//===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief This file implements a register stacking pass. /// /// This pass reorders instructions to put register uses and defs in an order /// such that they form single-use expression trees. Registers fitting this form /// are then marked as "stackified", meaning references to them are replaced by /// "push" and "pop" from the stack. /// /// This is primarily a code size optimiation, since temporary values on the /// expression don't need to be named. /// //===----------------------------------------------------------------------===// #include "WebAssembly.h" #include "WebAssemblyMachineFunctionInfo.h" #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "wasm-reg-stackify" namespace { class WebAssemblyRegStackify final : public MachineFunctionPass { const char *getPassName() const override { return "WebAssembly Register Stackify"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addPreserved(); AU.addPreservedID(MachineDominatorsID); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; public: static char ID; // Pass identification, replacement for typeid WebAssemblyRegStackify() : MachineFunctionPass(ID) {} }; } // end anonymous namespace char WebAssemblyRegStackify::ID = 0; FunctionPass *llvm::createWebAssemblyRegStackify() { return new WebAssemblyRegStackify(); } // Decorate the given instruction with implicit operands that enforce the // expression stack ordering constraints. static void ImposeStackOrdering(MachineInstr *MI) { // Read and write the opaque EXPR_STACK register. MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK, /*isDef=*/true, /*isImp=*/true)); MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK, /*isDef=*/false, /*isImp=*/true)); } bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { DEBUG(dbgs() << "********** Register Stackifying **********\n" "********** Function: " << MF.getName() << '\n'); bool Changed = false; MachineRegisterInfo &MRI = MF.getRegInfo(); WebAssemblyFunctionInfo &MFI = *MF.getInfo(); // Walk the instructions from the bottom up. Currently we don't look past // block boundaries, and the blocks aren't ordered so the block visitation // order isn't significant, but we may want to change this in the future. for (MachineBasicBlock &MBB : MF) { for (MachineInstr &MI : reverse(MBB)) { MachineInstr *Insert = &MI; // Don't nest anything inside a phi. if (Insert->getOpcode() == TargetOpcode::PHI) break; // Iterate through the inputs in reverse order, since we'll be pulling // operands off the stack in FIFO order. bool AnyStackified = false; for (MachineOperand &Op : reverse(Insert->uses())) { // We're only interested in explicit virtual register operands. if (!Op.isReg() || Op.isImplicit()) continue; unsigned Reg = Op.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; // Only consider registers with a single definition. // TODO: Eventually we may relax this, to stackify phi transfers. MachineInstr *Def = MRI.getVRegDef(Reg); if (!Def) continue; // There's no use in nesting implicit defs inside anything. if (Def->getOpcode() == TargetOpcode::IMPLICIT_DEF) continue; // Argument instructions represent live-in registers and not real // instructions. if (Def->getOpcode() == WebAssembly::ARGUMENT_I32 || Def->getOpcode() == WebAssembly::ARGUMENT_I64 || Def->getOpcode() == WebAssembly::ARGUMENT_F32 || Def->getOpcode() == WebAssembly::ARGUMENT_F64) continue; // Single-use expression trees require defs that have one use, or that // they be trivially clonable. // TODO: Eventually we'll relax this, to take advantage of set_local // returning its result. bool OneUse = MRI.hasOneUse(Reg); if (!OneUse && !Def->isMoveImmediate()) continue; // For now, be conservative and don't look across block boundaries, // unless we have something trivially clonable. // TODO: Be more aggressive. if (Def->getParent() != &MBB && !Def->isMoveImmediate()) continue; // For now, be simple and don't reorder loads, stores, or side effects. // TODO: Be more aggressive. if ((Def->mayLoad() || Def->mayStore() || Def->hasUnmodeledSideEffects())) continue; Changed = true; AnyStackified = true; if (OneUse) { // Move the def down and nest it in the current instruction. MBB.insert(MachineBasicBlock::instr_iterator(Insert), Def->removeFromParent()); MFI.stackifyVReg(Reg); ImposeStackOrdering(Def); Insert = Def; } else { // Clone the def down and nest it in the current instruction. MachineInstr *Clone = MF.CloneMachineInstr(Def); unsigned OldReg = Def->getOperand(0).getReg(); unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); assert(Op.getReg() == OldReg); assert(Clone->getOperand(0).getReg() == OldReg); Op.setReg(NewReg); Clone->getOperand(0).setReg(NewReg); MBB.insert(MachineBasicBlock::instr_iterator(Insert), Clone); MFI.stackifyVReg(Reg); ImposeStackOrdering(Clone); Insert = Clone; } } if (AnyStackified) ImposeStackOrdering(&MI); } } // If we used EXPR_STACK anywhere, add it to the live-in sets everywhere // so that it never looks like a use-before-def. if (Changed) { MF.getRegInfo().addLiveIn(WebAssembly::EXPR_STACK); for (MachineBasicBlock &MBB : MF) MBB.addLiveIn(WebAssembly::EXPR_STACK); } return Changed; }