//== ---lib/CodeGen/GlobalISel/GICombinerHelper.cpp --------------------- == // // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/Combiner.h" #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #define DEBUG_TYPE "gi-combine" using namespace llvm; CombinerHelper::CombinerHelper(CombinerChangeObserver &Observer, MachineIRBuilder &B) : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer) {} void CombinerHelper::eraseInstr(MachineInstr &MI) { Observer.erasedInstr(MI); } void CombinerHelper::scheduleForVisit(MachineInstr &MI) { Observer.createdInstr(MI); } bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { if (MI.getOpcode() != TargetOpcode::COPY) return false; unsigned DstReg = MI.getOperand(0).getReg(); unsigned SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); LLT SrcTy = MRI.getType(SrcReg); // Simple Copy Propagation. // a(sx) = COPY b(sx) -> Replace all uses of a with b. if (DstTy.isValid() && SrcTy.isValid() && DstTy == SrcTy) { MI.eraseFromParent(); MRI.replaceRegWith(DstReg, SrcReg); return true; } return false; } namespace { struct PreferredTuple { LLT Ty; // The result type of the extend. unsigned ExtendOpcode; // G_ANYEXT/G_SEXT/G_ZEXT MachineInstr *MI; }; /// Select a preference between two uses. CurrentUse is the current preference /// while *ForCandidate is attributes of the candidate under consideration. PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, const LLT &TyForCandidate, unsigned OpcodeForCandidate, MachineInstr *MIForCandidate) { if (!CurrentUse.Ty.isValid()) { if (CurrentUse.ExtendOpcode == OpcodeForCandidate) return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && (OpcodeForCandidate == TargetOpcode::G_SEXT || OpcodeForCandidate == TargetOpcode::G_ZEXT || OpcodeForCandidate == TargetOpcode::G_ANYEXT)) return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; return CurrentUse; } // We permit the extend to hoist through basic blocks but this is only // sensible if the target has extending loads. If you end up lowering back // into a load and extend during the legalizer then the end result is // hoisting the extend up to the load. // Prefer defined extensions to undefined extensions as these are more // likely to reduce the number of instructions. if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) return CurrentUse; else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && OpcodeForCandidate != TargetOpcode::G_ANYEXT) return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; // Prefer sign extensions to zero extensions as sign-extensions tend to be // more expensive. if (CurrentUse.Ty == TyForCandidate) { if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && OpcodeForCandidate == TargetOpcode::G_ZEXT) return CurrentUse; else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && OpcodeForCandidate == TargetOpcode::G_SEXT) return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; } // This is potentially target specific. We've chosen the largest type // because G_TRUNC is usually free. One potential catch with this is that // some targets have a reduced number of larger registers than smaller // registers and this choice potentially increases the live-range for the // larger value. if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; } return CurrentUse; } /// Find a suitable place to insert some instructions and insert them. This /// function accounts for special cases like inserting before a PHI node. /// The current strategy for inserting before PHI's is to duplicate the /// instructions for each predecessor. However, while that's ok for G_TRUNC /// on most targets since it generally requires no code, other targets/cases may /// want to try harder to find a dominating block. static void InsertInsnsWithoutSideEffectsBeforeUse( MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, std::function Inserter) { MachineInstr &UseMI = *UseMO.getParent(); MachineBasicBlock *InsertBB = UseMI.getParent(); // If the use is a PHI then we want the predecessor block instead. if (UseMI.isPHI()) { MachineOperand *PredBB = std::next(&UseMO); InsertBB = PredBB->getMBB(); } // If the block is the same block as the def then we want to insert just after // the def instead of at the start of the block. if (InsertBB == DefMI.getParent()) { MachineBasicBlock::iterator InsertPt = &DefMI; Inserter(std::next(InsertPt)); return; } // Otherwise we want the start of the BB Inserter(InsertBB->getFirstNonPHI()); } } // end anonymous namespace bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { // We match the loads and follow the uses to the extend instead of matching // the extends and following the def to the load. This is because the load // must remain in the same position for correctness (unless we also add code // to find a safe place to sink it) whereas the extend is freely movable. // It also prevents us from duplicating the load for the volatile case or just // for performance. if (MI.getOpcode() != TargetOpcode::G_LOAD && MI.getOpcode() != TargetOpcode::G_SEXTLOAD && MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) return false; auto &LoadValue = MI.getOperand(0); assert(LoadValue.isReg() && "Result wasn't a register?"); LLT LoadValueTy = MRI.getType(LoadValue.getReg()); if (!LoadValueTy.isScalar()) return false; // Find the preferred type aside from the any-extends (unless it's the only // one) and non-extending ops. We'll emit an extending load to that type and // and emit a variant of (extend (trunc X)) for the others according to the // relative type sizes. At the same time, pick an extend to use based on the // extend involved in the chosen type. unsigned PreferredOpcode = MI.getOpcode() == TargetOpcode::G_LOAD ? TargetOpcode::G_ANYEXT : MI.getOpcode() == TargetOpcode::G_SEXTLOAD ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; PreferredTuple Preferred = {LLT(), PreferredOpcode, nullptr}; for (auto &UseMI : MRI.use_instructions(LoadValue.getReg())) { if (UseMI.getOpcode() == TargetOpcode::G_SEXT || UseMI.getOpcode() == TargetOpcode::G_ZEXT || !Preferred.Ty.isValid()) Preferred = ChoosePreferredUse(Preferred, MRI.getType(UseMI.getOperand(0).getReg()), UseMI.getOpcode(), &UseMI); } // There were no extends if (!Preferred.MI) return false; // It should be impossible to chose an extend without selecting a different // type since by definition the result of an extend is larger. assert(Preferred.Ty != LoadValueTy && "Extending to same type?"); // Rewrite the load to the chosen extending load. unsigned ChosenDstReg = Preferred.MI->getOperand(0).getReg(); MI.setDesc( Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT ? TargetOpcode::G_SEXTLOAD : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT ? TargetOpcode::G_ZEXTLOAD : TargetOpcode::G_LOAD)); // Rewrite all the uses to fix up the types. SmallVector ScheduleForErase; SmallVector, 4> ScheduleForInsert; for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) { MachineInstr *UseMI = UseMO.getParent(); // If the extend is compatible with the preferred extend then we should fix // up the type and extend so that it uses the preferred use. if (UseMI->getOpcode() == Preferred.ExtendOpcode || UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { unsigned UseDstReg = UseMI->getOperand(0).getReg(); unsigned UseSrcReg = UseMI->getOperand(1).getReg(); const LLT &UseDstTy = MRI.getType(UseDstReg); if (UseDstReg != ChosenDstReg) { if (Preferred.Ty == UseDstTy) { // If the use has the same type as the preferred use, then merge // the vregs and erase the extend. For example: // %1:_(s8) = G_LOAD ... // %2:_(s32) = G_SEXT %1(s8) // %3:_(s32) = G_ANYEXT %1(s8) // ... = ... %3(s32) // rewrites to: // %2:_(s32) = G_SEXTLOAD ... // ... = ... %2(s32) MRI.replaceRegWith(UseDstReg, ChosenDstReg); ScheduleForErase.push_back(UseMO.getParent()); } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { // If the preferred size is smaller, then keep the extend but extend // from the result of the extending load. For example: // %1:_(s8) = G_LOAD ... // %2:_(s32) = G_SEXT %1(s8) // %3:_(s64) = G_ANYEXT %1(s8) // ... = ... %3(s64) /// rewrites to: // %2:_(s32) = G_SEXTLOAD ... // %3:_(s64) = G_ANYEXT %2:_(s32) // ... = ... %3(s64) MRI.replaceRegWith(UseSrcReg, ChosenDstReg); } else { // If the preferred size is large, then insert a truncate. For // example: // %1:_(s8) = G_LOAD ... // %2:_(s64) = G_SEXT %1(s8) // %3:_(s32) = G_ZEXT %1(s8) // ... = ... %3(s32) /// rewrites to: // %2:_(s64) = G_SEXTLOAD ... // %4:_(s8) = G_TRUNC %2:_(s32) // %3:_(s64) = G_ZEXT %2:_(s8) // ... = ... %3(s64) InsertInsnsWithoutSideEffectsBeforeUse( Builder, MI, UseMO, [&](MachineBasicBlock::iterator InsertBefore) { ScheduleForInsert.emplace_back(&UseMO, &*InsertBefore); }); } continue; } // The use is (one of) the uses of the preferred use we chose earlier. // We're going to update the load to def this value later so just erase // the old extend. ScheduleForErase.push_back(UseMO.getParent()); continue; } // The use isn't an extend. Truncate back to the type we originally loaded. // This is free on many targets. InsertInsnsWithoutSideEffectsBeforeUse( Builder, MI, UseMO, [&](MachineBasicBlock::iterator InsertBefore) { ScheduleForInsert.emplace_back(&UseMO, &*InsertBefore); }); } DenseMap EmittedInsns; for (auto &InsertionInfo : ScheduleForInsert) { MachineOperand *UseMO = InsertionInfo.first; MachineInstr *InsertBefore = InsertionInfo.second; MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertBefore->getParent()); if (PreviouslyEmitted) { UseMO->setReg(PreviouslyEmitted->getOperand(0).getReg()); continue; } Builder.setInsertPt(*InsertBefore->getParent(), InsertBefore); unsigned NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); EmittedInsns[InsertBefore->getParent()] = NewMI; UseMO->setReg(NewDstReg); Observer.createdInstr(*NewMI); } for (auto &EraseMI : ScheduleForErase) { EraseMI->eraseFromParent(); Observer.erasedInstr(*EraseMI); } MI.getOperand(0).setReg(ChosenDstReg); return true; } bool CombinerHelper::tryCombine(MachineInstr &MI) { if (tryCombineCopy(MI)) return true; return tryCombineExtendingLoads(MI); }