//===- ThreadSafetyCommon.cpp ----------------------------------*- C++ --*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implementation of the interfaces declared in ThreadSafetyCommon.h // //===----------------------------------------------------------------------===// #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" #include "clang/AST/Attr.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/StmtCXX.h" #include "clang/Analysis/Analyses/PostOrderCFGView.h" #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" #include "clang/Analysis/AnalysisContext.h" #include "clang/Analysis/CFG.h" #include "clang/Basic/OperatorKinds.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include #include #include namespace clang { namespace threadSafety { typedef SExprBuilder::CallingContext CallingContext; til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { auto It = SMap.find(S); if (It != SMap.end()) return It->second; return nullptr; } til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) { Walker.walk(*this); return Scfg; } // Translate a clang statement or expression to a TIL expression. // Also performs substitution of variables; Ctx provides the context. // Dispatches on the type of S. til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) { if (!S) return nullptr; // Check if S has already been translated and cached. // This handles the lookup of SSA names for DeclRefExprs here. if (til::SExpr *E = lookupStmt(S)) return E; switch (S->getStmtClass()) { case Stmt::DeclRefExprClass: return translateDeclRefExpr(cast(S), Ctx); case Stmt::CXXThisExprClass: return translateCXXThisExpr(cast(S), Ctx); case Stmt::MemberExprClass: return translateMemberExpr(cast(S), Ctx); case Stmt::CallExprClass: return translateCallExpr(cast(S), Ctx); case Stmt::CXXMemberCallExprClass: return translateCXXMemberCallExpr(cast(S), Ctx); case Stmt::CXXOperatorCallExprClass: return translateCXXOperatorCallExpr(cast(S), Ctx); case Stmt::UnaryOperatorClass: return translateUnaryOperator(cast(S), Ctx); case Stmt::BinaryOperatorClass: return translateBinaryOperator(cast(S), Ctx); case Stmt::ArraySubscriptExprClass: return translateArraySubscriptExpr(cast(S), Ctx); case Stmt::ConditionalOperatorClass: return translateConditionalOperator(cast(S), Ctx); case Stmt::BinaryConditionalOperatorClass: return translateBinaryConditionalOperator( cast(S), Ctx); // We treat these as no-ops case Stmt::ParenExprClass: return translate(cast(S)->getSubExpr(), Ctx); case Stmt::ExprWithCleanupsClass: return translate(cast(S)->getSubExpr(), Ctx); case Stmt::CXXBindTemporaryExprClass: return translate(cast(S)->getSubExpr(), Ctx); // Collect all literals case Stmt::CharacterLiteralClass: case Stmt::CXXNullPtrLiteralExprClass: case Stmt::GNUNullExprClass: case Stmt::CXXBoolLiteralExprClass: case Stmt::FloatingLiteralClass: case Stmt::ImaginaryLiteralClass: case Stmt::IntegerLiteralClass: case Stmt::StringLiteralClass: case Stmt::ObjCStringLiteralClass: return new (Arena) til::Literal(cast(S)); case Stmt::DeclStmtClass: return translateDeclStmt(cast(S), Ctx); default: break; } if (const CastExpr *CE = dyn_cast(S)) return translateCastExpr(CE, Ctx); return new (Arena) til::Undefined(S); } til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE, CallingContext *Ctx) { const ValueDecl *VD = cast(DRE->getDecl()->getCanonicalDecl()); // Function parameters require substitution and/or renaming. if (const ParmVarDecl *PV = dyn_cast_or_null(VD)) { const FunctionDecl *FD = cast(PV->getDeclContext())->getCanonicalDecl(); unsigned I = PV->getFunctionScopeIndex(); if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) { // Substitute call arguments for references to function parameters assert(I < Ctx->NumArgs); return translate(Ctx->FunArgs[I], Ctx->Prev); } // Map the param back to the param of the original function declaration // for consistent comparisons. VD = FD->getParamDecl(I); } // For non-local variables, treat it as a referenced to a named object. return new (Arena) til::LiteralPtr(VD); } til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, CallingContext *Ctx) { // Substitute for 'this' if (Ctx && Ctx->SelfArg) return translate(Ctx->SelfArg, Ctx->Prev); assert(SelfVar && "We have no variable for 'this'!"); return SelfVar; } til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME, CallingContext *Ctx) { til::SExpr *E = translate(ME->getBase(), Ctx); E = new (Arena) til::SApply(E); return new (Arena) til::Project(E, ME->getMemberDecl()); } til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE, CallingContext *Ctx) { // TODO -- Lock returned til::SExpr *E = translate(CE->getCallee(), Ctx); for (const auto *Arg : CE->arguments()) { til::SExpr *A = translate(Arg, Ctx); E = new (Arena) til::Apply(E, A); } return new (Arena) til::Call(E, CE); } til::SExpr *SExprBuilder::translateCXXMemberCallExpr( const CXXMemberCallExpr *ME, CallingContext *Ctx) { return translateCallExpr(cast(ME), Ctx); } til::SExpr *SExprBuilder::translateCXXOperatorCallExpr( const CXXOperatorCallExpr *OCE, CallingContext *Ctx) { return translateCallExpr(cast(OCE), Ctx); } til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO, CallingContext *Ctx) { switch (UO->getOpcode()) { case UO_PostInc: case UO_PostDec: case UO_PreInc: case UO_PreDec: return new (Arena) til::Undefined(UO); // We treat these as no-ops case UO_AddrOf: case UO_Deref: case UO_Plus: return translate(UO->getSubExpr(), Ctx); case UO_Minus: case UO_Not: case UO_LNot: case UO_Real: case UO_Imag: case UO_Extension: return new (Arena) til::UnaryOp(UO->getOpcode(), translate(UO->getSubExpr(), Ctx)); } return new (Arena) til::Undefined(UO); } til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO, CallingContext *Ctx) { switch (BO->getOpcode()) { case BO_PtrMemD: case BO_PtrMemI: return new (Arena) til::Undefined(BO); case BO_Mul: case BO_Div: case BO_Rem: case BO_Add: case BO_Sub: case BO_Shl: case BO_Shr: case BO_LT: case BO_GT: case BO_LE: case BO_GE: case BO_EQ: case BO_NE: case BO_And: case BO_Xor: case BO_Or: case BO_LAnd: case BO_LOr: return new (Arena) til::BinaryOp(BO->getOpcode(), translate(BO->getLHS(), Ctx), translate(BO->getRHS(), Ctx)); case BO_Assign: { const Expr *LHS = BO->getLHS(); if (const DeclRefExpr *DRE = dyn_cast(LHS)) { const Expr *RHS = BO->getRHS(); til::SExpr *E1 = translate(RHS, Ctx); return updateVarDecl(DRE->getDecl(), E1); } til::SExpr *E0 = translate(LHS, Ctx); til::SExpr *E1 = translate(BO->getRHS(), Ctx); return new (Arena) til::Store(E0, E1); } case BO_MulAssign: case BO_DivAssign: case BO_RemAssign: case BO_AddAssign: case BO_SubAssign: case BO_ShlAssign: case BO_ShrAssign: case BO_AndAssign: case BO_XorAssign: case BO_OrAssign: return new (Arena) til::Undefined(BO); case BO_Comma: // TODO: handle LHS return translate(BO->getRHS(), Ctx); } return new (Arena) til::Undefined(BO); } til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE, CallingContext *Ctx) { clang::CastKind K = CE->getCastKind(); switch (K) { case CK_LValueToRValue: { if (const DeclRefExpr *DRE = dyn_cast(CE->getSubExpr())) { til::SExpr *E0 = lookupVarDecl(DRE->getDecl()); if (E0) return E0; } til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); return new (Arena) til::Load(E0); } case CK_NoOp: case CK_DerivedToBase: case CK_UncheckedDerivedToBase: case CK_ArrayToPointerDecay: case CK_FunctionToPointerDecay: { til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); return E0; } default: { til::SExpr *E0 = translate(CE->getSubExpr(), Ctx); return new (Arena) til::Cast(K, E0); } } } til::SExpr * SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E, CallingContext *Ctx) { return new (Arena) til::Undefined(E); } til::SExpr * SExprBuilder::translateConditionalOperator(const ConditionalOperator *C, CallingContext *Ctx) { return new (Arena) til::Undefined(C); } til::SExpr *SExprBuilder::translateBinaryConditionalOperator( const BinaryConditionalOperator *C, CallingContext *Ctx) { return new (Arena) til::Undefined(C); } til::SExpr * SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) { DeclGroupRef DGrp = S->getDeclGroup(); for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) { if (VarDecl *VD = dyn_cast_or_null(*I)) { Expr *E = VD->getInit(); til::SExpr* SE = translate(E, Ctx); // Add local variables with trivial type to the variable map QualType T = VD->getType(); if (T.isTrivialType(VD->getASTContext())) { return addVarDecl(VD, SE); } else { // TODO: add alloca } } } return nullptr; } // If (E) is non-trivial, then add it to the current basic block, and // update the statement map so that S refers to E. Returns a new variable // that refers to E. // If E is trivial returns E. til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S, const ValueDecl *VD) { if (!E) return nullptr; if (til::ThreadSafetyTIL::isTrivial(E)) return E; til::Variable *V = new (Arena) til::Variable(E, VD); CurrentInstructions.push_back(V); if (S) insertStmt(S, V); return V; } // Returns the current value of VD, if known, and nullptr otherwise. til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) { auto It = LVarIdxMap.find(VD); if (It != LVarIdxMap.end()) { assert(CurrentLVarMap[It->second].first == VD); return CurrentLVarMap[It->second].second; } return nullptr; } // if E is a til::Variable, update its clangDecl. inline void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) { if (!E) return; if (til::Variable *V = dyn_cast(E)) { if (!V->clangDecl()) V->setClangDecl(VD); } } // Adds a new variable declaration. til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) { maybeUpdateVD(E, VD); LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size())); CurrentLVarMap.makeWritable(); CurrentLVarMap.push_back(std::make_pair(VD, E)); return E; } // Updates a current variable declaration. (E.g. by assignment) til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) { maybeUpdateVD(E, VD); auto It = LVarIdxMap.find(VD); if (It == LVarIdxMap.end()) { til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD); til::SExpr *St = new (Arena) til::Store(Ptr, E); return St; } CurrentLVarMap.makeWritable(); CurrentLVarMap.elem(It->second).second = E; return E; } // Return true if the given expression represents a possibly unnecessary // variable: i.e. a variable that references a Phi node that may be removed. inline bool isIncompleteVar(til::SExpr *E) { if (!E) return true; // Null values are used on unknown backedges. if (til::Variable *V = dyn_cast(E)) { if (til::Phi *Ph = dyn_cast(V->definition())) return Ph->incomplete(); } return false; } // Make a Phi node in the current block for the i^th variable in CurrentVarMap. // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E. // If E == null, this is a backedge and will be set later. void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) { unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors; assert(ArgIndex > 0 && ArgIndex < NPreds); til::Variable *V = dyn_cast(CurrentLVarMap[i].second); if (V && V->getBlockID() == CurrentBB->blockID()) { // We already have a Phi node in the current block, // so just add the new variable to the Phi node. til::Phi *Ph = dyn_cast(V->definition()); assert(Ph && "Expecting Phi node."); if (E) Ph->values()[ArgIndex] = E; if (!Ph->incomplete() && isIncompleteVar(E)) Ph->setIncomplete(true); return; } // Make a new phi node: phi(..., E) // All phi args up to the current index are set to the current value. til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds); Ph->values().setValues(NPreds, nullptr); for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx) Ph->values()[PIdx] = CurrentLVarMap[i].second; if (E) Ph->values()[ArgIndex] = E; if (isIncompleteVar(E)) Ph->setIncomplete(true); // Add Phi node to current block, and update CurrentLVarMap[i] auto *Var = new (Arena) til::Variable(Ph, CurrentLVarMap[i].first); CurrentArguments.push_back(Var); CurrentLVarMap.makeWritable(); CurrentLVarMap.elem(i).second = Var; } // Merge values from Map into the current variable map. // This will construct Phi nodes in the current basic block as necessary. void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) { assert(CurrentBlockInfo && "Not processing a block!"); if (!CurrentLVarMap.valid()) { // Steal Map, using copy-on-write. CurrentLVarMap = std::move(Map); return; } if (CurrentLVarMap.sameAs(Map)) return; // Easy merge: maps from different predecessors are unchanged. unsigned NPreds = CurrentBB->numPredecessors(); unsigned ESz = CurrentLVarMap.size(); unsigned MSz = Map.size(); unsigned Sz = std::min(ESz, MSz); for (unsigned i=0; i MSz) { CurrentLVarMap.makeWritable(); CurrentLVarMap.downsize(Map.size()); } } // Merge a back edge into the current variable map. // This will create phi nodes for all variables in the variable map. void SExprBuilder::mergeEntryMapBackEdge() { // We don't have definitions for variables on the backedge, because we // haven't gotten that far in the CFG. Thus, when encountering a back edge, // we conservatively create Phi nodes for all variables. Unnecessary Phi // nodes will be marked as incomplete, and stripped out at the end. // // An Phi node is unnecessary if it only refers to itself and one other // variable, e.g. x = Phi(y, y, x) can be reduced to x = y. assert(CurrentBlockInfo && "Not processing a block!"); if (CurrentBlockInfo->HasBackEdges) return; CurrentBlockInfo->HasBackEdges = true; CurrentLVarMap.makeWritable(); unsigned Sz = CurrentLVarMap.size(); unsigned NPreds = CurrentBB->numPredecessors(); for (unsigned i=0; i < Sz; ++i) { makePhiNodeVar(i, NPreds, nullptr); } } // Update the phi nodes that were initially created for a back edge // once the variable definitions have been computed. // I.e., merge the current variable map into the phi nodes for Blk. void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) { til::BasicBlock *BB = lookupBlock(Blk); unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors; assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors()); for (til::Variable *V : BB->arguments()) { til::Phi *Ph = dyn_cast_or_null(V->definition()); assert(Ph && "Expecting Phi Node."); assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge."); assert(V->clangDecl() && "No local variable for Phi node."); til::SExpr *E = lookupVarDecl(V->clangDecl()); assert(E && "Couldn't find local variable for Phi node."); Ph->values()[ArgIndex] = E; } } void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D, const CFGBlock *First) { // Perform initial setup operations. unsigned NBlocks = Cfg->getNumBlockIDs(); Scfg = new (Arena) til::SCFG(Arena, NBlocks); // allocate all basic blocks immediately, to handle forward references. BBInfo.resize(NBlocks); BlockMap.resize(NBlocks, nullptr); // create map from clang blockID to til::BasicBlocks for (auto *B : *Cfg) { auto *BB = new (Arena) til::BasicBlock(Arena, 0, B->size()); BlockMap[B->getBlockID()] = BB; } CallCtx = new SExprBuilder::CallingContext(D); } void SExprBuilder::enterCFGBlock(const CFGBlock *B) { // Intialize TIL basic block and add it to the CFG. CurrentBB = BlockMap[B->getBlockID()]; CurrentBB->setNumPredecessors(B->pred_size()); Scfg->add(CurrentBB); CurrentBlockInfo = &BBInfo[B->getBlockID()]; CurrentArguments.clear(); CurrentInstructions.clear(); // CurrentLVarMap is moved to ExitMap on block exit. assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized."); } void SExprBuilder::handlePredecessor(const CFGBlock *Pred) { // Compute CurrentLVarMap on entry from ExitMaps of predecessors BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()]; assert(PredInfo->UnprocessedSuccessors > 0); if (--PredInfo->UnprocessedSuccessors == 0) mergeEntryMap(std::move(PredInfo->ExitMap)); else mergeEntryMap(PredInfo->ExitMap.clone()); ++CurrentBlockInfo->ProcessedPredecessors; } void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) { mergeEntryMapBackEdge(); } void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) { // The merge*() methods have created arguments. // Push those arguments onto the basic block. CurrentBB->arguments().reserve( static_cast(CurrentArguments.size()), Arena); for (auto *V : CurrentArguments) CurrentBB->addArgument(V); } void SExprBuilder::handleStatement(const Stmt *S) { til::SExpr *E = translate(S, CallCtx); addStatement(E, S); } void SExprBuilder::handleDestructorCall(const VarDecl *VD, const CXXDestructorDecl *DD) { til::SExpr *Sf = new (Arena) til::LiteralPtr(VD); til::SExpr *Dr = new (Arena) til::LiteralPtr(DD); til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf); til::SExpr *E = new (Arena) til::Call(Ap); addStatement(E, nullptr); } void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) { CurrentBB->instructions().reserve( static_cast(CurrentInstructions.size()), Arena); for (auto *V : CurrentInstructions) CurrentBB->addInstruction(V); // Create an appropriate terminator unsigned N = B->succ_size(); auto It = B->succ_begin(); if (N == 1) { til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr; // TODO: set index til::SExpr *Tm = new (Arena) til::Goto(BB, 0); CurrentBB->setTerminator(Tm); } else if (N == 2) { til::SExpr *C = translate(B->getTerminatorCondition(true), CallCtx); til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr; ++It; til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr; // TODO: set conditional, set index til::SExpr *Tm = new (Arena) til::Branch(C, BB1, BB2); CurrentBB->setTerminator(Tm); } } void SExprBuilder::handleSuccessor(const CFGBlock *Succ) { ++CurrentBlockInfo->UnprocessedSuccessors; } void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) { mergePhiNodesBackEdge(Succ); ++BBInfo[Succ->getBlockID()].ProcessedPredecessors; } void SExprBuilder::exitCFGBlock(const CFGBlock *B) { CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap); CurrentBB = nullptr; CurrentBlockInfo = nullptr; } void SExprBuilder::exitCFG(const CFGBlock *Last) { CurrentArguments.clear(); CurrentInstructions.clear(); } class LLVMPrinter : public til::PrettyPrinter { }; void printSCFG(CFGWalker &Walker) { llvm::BumpPtrAllocator Bpa; til::MemRegionRef Arena(&Bpa); SExprBuilder builder(Arena); til::SCFG *Cfg = builder.buildCFG(Walker); LLVMPrinter::print(Cfg, llvm::errs()); } } // end namespace threadSafety } // end namespace clang