELFYAML::RawContentSection &RawSec) { size_t ContentSize = 0; if (RawSec.Content) { RawSec.Content->writeAsBinary(OS); ContentSize = RawSec.Content->binary_size(); } if (!RawSec.Size) return ContentSize; OS.write_zeros(*RawSec.Size - ContentSize); return *RawSec.Size; } template static std::vector toELFSymbols(NameToIdxMap &SN2I, ArrayRef Symbols, const StringTableBuilder &Strtab) { using Elf_Sym = typename ELFT::Sym; std::vector Ret; Ret.resize(Symbols.size() + 1); size_t I = 0; for (const auto &Sym : Symbols) { Elf_Sym &Symbol = Ret[++I]; // If NameIndex, which contains the name offset, is explicitly specified, we // use it. This is useful for preparing broken objects. Otherwise, we add // the specified Name to the string table builder to get its offset. if (Sym.NameIndex) Symbol.st_name = *Sym.NameIndex; else if (!Sym.Name.empty()) Symbol.st_name = Strtab.getOffset(dropUniqueSuffix(Sym.Name)); Symbol.setBindingAndType(Sym.Binding, Sym.Type); if (!Sym.Section.empty()) { unsigned Index; if (!SN2I.lookup(Sym.Section, Index)) { WithColor::error() << "Unknown section referenced: '" << Sym.Section << "' by YAML symbol " << Sym.Name << ".\n"; exit(1); } Symbol.st_shndx = Index; } else if (Sym.Index) { Symbol.st_shndx = *Sym.Index; } // else Symbol.st_shndex == SHN_UNDEF (== 0), since it was zero'd earlier. Symbol.st_value = Sym.Value; Symbol.st_other = Sym.Other; Symbol.st_size = Sym.Size; } return Ret; } template void ELFState::initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType, ContiguousBlobAccumulator &CBA, ELFYAML::Section *YAMLSec) { bool IsStatic = STType == SymtabType::Static; const auto &Symbols = IsStatic ? Doc.Symbols : Doc.DynamicSymbols; ELFYAML::RawContentSection *RawSec = dyn_cast_or_null(YAMLSec); if (RawSec && !Symbols.empty() && (RawSec->Content || RawSec->Size)) { if (RawSec->Content) WithColor::error() << "Cannot specify both `Content` and " + (IsStatic ? Twine("`Symbols`") : Twine("`DynamicSymbols`")) + " for symbol table section '" << RawSec->Name << "'.\n"; if (RawSec->Size) WithColor::error() << "Cannot specify both `Size` and " + (IsStatic ? Twine("`Symbols`") : Twine("`DynamicSymbols`")) + " for symbol table section '" << RawSec->Name << "'.\n"; exit(1); } zero(SHeader); SHeader.sh_name = DotShStrtab.getOffset(IsStatic ? ".symtab" : ".dynsym"); if (YAMLSec) SHeader.sh_type = YAMLSec->Type; else SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM; if (RawSec && !RawSec->Link.empty()) { // If the Link field is explicitly defined in the document, // we should use it. unsigned Index; if (!convertSectionIndex(SN2I, RawSec->Name, RawSec->Link, Index)) return; SHeader.sh_link = Index; } else { // When we describe the .dynsym section in the document explicitly, it is // allowed to omit the "DynamicSymbols" tag. In this case .dynstr is not // added implicitly and we should be able to leave the Link zeroed if // .dynstr is not defined. unsigned Link = 0; if (IsStatic) Link = SN2I.get(".strtab"); else SN2I.lookup(".dynstr", Link); SHeader.sh_link = Link; } if (YAMLSec && YAMLSec->Flags) SHeader.sh_flags = *YAMLSec->Flags; else if (!IsStatic) SHeader.sh_flags = ELF::SHF_ALLOC; // If the symbol table section is explicitly described in the YAML // then we should set the fields requested. SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info) : findFirstNonGlobal(Symbols) + 1; SHeader.sh_entsize = (YAMLSec && YAMLSec->EntSize) ? (uint64_t)(*YAMLSec->EntSize) : sizeof(Elf_Sym); SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8; SHeader.sh_addr = YAMLSec ? (uint64_t)YAMLSec->Address : 0; auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); if (RawSec && (RawSec->Content || RawSec->Size)) { assert(Symbols.empty()); SHeader.sh_size = writeRawSectionData(OS, *RawSec); return; } std::vector Syms = toELFSymbols(SN2I, Symbols, IsStatic ? DotStrtab : DotDynstr); writeArrayData(OS, makeArrayRef(Syms)); SHeader.sh_size = arrayDataSize(makeArrayRef(Syms)); } template void ELFState::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name, StringTableBuilder &STB, ContiguousBlobAccumulator &CBA, ELFYAML::Section *YAMLSec) { zero(SHeader); SHeader.sh_name = DotShStrtab.getOffset(Name); SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB; SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1; ELFYAML::RawContentSection *RawSec = dyn_cast_or_null(YAMLSec); auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); if (RawSec && (RawSec->Content || RawSec->Size)) { SHeader.sh_size = writeRawSectionData(OS, *RawSec); } else { STB.write(OS); SHeader.sh_size = STB.getSize(); } if (YAMLSec && YAMLSec->EntSize) SHeader.sh_entsize = *YAMLSec->EntSize; if (RawSec && RawSec->Info) SHeader.sh_info = *RawSec->Info; if (YAMLSec && YAMLSec->Flags) SHeader.sh_flags = *YAMLSec->Flags; else if (Name == ".dynstr") SHeader.sh_flags = ELF::SHF_ALLOC; // If the section is explicitly described in the YAML // then we want to use its section address. if (YAMLSec) SHeader.sh_addr = YAMLSec->Address; } template void ELFState::setProgramHeaderLayout(std::vector &PHeaders, std::vector &SHeaders) { uint32_t PhdrIdx = 0; for (auto &YamlPhdr : Doc.ProgramHeaders) { Elf_Phdr &PHeader = PHeaders[PhdrIdx++]; std::vector Sections; for (const ELFYAML::SectionName &SecName : YamlPhdr.Sections) { unsigned Index; if (!SN2I.lookup(SecName.Section, Index)) { WithColor::error() << "Unknown section referenced: '" << SecName.Section << "' by program header.\n"; exit(1); } Sections.push_back(&SHeaders[Index]); } if (YamlPhdr.Offset) { PHeader.p_offset = *YamlPhdr.Offset; } else { if (YamlPhdr.Sections.size()) PHeader.p_offset = UINT32_MAX; else PHeader.p_offset = 0; // Find the minimum offset for the program header. for (Elf_Shdr *SHeader : Sections) PHeader.p_offset = std::min(PHeader.p_offset, SHeader->sh_offset); } // Find the maximum offset of the end of a section in order to set p_filesz, // if not set explicitly. if (YamlPhdr.FileSize) { PHeader.p_filesz = *YamlPhdr.FileSize; } else { PHeader.p_filesz = 0; for (Elf_Shdr *SHeader : Sections) { uint64_t EndOfSection; if (SHeader->sh_type == llvm::ELF::SHT_NOBITS) EndOfSection = SHeader->sh_offset; else EndOfSection = SHeader->sh_offset + SHeader->sh_size; uint64_t EndOfSegment = PHeader.p_offset + PHeader.p_filesz; EndOfSegment = std::max(EndOfSegment, EndOfSection); PHeader.p_filesz = EndOfSegment - PHeader.p_offset; } } // If not set explicitly, find the memory size by adding the size of // sections at the end of the segment. These should be empty (size of zero) // and NOBITS sections. if (YamlPhdr.MemSize) { PHeader.p_memsz = *YamlPhdr.MemSize; } else { PHeader.p_memsz = PHeader.p_filesz; for (Elf_Shdr *SHeader : Sections) if (SHeader->sh_offset == PHeader.p_offset + PHeader.p_filesz) PHeader.p_memsz += SHeader->sh_size; } // Set the alignment of the segment to be the same as the maximum alignment // of the sections with the same offset so that by default the segment // has a valid and sensible alignment. if (YamlPhdr.Align) { PHeader.p_align = *YamlPhdr.Align; } else { PHeader.p_align = 1; for (Elf_Shdr *SHeader : Sections) if (SHeader->sh_offset == PHeader.p_offset) PHeader.p_align = std::max(PHeader.p_align, SHeader->sh_addralign); } } } template bool ELFState::writeSectionContent( Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section, ContiguousBlobAccumulator &CBA) { raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); SHeader.sh_size = writeRawSectionData(OS, Section); if (Section.EntSize) SHeader.sh_entsize = *Section.EntSize; else if (Section.Type == llvm::ELF::SHT_RELR) SHeader.sh_entsize = sizeof(Elf_Relr); else SHeader.sh_entsize = 0; if (Section.Info) SHeader.sh_info = *Section.Info; return true; } static bool isMips64EL(const ELFYAML::Object &Doc) { return Doc.Header.Machine == ELFYAML::ELF_EM(llvm::ELF::EM_MIPS) && Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) && Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); } template bool ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::RelocationSection &Section, ContiguousBlobAccumulator &CBA) { assert((Section.Type == llvm::ELF::SHT_REL || Section.Type == llvm::ELF::SHT_RELA) && "Section type is not SHT_REL nor SHT_RELA"); bool IsRela = Section.Type == llvm::ELF::SHT_RELA; SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); SHeader.sh_size = SHeader.sh_entsize * Section.Relocations.size(); // For relocation section set link to .symtab by default. if (Section.Link.empty()) SHeader.sh_link = SN2I.get(".symtab"); unsigned Index = 0; if (!Section.RelocatableSec.empty() && !convertSectionIndex(SN2I, Section.Name, Section.RelocatableSec, Index)) return false; SHeader.sh_info = Index; auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); for (const auto &Rel : Section.Relocations) { unsigned SymIdx = 0; // If a relocation references a symbol, try to look one up in the symbol // table. If it is not there, treat the value as a symbol index. if (Rel.Symbol && !SymN2I.lookup(*Rel.Symbol, SymIdx) && !to_integer(*Rel.Symbol, SymIdx)) { WithColor::error() << "Unknown symbol referenced: '" << *Rel.Symbol << "' at YAML section '" << Section.Name << "'.\n"; return false; } if (IsRela) { Elf_Rela REntry; zero(REntry); REntry.r_offset = Rel.Offset; REntry.r_addend = Rel.Addend; REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); OS.write((const char *)&REntry, sizeof(REntry)); } else { Elf_Rel REntry; zero(REntry); REntry.r_offset = Rel.Offset; REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc)); OS.write((const char *)&REntry, sizeof(REntry)); } } return true; } template bool ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Section, ContiguousBlobAccumulator &CBA) { assert(Section.Type == llvm::ELF::SHT_GROUP && "Section type is not SHT_GROUP"); SHeader.sh_entsize = 4; SHeader.sh_size = SHeader.sh_entsize * Section.Members.size(); unsigned SymIdx; if (!SymN2I.lookup(Section.Signature, SymIdx) && !to_integer(Section.Signature, SymIdx)) { WithColor::error() << "Unknown symbol referenced: '" << Section.Signature << "' at YAML section '" << Section.Name << "'.\n"; return false; } SHeader.sh_info = SymIdx; raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); for (const ELFYAML::SectionOrType &Member : Section.Members) { unsigned int SectionIndex = 0; if (Member.sectionNameOrType == "GRP_COMDAT") SectionIndex = llvm::ELF::GRP_COMDAT; else if (!convertSectionIndex(SN2I, Section.Name, Member.sectionNameOrType, SectionIndex)) return false; support::endian::write(OS, SectionIndex, ELFT::TargetEndianness); } return true; } template bool ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::SymverSection &Section, ContiguousBlobAccumulator &CBA) { raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); for (uint16_t Version : Section.Entries) support::endian::write(OS, Version, ELFT::TargetEndianness); SHeader.sh_entsize = 2; SHeader.sh_size = Section.Entries.size() * SHeader.sh_entsize; return true; } template bool ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::VerdefSection &Section, ContiguousBlobAccumulator &CBA) { typedef typename ELFT::Verdef Elf_Verdef; typedef typename ELFT::Verdaux Elf_Verdaux; raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); uint64_t AuxCnt = 0; for (size_t I = 0; I < Section.Entries.size(); ++I) { const ELFYAML::VerdefEntry &E = Section.Entries[I]; Elf_Verdef VerDef; VerDef.vd_version = E.Version; VerDef.vd_flags = E.Flags; VerDef.vd_ndx = E.VersionNdx; VerDef.vd_hash = E.Hash; VerDef.vd_aux = sizeof(Elf_Verdef); VerDef.vd_cnt = E.VerNames.size(); if (I == Section.Entries.size() - 1) VerDef.vd_next = 0; else VerDef.vd_next = sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux); OS.write((const char *)&VerDef, sizeof(Elf_Verdef)); for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) { Elf_Verdaux VernAux; VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]); if (J == E.VerNames.size() - 1) VernAux.vda_next = 0; else VernAux.vda_next = sizeof(Elf_Verdaux); OS.write((const char *)&VernAux, sizeof(Elf_Verdaux)); } } SHeader.sh_size = Section.Entries.size() * sizeof(Elf_Verdef) + AuxCnt * sizeof(Elf_Verdaux); SHeader.sh_info = Section.Info; return true; } template bool ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::VerneedSection &Section, ContiguousBlobAccumulator &CBA) { typedef typename ELFT::Verneed Elf_Verneed; typedef typename ELFT::Vernaux Elf_Vernaux; auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); uint64_t AuxCnt = 0; for (size_t I = 0; I < Section.VerneedV.size(); ++I) { const ELFYAML::VerneedEntry &VE = Section.VerneedV[I]; Elf_Verneed VerNeed; VerNeed.vn_version = VE.Version; VerNeed.vn_file = DotDynstr.getOffset(VE.File); if (I == Section.VerneedV.size() - 1) VerNeed.vn_next = 0; else VerNeed.vn_next = sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux); VerNeed.vn_cnt = VE.AuxV.size(); VerNeed.vn_aux = sizeof(Elf_Verneed); OS.write((const char *)&VerNeed, sizeof(Elf_Verneed)); for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) { const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J]; Elf_Vernaux VernAux; VernAux.vna_hash = VAuxE.Hash; VernAux.vna_flags = VAuxE.Flags; VernAux.vna_other = VAuxE.Other; VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name); if (J == VE.AuxV.size() - 1) VernAux.vna_next = 0; else VernAux.vna_next = sizeof(Elf_Vernaux); OS.write((const char *)&VernAux, sizeof(Elf_Vernaux)); } } SHeader.sh_size = Section.VerneedV.size() * sizeof(Elf_Verneed) + AuxCnt * sizeof(Elf_Vernaux); SHeader.sh_info = Section.Info; return true; } template bool ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::MipsABIFlags &Section, ContiguousBlobAccumulator &CBA) { assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS && "Section type is not SHT_MIPS_ABIFLAGS"); object::Elf_Mips_ABIFlags Flags; zero(Flags); SHeader.sh_entsize = sizeof(Flags); SHeader.sh_size = SHeader.sh_entsize; auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); Flags.version = Section.Version; Flags.isa_level = Section.ISALevel; Flags.isa_rev = Section.ISARevision; Flags.gpr_size = Section.GPRSize; Flags.cpr1_size = Section.CPR1Size; Flags.cpr2_size = Section.CPR2Size; Flags.fp_abi = Section.FpABI; Flags.isa_ext = Section.ISAExtension; Flags.ases = Section.ASEs; Flags.flags1 = Section.Flags1; Flags.flags2 = Section.Flags2; OS.write((const char *)&Flags, sizeof(Flags)); return true; } template bool ELFState::writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::DynamicSection &Section, ContiguousBlobAccumulator &CBA) { typedef typename ELFT::uint uintX_t; assert(Section.Type == llvm::ELF::SHT_DYNAMIC && "Section type is not SHT_DYNAMIC"); if (!Section.Entries.empty() && Section.Content) { WithColor::error() << "Cannot specify both raw content and explicit entries " "for dynamic section '" << Section.Name << "'.\n"; return false; } if (Section.Content) SHeader.sh_size = Section.Content->binary_size(); else SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries.size(); if (Section.EntSize) SHeader.sh_entsize = *Section.EntSize; else SHeader.sh_entsize = sizeof(Elf_Dyn); raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign); for (const ELFYAML::DynamicEntry &DE : Section.Entries) { support::endian::write(OS, DE.Tag, ELFT::TargetEndianness); support::endian::write(OS, DE.Val, ELFT::TargetEndianness); } if (Section.Content) Section.Content->writeAsBinary(OS); return true; } template bool ELFState::buildSectionIndex() { for (unsigned i = 0, e = Doc.Sections.size(); i != e; ++i) { StringRef Name = Doc.Sections[i]->Name; DotShStrtab.add(dropUniqueSuffix(Name)); // "+ 1" to take into account the SHT_NULL entry. if (!SN2I.addName(Name, i + 1)) { WithColor::error() << "Repeated section name: '" << Name << "' at YAML section number " << i << ".\n"; return false; } } auto SecNo = 1 + Doc.Sections.size(); // Add special sections after input sections, if necessary. for (StringRef Name : implicitSectionNames()) if (SN2I.addName(Name, SecNo)) { // Account for this section, since it wasn't in the Doc ++SecNo; DotShStrtab.add(Name); } DotShStrtab.finalize(); return true; } template bool ELFState::buildSymbolIndex(ArrayRef Symbols) { bool GlobalSymbolSeen = false; std::size_t I = 0; for (const auto &Sym : Symbols) { ++I; StringRef Name = Sym.Name; if (Sym.Binding.value == ELF::STB_LOCAL && GlobalSymbolSeen) { WithColor::error() << "Local symbol '" + Name + "' after global in Symbols list.\n"; return false; } if (Sym.Binding.value != ELF::STB_LOCAL) GlobalSymbolSeen = true; if (!Name.empty() && !SymN2I.addName(Name, I)) { WithColor::error() << "Repeated symbol name: '" << Name << "'.\n"; return false; } } return true; } template void ELFState::finalizeStrings() { // Add the regular symbol names to .strtab section. for (const ELFYAML::Symbol &Sym : Doc.Symbols) DotStrtab.add(dropUniqueSuffix(Sym.Name)); DotStrtab.finalize(); // Add the dynamic symbol names to .dynstr section. for (const ELFYAML::Symbol &Sym : Doc.DynamicSymbols) DotDynstr.add(dropUniqueSuffix(Sym.Name)); // SHT_GNU_verdef and SHT_GNU_verneed sections might also // add strings to .dynstr section. for (const std::unique_ptr &Sec : Doc.Sections) { if (auto VerNeed = dyn_cast(Sec.get())) { for (const ELFYAML::VerneedEntry &VE : VerNeed->VerneedV) { DotDynstr.add(VE.File); for (const ELFYAML::VernauxEntry &Aux : VE.AuxV) DotDynstr.add(Aux.Name); } } else if (auto VerDef = dyn_cast(Sec.get())) { for (const ELFYAML::VerdefEntry &E : VerDef->Entries) for (StringRef Name : E.VerNames) DotDynstr.add(Name); } } DotDynstr.finalize(); } template int ELFState::writeELF(raw_ostream &OS, const ELFYAML::Object &Doc) { ELFState State(Doc); // Finalize .strtab and .dynstr sections. We do that early because want to // finalize the string table builders before writing the content of the // sections that might want to use them. State.finalizeStrings(); if (!State.buildSectionIndex()) return 1; if (!State.buildSymbolIndex(Doc.Symbols)) return 1; Elf_Ehdr Header; State.initELFHeader(Header); // TODO: Flesh out section header support. std::vector PHeaders; State.initProgramHeaders(PHeaders); // XXX: This offset is tightly coupled with the order that we write // things to `OS`. const size_t SectionContentBeginOffset = Header.e_ehsize + Header.e_phentsize * Header.e_phnum + Header.e_shentsize * Header.e_shnum; ContiguousBlobAccumulator CBA(SectionContentBeginOffset); std::vector SHeaders; if (!State.initSectionHeaders(State, SHeaders, CBA)) return 1; // Now we can decide segment offsets State.setProgramHeaderLayout(PHeaders, SHeaders); OS.write((const char *)&Header, sizeof(Header)); writeArrayData(OS, makeArrayRef(PHeaders)); writeArrayData(OS, makeArrayRef(SHeaders)); CBA.writeBlobToStream(OS); return 0; } template std::vector ELFState::implicitSectionNames() const { if (Doc.DynamicSymbols.empty()) return {".symtab", ".strtab", ".shstrtab"}; return {".symtab", ".strtab", ".shstrtab", ".dynsym", ".dynstr"}; } int yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out) { bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB); bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64); if (Is64Bit) { if (IsLE) return ELFState::writeELF(Out, Doc); return ELFState::writeELF(Out, Doc); } if (IsLE) return ELFState::writeELF(Out, Doc); return ELFState::writeELF(Out, Doc); }